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Abstract: The literature has covered the features and uses of the traditional univariate and bivariate logistic distributions in great 

detail. It is reasonable to wonder, though, if logistic marginals and conditionals could exhibit a similar behavior. A phenomenon that is 

comparable to both bivariate exponential and bivariate normal distributions. In this study, we will concentrate on bivariate distributions 

where one family of conditionals is marginal and the other family is of logistic type. Pseudo-logistic distributions are the name for such 

distributions. Research on conditionally specified models has revealed, however, that only in cases where the variables are independent 

will logistic marginals and both conditionals be of the logistic form occur. We talk about the features of distributional aspects and how 

they are built using the original. Both the original and the new conditioning regimes are used in two different ways. Possible 

generalizations are also considered. We also provide an example of a Pseudo-logistic model application. 
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1. Introduction 
 

Two types of bivariate logistic distributions were introduced 

by Gumbel [1961], one of which had a (cumulative) 

distribution function is 

𝐹(𝑥, 𝑦)  =  [1 + 𝑒−𝑥 + 𝑒−𝑦 ]−1            (1) 
 

The regression curves and other key characteristics of this 

distribution were deduced by him. The absence of any 

parameter regarding the correlation between x and y 

significantly restricts the utility of this distribution. 

 

Following that, S.P. Satterthwaite and T.P. Hutchinson 

[1978] presented an extension of Gumbel’s bivariate logistic 

distribution and performed an arbitrary power analysis on 

the generalized expression. A blend of bivariate extreme-

value distributions could produce such a distribution. A few 

fundamental characteristics of this distribution were also 

deduced. 

 

J. Filus and L. Filus claim that a number of studies have 

examined what they refer to as ―pseudo-exponential 

models,‖ or models in which one marginal is exponential, 

and the other is the conditional distribution of the second 

variable assuming that the first variable’s values are also 

exponential. also, we presented a bivariate pseudo-logistic 

distribution with one logistic form marginal density, let’s 

say of 𝑋, and all conditional distributions of 𝑌 𝑔𝑖𝑣𝑒𝑛 𝑋, also 

in logistic form. The scenario where the regression of 

𝑌 𝑔𝑖𝑣𝑒𝑛 𝑋 is linear will receive special attention. whereby 

queries about parameter estimation for both whole and sub-

models are addressed. 

 

In this section, we derived the linear form of the bivariate 

Pseudo-logistic distribution and its general properties. In 

section 2, we estimated the parameters using various 

methods, like the method of moments and maximum 

likelihood estimation. Also, we discuss the likelihood ratio 

test statistic for full and their sub-models in section 3. In 

section 4, we discussed the confidence intervals of the 

parameters of this model. Section 5 contains a little 

simulation study for the full and sub-model. We also apply 

the particular application of this model in section 6. Finally, 

section 7 contains some remarks and a conclusion part for 

this model. 

 

Definition: A 2-dimensional random variable 𝑋 =  (𝑋1,
𝑋2) or (𝑋, 𝑌) is said to have a bivariate pseudo-logistic 

distribution, if there exists a location parameter 𝜇 and scale 

parameter 𝜍0 such that 

 

𝑋 ∼  𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝜇, 𝜍0), 

 

and a function of 𝜇(𝑥) such that 

𝑌|𝑋 =  𝑥 ∼  𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 (𝜇(𝑥), 𝜍1). 

 

Therefore, the bivariate pseudo-logistic model with linear 

regression function, we assume that 

 

𝑋 ∼  𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐  𝜇, 𝜍0 ,                                 (2) 

and 

𝑌|𝑋 =  𝑥 ∼  𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝜇 𝑥 , 𝜍1 ,                     (3) 

 

where 𝜇(𝑥)  =  𝛼 +  𝛽𝑥, and the parameter space 

{ 𝜇, 𝜍0 , 𝛼, 𝛽, 𝜍1 
𝑇 ∶  𝜇 ≥  0, 𝜍0 >  0, 𝛼 >  0, 𝛽 ≥  0, 𝜍1 >

 0}. 

