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Abstract: Transformer architectures are widely used, especially in computer vision and natural language processing. Transformers have 

been used recently in a number of time-series analysis applications. An overview of the Transformer architecture and its uses in time-series 

analysis is given in the literature review. To improve performance, the Transformer's primary parts—the encoder/decoder, multi-head, 

positional encoding, and self-attention mechanism—have been updated. To implement time-series analysis, a few improvements to the 

original transformer architecture were adopted. Additionally, the optimal hyperparameters values for overcoming the difficulty of 

successfully training Transformers for time-series analysis are provided in this work. The effectiveness of the Transformer model in 

forecasting PM2.5 concentrations is examined in this paper. The dataset is pre-processed as a first step. In order to minimize the input 

parameters while taking into account their statistical significance, multi-collinearity among the independent variables is found using a 

Variance Inflation Factor (VIF). The proposed model have been trained to forecast PM2.5 concentrations up to one day ahead of time. 

 

Keywords: transformer architecture, time series analysis, self attention, hyperparameters, forecasting PM 2.5, multi-collinearity, Variance 
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1. Introduction 
 

Transformers are a subclass of machine learning models that 

primarily learn via the scaled dot-product operation or self-

attention. One of the most difficult natural language 

processing (NLP) tasks, neural machine translation, is where 

transformers were first proposed [1]. Transformers have 

recently shown effective in solving a range of machine 

learning issues and achieving cutting edge performance [2]. 

Examples from other fields, besides classical NLP tasks, are 

image classification [3], language and image generation [4], 

object detection and segmentation [5], sequential decision-

making in reinforcement learning [6], multi-modal (text, 

speech, and image) data processing [7], and tabular and time-

series data analysis [8].  

 

Transformer-based time-series analysis is the main topic of 

this research. Sequentially recorded samples, observations, or 

features over a period of time are referred to as time-series 

data. In many real-world applications, where data is recorded 

over a predetermined sampling interval, time-series datasets 

are a common occurrence. Stock prices, digital voice signals, 

traffic measures, weather pattern sensor data, biological 

measurements, and numerous demographic data types 

collected over time are a few examples. Time-series analysis 

can involve handling numerical data for a variety of purposes, 

such as classification, forecasting, and prediction. Using a 

variety of models, including autoregressive (AR), moving 

average (MA), auto-regressive moving average (ARMA), AR 

Integrated MA (ARIMA), and spectral analysis techniques, are 

part of statistical methodologies.99% of people on Earth, 

according to estimates from the World Health Organization, 

reside in areas with air pollution levels higher than 

recommended. It is also mentioned that 6.7 million deaths 

annually are attributed to exposure to ambient air pollution. 

These pollutants have an impact on the quality of the air, 

particularly ambient fine particle air pollution, or PM2.5. 

Among other things, burning agricultural waste, industrial 

processes, and automobiles all release this kind of pollution. 

When exposure to high PM2.5 concentrations persists for 

several years, they may become hazardous.  

 

The current work implements transformer architecture for 

PM2.5 concentration estimation in ambient air based on the 

Transformer model. To enhance the outcomes, the suggested 

architecture learns the spatiotemporal trends of air pollutants, 

including meteorological data. The remainder of the paper is 

organized as follows. A thorough analysis of the relevant 

literature was provided in Section 2. Section 3 presented the 

architecture of the transformer used for time series forecasting. 

Section 4 reports the experimental results along with the 

dataset, study metrics, and a discussion of the outcomes. 

Lastly, Section 5 provides conclusions. 

 

2. Related Work 
 

The research community has widely adopted various 

suggested machine learning models with specialized parts and 

architectures for managing the sequential nature of data. 

Recurrent Neural Networks (RNNs) and their well-liked 

variations, such as Long Short-Term Memory (LSTM) and 

Gated Recurrent Units (GRU) [9], [10], [11], [46] and [12], 

are the most well-known of these machine learning models. 

These models use the well-known gradient descent approach 

to optimize unknown model parameters while processing 

batches of data sequentially, one sample at a time. Back-
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propagation through time (BPTT) is used to calculate the 

gradient information needed to update the model parameters 

[13]. Numerous applications have seen the successful 

employment of LSTMs and GRUs [14], [15], [16], [17], [18], 

and [45]. However, they have a number of drawbacks as a 

result of the BPTT difficulties and the sequential processing of 

incoming data, particularly when handling datasets with 

lengthy relationships. Moreover, bursting and disappearing 

gradient issues plague the training of LSTM and GRU models 

[19], [20]. The gradient descent algorithm (using BPTT) may 

not be able to update the model parameters when processing 

lengthy sequences because the gradient information is lost. 