 

The joint probability density function of 𝑋 and 𝑌 is given by 

𝑓𝑋,𝑌 𝑥, 𝑦 =
𝑒𝑥𝑝⁡(−

𝑥−𝜇

𝜍0
)

𝜍0[1+𝑒𝑥𝑝  −
𝑥−𝜇

𝜍0
 ]2

𝑒𝑥𝑝⁡(−
𝑦−𝛼−𝛽𝑥

𝜍1
)

𝜍1[1+𝑒𝑥𝑝  −
𝑦−𝛼−𝛽𝑥

𝜍1
 ]2

; (𝑥, 𝑦) ∈

 ℜ2 .    
(4) 

 

1.1 Moments: 

 

The joint p.d.f. given by 
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𝑓𝑋,𝑌 𝑥, 𝑦 

=  
𝑒𝑥𝑝⁡(−

𝑥−𝜇

𝜍0
)

𝜍0[1 + 𝑒𝑥𝑝  −
𝑥−𝜇

𝜍0
 ]2

𝑒𝑥𝑝⁡(−
𝑦−𝛼−𝛽𝑥

𝜍1
)

𝜍1[1 + 𝑒𝑥𝑝  −
𝑦−𝛼−𝛽𝑥

𝜍1
 ]2

;   (𝑥, 𝑦)  

∈  ℜ2. 
Now, 

 

𝐸 𝑋 =  𝜇,          𝑉𝑎𝑟 𝑋 =
σ0

2𝜋2

3
. 

And 

 

𝐸 𝑌 𝑋 =  𝛼 + 𝛽𝑥, 𝑉𝑎𝑟 𝑌 𝑋 =
σ1

2𝜋2

3
, 

𝐸(𝑌)  =  𝐸[𝐸(𝑌|𝑋)]  =  𝐸[𝛼 + 𝛽𝑋]  =  𝛼 + 𝛽 𝜇, 
𝑉𝑎𝑟(𝑌)  =  𝐸[𝑉𝑎𝑟(𝑌|𝑋)] + 𝑉𝑎𝑟[𝐸(𝑌|𝑋)] 

=  𝐸[
σ1

2𝜋2

3
] + 𝑉𝑎𝑟[𝛼 + 𝛽𝑋] 

𝑉𝑎𝑟 𝑌 =
𝜋2

3
 σ1

2 + 𝛽2σ0
2 . 

Also,  

𝐸(𝑋𝑌)  =  𝐸{𝐸(𝑋. 𝑌|𝑋)}  =  𝐸[𝑋. 𝐸(𝑌|𝑋)] 
=  𝐸[𝑋(𝛼 + 𝛽𝑋)]  =  𝐸[𝛼𝑋 + 𝛽𝑋2] 

𝐸(𝑋𝑌)  =  𝛼𝜇 + 𝛽(𝜇2 +
𝜍0

2𝜋2

3
). 

Therefore, the covariance between X and Y is given by 

𝐶𝑜𝑣 𝑋, 𝑌 =  𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌 =
𝛽𝜍0

2𝜋2

3
. 

Also, the correlation coefficient is 

𝐶𝑜𝑟𝑟(𝑋, 𝑌)  =  𝜌 =
𝐶𝑜𝑣(𝑋, 𝑌)

 𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
 

𝜌 =
𝛽𝜍0

  σ1
2 + 𝛽2σ0

2 
. 

 

Case (1): When 𝛽 =  0, it follows that 𝜌 =  0, in fact, in 

this case X and Y are independentrandom variables. 

 

Case (2): If 𝜍0  =  𝜍1, then the correlation coefficient 

becomes 

𝜌 =
𝛽

  1 + 𝛽2 
. 

 

Case (3): When 𝜍0  =  1, then the coefficient of correlation 

is 

 

𝜌 =
𝛽

  σ1
2 + 𝛽2 

. 

 

Case (4): If 𝜍1  =  1,, then the correlation coefficient 

becomes 

 

𝜌 =
𝛽𝜍0

  1 + 𝛽2σ0
2 

 . 

 

 

2. Statistical Inference 
 

2.1 Method of Moments: 

 

The first moment is 

𝐸(𝑋)  =  𝜇 

𝑠𝑖𝑛𝑐𝑒 𝐸(𝑋)  =  𝑋  

⇒ 𝜇  =  𝑀1 

𝑠𝑖𝑛𝑐𝑒 𝑀1  =  
1

𝑛
 𝑥𝑖 ,    

𝑛

𝑖=0

𝑀2  =  
1

𝑛
 𝑦𝑖 ,    

𝑛

𝑖=0

 

 
From simple linear model      𝛼  = 𝑌 − 𝛽 𝑋,     where     

𝛽 =
𝑆𝑥𝑦

𝑆𝑥
2 = 𝑟𝑥𝑦

𝑆𝑦

𝑆𝑥
 . 

𝛼  =  𝑀2 − 
𝑆12

𝑆1
2 𝑀1,       𝛽 =   

𝑆12

𝑆1
2  

and, here   𝑆1
2 = 𝑉𝑎𝑟(𝑋) and   𝑆2

2 = 𝑉𝑎𝑟(𝑌). 

𝜍 0 =  
 3𝑆1

2

𝜋
,               𝜍 1 =  

 3(𝑆1
2 − 𝑆12)

𝜋
 . 

 

2.2 Maximum likelihood estimation: 

 

The given data of the form (𝑋1 , 𝑌1), . . . , (𝑋𝑛 , 𝑌𝑛) which are 

i.i.d. with common distribution of equation (4), then the 

likelihood function is as follows 

𝐿  𝜃; 𝑥, 𝑦 

=  
𝑒𝑥𝑝⁡(− 

𝑥𝑖−𝜇

𝜍0

𝑛
𝑖=1 )

𝜍0
𝑛  [1 + 𝑒𝑥𝑝  −

𝑥𝑖−𝜇

𝜍0
 ]2𝑛

𝑖=1

𝑒𝑥𝑝⁡(− 
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1

𝑛
𝑖=0 )

𝜍1
𝑛  [1 + 𝑒𝑥𝑝  −

𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 ]2𝑛

𝑖=1

, 

 

where𝜃 = (𝜇,  𝜍0 , 𝛼, 𝛽, 𝜍1)𝑇 . The corresponding log-

likelihood function is given by 

𝑙 =  𝑙𝑜𝑔𝐿 𝜃 

=
𝑛𝜇

𝜍0

− 
𝑛𝑥

𝜍0

− 2 𝑙𝑜𝑔⁡(

𝑛

𝑖=1

1 + 𝑒𝑥𝑝  −
𝑥𝑖 − 𝜇

𝜍0

 ) −  𝑛𝑙𝑜𝑔𝜍0

+  
𝑛𝛼

𝜍1

+  
𝑛𝛽𝑥

𝜍1

− 
𝑛𝑦

𝜍1

− 2 𝑙𝑜𝑔  1 + 𝑒𝑥𝑝  −
𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖

𝜍1

  

−  𝑛𝑙𝑜𝑔𝜍1.                                                                 (5) 
Now, we partial differentiating with respect to 

corresponding parameters and equating to zero, then we get 

following equations 

𝜕 𝑙

𝜕 𝜇 
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

1 + 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

𝑛

𝑖=1

= 0, (6) 

𝜕 𝑙

𝜕𝜍0

= 0 ⇒ 𝜍0 = 𝑥 − 𝜇 − 
2

𝑛
 

 𝑥𝑖 − 𝜇 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

1 + 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

𝑛

𝑖=1

, (7) 

𝜕 𝑙

𝜕𝛼 
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0, (8)

𝑛

𝑖=1

 

𝜕 𝑙

𝜕𝛽 
= 0 ⇒ 𝑛 𝑥 − 2 

𝑥𝑖 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0, (9)

𝑛

𝑖=1

 

𝜕 𝑙

𝜕𝜍1

= 0 ⇒  𝜍1

=  𝑦 −  𝛽𝑥 −  𝛼

−  2 
(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) 𝑒𝑥𝑝  −

𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

. (10)

𝑛

𝑖=1

 

 

The above equations must be solved numerically to obtain 

the estimated parameters, i.e., 𝜇 , 𝜍 0 , 𝛼 , 𝛽 , σ 1. 
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Note: We can use a fixed-point iteration to find a better 

version of 𝜍0 for a given value of 𝜇, namely, 𝜍𝑗+1 =  𝑕(𝜍𝑗 ). 

For any given value of 𝜍0 we can use Newton’s method to 

find a better version of 𝜇, namely, 𝜇𝑗+1  =  𝜇𝑗  −
𝑔(𝜇 𝑗 ) 

𝑔′(𝜇 𝑗 )
 ,  

where 𝑔′ 𝜇𝑗 =  − 2 
exp  −

x 𝑖−μ

σ0
 

1+exp  −
x𝑖−μ

σ0
 

𝑛
𝑖=1 . 

 

3. Likelihood Ratio Test 
 

As usual, the general form of a generalized likelihood ratio 

test statistic is of the form 

𝑇 =  
𝑆𝑢𝑝𝜃∈Θ0

𝐿(𝜃)

𝑆𝑢𝑝𝜃∈Θ𝐿(𝜃)
 .                           (11) 

 

Here, Θ0 is a subset of Θ and we envision testing 𝐻0 ∶  𝜃 ∈
Θ0. We reject the null hypothesis for a small value of 𝑇. 
 

In the following sub section, we construct likelihood ration 

tests for the simpler sun-models. 

 

3.1 Sub-Model - 1: 

 

For 𝜍0  =  𝜍1, equivalently, testing for 𝐻0 ∶  𝜍0  =  𝜍1 . The 

natural parameter space under the null hypothesis of the 

model is 𝛩0  =  { 𝜇, 𝜍1, 𝛼, 𝛽 𝑇 ∶  𝜇 ≥  0, 𝛼 >  0, 𝛽 ≥
 0, 𝜍1 >  0}. Besides the full model of the natural parameter 

space is 𝛩 =  { 𝜇, 𝜍0, 𝛼, 𝛽, 𝜍1 
𝑇 ∶  𝜇 ≥  0, 𝜍0 >  0, 𝛼 >

 0, 𝛽 ≥  0, 𝜍1 >  0}. 
Under the 𝛩0, equation (5) will become 

 

𝑙 =  𝑙𝑜𝑔𝐿 𝜃 =
𝑛𝜇

𝜍1

− 
𝑛𝑥

𝜍1

− 2 𝑙𝑜𝑔⁡(

𝑛

𝑖=1

1

+ 𝑒𝑥𝑝  −
𝑥𝑖 − 𝜇

𝜍1

 ) −  𝑛𝑙𝑜𝑔𝜍1 + 
𝑛𝛼

𝜍1

+ 
𝑛𝛽𝑥

𝜍1

− 
𝑛𝑦

𝜍1

− 2 𝑙𝑜𝑔  1 + 𝑒𝑥𝑝  −
𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖

𝜍1

  

−  𝑛𝑙𝑜𝑔𝜍1.         (12) 

 

Now, we partial differentiating with respect to 

corresponding parameters and equating to zero, then we get 

following equations 

𝜕 𝑙

𝜕 𝜇 
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

1 + 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

𝑛

𝑖=1

= 0,                 (13) 

𝜕 𝑙

𝜕𝛼 
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0, (14)

𝑛

𝑖=1

 

𝜕 𝑙

𝜕𝛽 
= 0 ⇒ 𝑛 𝑥 − 2 

𝑥𝑖 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0, (15)

𝑛

𝑖=1

 

𝜕 𝑙

𝜕𝜍1

= 0 ⇒  𝜍1

=
𝑦 + 𝑥 1 + 𝛽 −  𝛼 − 𝜇

2

−
1

𝑛
 

(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

𝑛

𝑖=1

− 
1

𝑛
 

 𝑥𝑖 − 𝜇 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍1
 

𝑛

𝑖=1

.                       (16) 

 

The above equations (13) - (16) are solved numerically, then 

we get M.L.E.’s of 𝜇, 𝜍1 , 𝛼, 𝛽 are called 𝜇 ∗, 𝜍1 
∗, 𝛼 ∗, 𝛽 ∗, 

respectively. 

 

Now, in the unrestricted parameter space 𝛩. i.e., under the 

full model, the m.l.e.’s for 𝜇, 𝜍0, 𝛼, 𝛽, 𝜍1 are obtained from 

equations (6) - (10). Let 𝜇 , 𝜍 0, 𝛼 , 𝛽 , 𝜍 1 be the respective 

m.l.e.’s of 𝜃’s, then the generalized likelihood ratio test 

statistic defined in equation (11) will be 

 

𝑇1 =  

𝑒𝑥𝑝⁡(− 
𝑥𝑖−𝜇 ∗

𝜍 1
∗

𝑛
𝑖=1 )𝑒𝑥𝑝⁡(− 

𝑦𝑖−𝛼 ∗−𝛽 ∗𝑥𝑖
𝜍 1

∗
𝑛
𝑖=0 )

(𝜍 1
∗)2𝑛  [(1+𝑒𝑥𝑝  − 

𝑥𝑖−𝜇 ∗

𝜍 1
∗

𝑛
𝑖=1  )(1+𝑛

𝑖=1 𝑒𝑥𝑝⁡(− 
𝑦𝑖−𝛼 ∗−𝛽 ∗𝑥𝑖

𝜍 1
∗

𝑛
𝑖=0 ))]2

𝑒𝑥𝑝⁡(− 
𝑥𝑖−𝜇 

𝜍 0

𝑛
𝑖=1 )

𝜍 0
𝑛  [1+𝑒𝑥𝑝  −

𝑥𝑖−𝜇 

𝜍 0
 ]2𝑛

𝑖=1

𝑒𝑥𝑝⁡(− 
𝑦𝑖−𝛼 −𝛽 𝑥𝑖

𝜍 1

𝑛
𝑖=0 )

𝜍 1
𝑛  [1+𝑒𝑥𝑝  −

𝑦𝑖−𝛼 −𝛽 𝑥𝑖
𝜍 1

 ]2𝑛
𝑖=1

. (17) 

 

3.2 Sub-Model - 2: 

 

For 𝜍0  = 1, equivalently, testing for 𝐻0 ∶  𝜍0  = 1. The full 

model of the natural parameter space is 

𝛩 =  { 𝜇, 𝜍0, 𝛼, 𝛽, 𝜍1 
𝑇 ∶  𝜇 ≥  0, 𝜍0 >  0, 𝛼 >  0, 𝛽 ≥

 0, 𝜍1 >  0}. Besides the natural parameter space under the 

null hypothesis of the model is 𝛩0  =  { 1, 𝜇, 𝜍1, 𝛼, 𝛽 𝑇 ∶
 𝜇 ≥  0, 𝛼 >  0, 𝛽 ≥  0, 𝜍1 >  0}. 

Under the 𝛩0, equation (5) will become 

𝑙 =  𝑙𝑜𝑔𝐿 𝜃 = 𝑛𝜇 −  𝑛𝑥 − 2 𝑙𝑜𝑔⁡(

𝑛

𝑖=1

1

+ 𝑒𝑥𝑝 −(𝑥𝑖 − 𝜇) +  
𝑛𝛼

𝜍1

+  
𝑛𝛽𝑥

𝜍1

 

− 
𝑛𝑦

𝜍1

− 2 𝑙𝑜𝑔  1 + 𝑒𝑥𝑝  −
𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖

𝜍1

  

−  𝑛𝑙𝑜𝑔𝜍1.        (18) 

 

Now, we partial differentiating with respect to 

corresponding parameters and equating to zero, then we get 

following equations 

𝜕 𝑙

𝜕 𝜇 
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝 −(𝑥𝑖 − 𝜇) 

1 + 𝑒𝑥𝑝 −(𝑥𝑖 − 𝜇) 

𝑛

𝑖=1

= 0,   (19) 

𝜕 𝑙

𝜕𝛼  
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0,      (20)

𝑛

𝑖=1

 

𝜕 𝑙

𝜕𝛽  
= 0 ⇒ 𝑛 𝑥 − 2 

𝑥𝑖 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0,      (21)

𝑛

𝑖=1
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𝜕 𝑙

𝜕𝜍1

= 0 ⇒  𝜍1

=  𝑦 +  𝛽𝑥 −  𝛼

−   2  
(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) 𝑒𝑥𝑝  −

𝑦 𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

  (22)

𝑛

𝑖=1

 

 

The above equations (19) - (22) are solved numerically, then 

we get M.L.E.’s of 𝜇, 𝜍1 , 𝛼, 𝛽 are called 𝜇 ∗, 𝜍1 
∗, 𝛼 ∗, 𝛽 ∗,  

respectively. 

 

Now, in the unrestricted parameter space 𝛩. i.e., under the 

full model, the m.l.e.’s for 𝜇, 𝜍0, 𝛼, 𝛽, 𝜍1 are obtained from 

equations (6) - (10). Let 𝜇 , 𝜍 0, 𝛼 , 𝛽 , 𝜍 1 be the respective 

m.l.e.’s of 𝜃’s, then the generalized likelihood ratio test 

statistic defined in equation (11) will be 

𝑇2 =  

𝑒𝑥𝑝 ⁡(− (𝑥𝑖−𝜇 ∗)𝑛
𝑖=1 )𝑒𝑥𝑝 ⁡(− 

𝑦𝑖−𝛼 ∗−𝛽 ∗𝑥𝑖
𝜍 1

∗
𝑛
𝑖=0 )

(𝜍 1
∗)𝑛  [(1+𝑒𝑥𝑝  − (𝑥𝑖−𝜇 

∗)𝑛
𝑖=1  )(1+𝑛

𝑖=1 𝑒𝑥𝑝 ⁡(− 
𝑦𝑖−𝛼 ∗−𝛽 ∗𝑥𝑖

𝜍 1
∗

𝑛
𝑖=0 ))]2

𝑒𝑥𝑝⁡(− 
𝑥𝑖−𝜇 

𝜍 0

𝑛
𝑖=1 )

𝜍 0
𝑛  [1+𝑒𝑥𝑝  −

𝑥𝑖−𝜇 

𝜍 0
 ]2𝑛

𝑖=1

𝑒𝑥𝑝 ⁡(− 
𝑦𝑖−𝛼 −𝛽 𝑥𝑖

𝜍 1

𝑛
𝑖=0 )

𝜍 1
𝑛  [1+𝑒𝑥𝑝  −

𝑦𝑖−𝛼 −𝛽 𝑥𝑖
𝜍 1

 ]2𝑛
𝑖=1

.                                              (23) 

 

3.3 Sub-Model - 3: 

 

For 𝜍1  = 1, equivalently, testing for 𝐻0 ∶  𝜍1  = 1. The 

natural parameter space under the null hypothesis of the 

model is 𝛩0  =  { 𝜇, 𝜍0, 𝛼, 𝛽, 1 𝑇 ∶  𝜇 ≥  0, 𝛼 >  0, 𝛽 ≥
 0, 𝜍0 >  0}. Besides the full model of the natural parameter 

space is𝛩 =    𝜇, 𝜍0, 𝛼, 𝛽, 𝜍1 
𝑇 ∶  𝜇 ≥  0, 𝜍0 >  0, 𝛼 >

 0, 𝛽 ≥ 0, 𝜍1> 0. 
 

Under the Θ0, equation (5) will become 

𝑙 =  𝑙𝑜𝑔𝐿 𝜃 =
𝑛𝜇

𝜍0

− 
𝑛𝑥

𝜍0

− 2 𝑙𝑜𝑔⁡(

𝑛

𝑖=1

1

+ 𝑒𝑥𝑝  −
𝑥𝑖 − 𝜇

𝜍0

 ) −  𝑛𝑙𝑜𝑔𝜍0 +  𝑛𝛼

+  𝑛𝛽𝑥 −  𝑛𝑦

− 2 𝑙𝑜𝑔 1

+ 𝑒𝑥𝑝 − 𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖   .      (24) 

 

Now, we partial differentiating with respect to 

corresponding parameters and equating to zero, then we get 

following equations 

𝜕 𝑙

𝜕 𝜇 
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

1 + 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

𝑛

𝑖=1

= 0, (25) 

 
𝜕 𝑙

𝜕𝜍0

= 0 ⇒ 𝜍0 =  𝑥 −  𝜇

− 
2

𝑛
 

 𝑥𝑖 − 𝜇 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

1 + 𝑒𝑥𝑝  −
𝑥𝑖−𝜇

𝜍0
 

𝑛

𝑖=1

, (26) 

𝜕 𝑙

𝜕𝛼 
= 0 ⇒ 𝑛 − 2 

𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0, (27)

𝑛

𝑖=1

 

𝜕 𝑙

𝜕𝛽  
= 0 ⇒ 𝑛 𝑥 − 2 

𝑥𝑖 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

1 + 𝑒𝑥𝑝  −
𝑦𝑖−𝛼−𝛽𝑥𝑖

𝜍1
 

= 0.  (28)

𝑛

𝑖=1

 

 

The above equations (25) - (28) are solved numerically, then 

we get M.L.E.’s of 𝜇, 𝜍0 , 𝛼, 𝛽 are called 𝜇 ∗, 𝜍0 
∗, 𝛼 ∗, 𝛽 ∗, 

respectively. 

 

Now, in the unrestricted parameter space 𝛩. i.e., under the 

full model, the m.l.e.’s for 𝜇, 𝜍0, 𝛼, 𝛽, 𝜍1 are obtained from 

equations (6) - (10). Let 𝜇 , 𝜍 0, 𝛼 , 𝛽 , 𝜍 1 be the respective 

m.l.e.’s of 𝜃’s, then the generalized likelihood ratio test 

statistic defined in equation (11) will be 

 

𝑇3 =  

𝑒𝑥𝑝 ⁡(− 
𝑥𝑖−𝜇 ∗

𝜍 0
∗

𝑛
𝑖=1 )𝑒𝑥𝑝 ⁡(− (𝑦𝑖−𝛼 

∗−𝛽 ∗𝑥𝑖)
𝑛
𝑖=0 )

(𝜍 0
∗)𝑛  [(1+𝑒𝑥𝑝  − 

𝑥𝑖−𝜇 ∗

𝜍 0
∗

𝑛
𝑖=1  )(1+𝑛

𝑖=1 𝑒𝑥𝑝 ⁡(− (𝑦𝑖−𝛼 ∗−𝛽 ∗𝑥𝑖)
𝑛
𝑖=0 ))]2

𝑒𝑥𝑝⁡(− 
𝑥𝑖−𝜇 

𝜍 0

𝑛
𝑖=1 )

𝜍 0
𝑛  [1+𝑒𝑥𝑝 −

𝑥𝑖−𝜇 

𝜍 0
 ]2𝑛

𝑖=1

𝑒𝑥𝑝 ⁡(− 
𝑦𝑖−𝛼 −𝛽 𝑥𝑖

𝜍 1

𝑛
𝑖=0 )

𝜍 1
𝑛  [1+𝑒𝑥𝑝  −

𝑦𝑖−𝛼 −𝛽 𝑥𝑖
𝜍 1

 ]2𝑛
𝑖=1

.       (29) 

 

4. The Parameter’s Confidence Intervals: 
 

We are aware that constructing a confidence interval for 𝜇 

and 𝜍0 with a given confidence coefficient of 100(1−𝛼)% is 

challenging, even for univariate logistic distribution. Lower 

and upper bounds for the confidence interval with a given 

confidence coefficient can be established by interpolating in 

tables of the central 𝜒2-distribution using the relationship 

between the logistic and 𝜒2-distribution. We consult section 

4.7.3 of Johnson, Kemp, and Kortz’s work for additional 

details on creating a confidence interval for the logistic 

distribution. The Wald method of creating confidence 

intervals will be the topic of this note. In general, the Wald 

confidence interval is given for every parameter 𝜃, and the 

related point estimator 𝜃  (say) is given by 

𝜃  ± 𝑍𝛼

2
𝑆. 𝐸 𝜃  ,                                                    (30) 

where 𝑆. 𝐸 𝜃   is the standard error of the estimator 𝜃  , and 

𝑍𝛼

2
 is the 100(1−𝛼)% of the standard normal distribution. 

Furthermore, take note of the weak coverage qualities of the 

Wald confidence interval for small sample sizes. Given that 

the pseudo-logistic marginal distribution of 𝑋 has logistic 

parameters, 𝜇 and 𝜍0, a confidence interval for 𝜇 and 𝜍0 can 

be obtained using the current method (which relies on the 
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link between the logistic and 𝜒2-distribution). Confidence 

intervals for 𝛼, 𝛽, and 𝜍1 can be found using the previously 

mentioned Wald approach. The behavior of the Wald 

confidence interval for the parameters for the small and big 

sample sizes will be examined in the ensuing subsections. 

 

5. Simulation Study 
 

Because of the marginal and conditional structure of the 

model, simulating from pseudo models is simple. Here, we 

present a straightforward simulation approach using linear 

regression for the bivariate pseudo-logistic model. We have 

simulated 10,000 data sets of sample size n = 30, 50, 100, 

200, 500 from the following full and sub-model: Tables 1 

and 2 provide the related moment estimations and M.L.Es, 

along with their bootstrapped standard errors and confidence 

intervals (CI) for the entire and sub-models, respectively. 

We provide a general summary of the Tables with the 

following observations. It is observed that as sample size 

increases, the Pearson Correlation (PC) converges to the 

population correlation, and the moment and m.l.e.’s standard 

error (SE) drop. Additionally, when compared to the 

confidence interval created using moment estimators, the 

Wald confidence interval generated using MLE estimators 

has the lowest length. interval constructed using moment 

estimators. 

 

 
Figure 1: Bivariate density plot for pseudo-logistic model of 

the parameter’s values 𝜇 =  2, 𝜍0  =  3, 𝛼 =  1, 𝛽 =  3 

and 𝜍1  =  2. 

 

Table 1: Simulation for Full Model 
Sample 

Size 
Parameters MLE 

SE 

(MLE) 

Bias 

(MLE) 
MM 

SE 

(MM) 

Bias 

(MM) 

CI 

(MLE) 
CI(MM) PC -2LogL 

30 

µ 2.056 1.006 0.056 1.656 0.0305 0.344 (0.009,5.915) (0.143,3.883) 

0.9748 358.7302 

σ0 3.186 0.491 0.186 3.223 0.0147 0.223 (2.078,5.900) (2.105,3.917) 

α 1.893 0.713 0.893 1.705 0.0228 0.705 (-0.437,8.429) (-0.234,2.648) 

β 2.722 0.116 0.278 2.636 0.0040 0.364 (2.196,92.706) (2.645,3.142) 

σ1 2.221 0.346 0.221 7.439 0.0372 5.439 (1.374,288.808) (5.413,10.092) 

50 

µ 2.628 0.645 0.628 2.753 0.0244 0.753 (0.556,3.564) (0.527,3.542) 

0.975 549.3604 

σ0 2.622 0.310 0.378 2.572 0.0118 0.428 (2.310,3.735) (2.284,3.760) 

α 1.317 0.477 0.317 1.610 0.0173 0.610 (-0.106,2.071) (-0.035,2.194) 

β 2.911 0.094 0.089 2.829 0.0033 0.171 (2.761,3.224) (2.732,3.131) 

σ1 1.729 0.204 0.271 6.264 0.0300 4.264 (1.512,21.723) (5.816,9.500) 

100 

µ 3.003 0.465 1.003 2.973 0.0175 0.973 (0.938,2.961) (0.879,3.011) 

0.9758 1164.826 

σ0 2.671 0.222 0.329 2.632 0.0082 0.368 (2.537,3.473) (2.512,3.511) 

α 0.716 0.485 0.284 0.552 0.0127 0.448 (0.268,1.787) (0.297,1.874) 

β 3.050 0.085 0.050 3.041 0.0022 0.041 (2.875,3.133) (2.839,3.105) 

σ1 2.293 0.194 0.293 7.088 0.0204 5.088 (1.675,2.338) (6.394,8.907) 

200 

µ 1.892 0.371 0.108 1.656 0.0119 0.125 (1.274,2.689) (1.277,2.717) 

0.9762 2271.648 

σ0 3.017 0.178 0.017 2.971 0.0057 0.029 (2.671,3.349) (2.660,3.382) 

α 0.879 0.225 0.121 825 0.0087 0.175 (0.483,1.521) (0.503,1.570) 

β 2.962 0.041 0.038 2.922 0.0015 0.078 (2.913,3.089) (2.895,3.078) 

σ1 1.759 0.105 0.241 7.330 0.0143 5.330 (1.758,2.215) (6.750,8.579) 

500 

µ 1.982 0.228 0.018 2.054 0.0076 0.059 (1.551,2.441) (1.525,2.465) 

0.976 5772 

σ0 2.937 0.109 0.063 2.902 0.0039 0.098 (2.764,3.221) (2.748,3.227) 

α 1.014 0.168 0.014 1.096 0.0055 0.096 (0.663,1.315) (0.678,1.343) 

β 2.949 0.030 0.051 2.930 0.0010 0.070 (2.945,3.056) (2.934,3.053) 

σ1 2.019 0.075 0.019 7.205 0.00962 5.205 (1.870,2.151) (7.012,8.192) 

 

Table 2: Simulation for Sub-Model I 
Sample Size Parameters MLE SE(MLE) Bias(MLE) CI(MLE) PC -2LogL 

 µ  2.046      1.002 0.046 (0.118,8.828)   

30 
σ0 

α 

3.257 

2.352 

 0.357 

 1.049 

        0.257 

1.352 

(2.329,401.286) 

(-1.190,3.387) 
0.9456 383.098 

 β  2.582      0.171       0.418 (2.595,9.558)   

 µ  2.626      0.643       0.626 (0.589,3.546)   

50 
σ0 

α 

2.608 

1.477 

 0.217 

 0.719 

0.392 

0.477 

(2.482,3.552) 

(-0.543,2.597) 
0.9464 589.9109 

 β   2.866      0.142       0.134 (2.680,3.303)   

 µ   2.989      0.515       0.989 (0.941,3.175)   
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100 
σ0 

α 

3.054 

0.589 

 0.181 

 0.669 

0.054 

0.411 

(2.657,3.392) 

(-0.102,2.184) 
0.9479 1250.464 

 β  3.074      0.117       0.074 (2.798,3.210)   

 µ  1.891      0.354       0.109 (1.276,2.699)   

200 
σ0 

α 

2.832 

0.813 

 0.119 

 0.356 

0.168 

0.187 

(2.750,3.234) 

(0.225,1.783) 
0.9486 2436.375 

 β  2.942      0.064       0.058 (2.870,3.133)   

 µ  1.983      0.231       0.017 (0.553,2.442)   

500 
σ0 

α 

2.983 

1.018 

 0.079 

 0.249 

0.017 

0.018 

(2.836,3.155) 

(0.495,1.472) 
0.9482 6177.807 

 β  2.925      0.045       0.075 (2.918,3.084)   

 

6. Applications 
 

We consider a data set in which the source of the data from 

the scores obtained by n = 87 college students on the 

College Level Examination Program (CLEP) subtests 𝑋1 and 

the College Qualification Test (CQT) subtests 𝑋2 and 𝑋3 are 

mentioned in Johnson and Wichern (2007, p.228) is data set 

given in Table 5.2. The numerical method was used to 

derive the maximum likelihood estimates of the parameters 

for the bivariate pseudo-logistic model. Estimates, standard 

errors, AIC, BIC, and Pearson Correlation (PC) were 

calculated for each full model and sub-model and are shown 

in Tables 3 and 4, respectively. 

 

Table 3: Application for Full Model 
Sample Size MLE SE(MLE) MM -2LogL PC AIC BIC 

87 

52.517 0.825 52.659 

1086.441 0.606 1096.441 1108.771 

4.387 0.388 4.202 

4.775 0.817 5.228 

0.387 0.053 0.378 

2.241 0.197 0.595 

 

Table 4: Application for Sub-Model I 
Sample Size MLE SE(MLE) -2LogL PC AIC BIC 

87 

52.459 0.682 

1114.631 0.606 1122.631 1140.495 
3.337 0.212 

4.933 0.904 

0.384 0.074 

 

7. Conclusion 
 

We have developed flexible models known as bivariate 

pseudo-logistic distributions by taking into consideration 

bivariate models in which one marginal distribution is 

assumed to be of the logistic form while the conditional 

distributions of the second variable, given the first, are also 

assumed to be of the logistic form. For these models, 

investigation has been done into distributional and 

inferential problems. The different bivariate logistic models 

that have been introduced in the literature may be replaced 

by the models that are covered in this study. The pseudo 

models’ clear form makes it possible to fit the model and 

estimate parameters with ease, as well as to simulate it 

simply. However, we would contend that they—as well as 

their extensions to higher dimensions and permuted 

variations of them—are not a cure-all. 
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