 

Furthermore, the parallel computations provided by graphical 

processing units (GPUs), tensor processing units (TPUs), and 

other hardware accelerators are typically not advantageous for 

these models [21]. To some extent, gradient-related issues may 

be mitigated by LSTMs and GRUs with the aid of specific 

architectural adjustments and training techniques. However, 

the efficacy and efficiency of RNN-based models are impacted 

by difficulties in learning from lengthy data sequences with 

the restricted use of parallelization provided by contemporary 

hardware [22]. Sequential data can be computed in parallel 

using the Transformer architecture [23] without significantly 

increasing network complexity [24]. Transformers can 

leverage the parallel processing power of Tensor Processing 

Units (TPUs) and Graphics Processing Units (GPUs) due to 

their architecture [25]. Transformers, as opposed to RNNs and 

their variants, do not experience vanishing gradients because 

of the attention-based operations, which allow them to 

correlate information from all elements in the sequence to 

each other in parallel [26], [27], [28], [43], [44]. 

 

Long-term and multi-variate time-series forecasting has been 

significantly enhanced by transformers [29], [30]. Long 

sequence modeling is hampered by the self-attention 

mechanism's high memory and computational complexity 

requirements. To maximize Transformer performance for 

timeseries tasks, a number of changes have been suggested in 

the literature [31], [32], and [33]. It can be difficult to train 

large Transformer models, particularly for large datasets. In 

the literature, numerous methods for effectively training 

massive Transformer models have been suggested. Layer-wise 

adaptive large batch optimization [34], progressive training 

[37], distributed training [35], knowledge inheritance [36], and 

mapping smaller models' parameters to larger models' 

initialization [38] are some of these methods. 

 

3. Overview of Time Series Transformer 

Architecture 
 

The Transformer, a sequence-to-sequence model with an 

encoder-decoder configuration, accepts a sequence of words 

from the source language, which produces the translation in 

the target language [1]. The model must learn to encode the 

source sequence into a fixed-length representation that it can 

then decode to produce the target sequence in an auto-

regressive manner because the two sequences' lengths and 

vocabulary sizes aren't always the same [42]. One limitation of 

this auto-regressive feature is that, in order for the translated 

sequences to be generated, information must propagate back to 

the beginning of the sequence. For time-series analysis, the 

same restriction applies. How far back the influence of a 

particular data sample can be taken into account during 

learning has limited the capabilities of machine learning 

models. Sometimes, instead of the training examples being 

generalized to new data, the auto-regressive nature of machine 

learning model training results in the memorization of 

previous observations. 

 

Transformers solve these problems by jointly attending to and 

encoding the ordered information during the analysis of 

current data instances in the sequence using positional 

encoding and self-attention techniques. These methods do 

away with the traditional idea of recurrence while maintaining 

the sequential information necessary for learning. 

Transformers can now take advantage of the parallelism 

provided by GPUs and TPUs thanks to these techniques. 

There have been some recent studies attempting to integrate 

recurrent components into Transformer designs. 
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Figure 1: Schematic view of Transformer based forecasting [39] 

 

The foundation of the Transformer architecture (shown in Fig. 

1) is the use of the dot product to identify associations or 

relationships among different input segments. The weighted 

dot product of these input vectors, xi, with one another is the 

self-attention operation. There are two steps in the self-

attention operation. A normalized dot product between each 

pair of input vectors in an input sequence is calculated in the 

first step. The softmax operator, which scales a given set of 

numbers so that the output numbers add up to unity, is used to 

perform the normalization. The normalized correlations 

between an input segment (xi) and every other segment (j = 

1,..., n) was calculated using below mathematical expression: 

 
 

where 𝑤𝑖𝑗 = 1𝑛
𝑗=1  and 1 ≤ 𝑖, 𝑗 ≤ 𝑛. The second step is to 

find a new representation zi, which is a weighted sum of all the 

input segments {𝑥𝑖}𝑗=1
𝑛 , for a given input segment xi. 

 
 

The sum of the weights wij for every input segment xi is 1. As 

a result, the input vector xj with the largest attention weight wij 

and the output vector zi will be comparable. The highest 

correlation value, as determined by the normalized dot product 

between xi and xj, has consequently led to the largest attention 

weight. Multiple levels of correlation information may be 

present in the input data X, and processing the data in various 

ways may aid in the learning process. Multiple self-attention 

heads that work in parallel on the same input, extracting 

different levels of correlation between the input data using 

different weight matrices Wq, Wk, and Wvwas used. 

Multi-head self-attention involves three operations that can be 

summed up in three steps. 

Step 1 - Creating Several Sets of Unique Query, Key, and 

Value Vectors 

Step 2 - Parallel implementation of scaled dot products 

Step 3 - Concatenating and linearly combining the outputs 
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Figure 2: Schematic view of Transformer’s Encoder with Attention modules [41] 

 

The encoder and decoder component types are the two main 

component types that make up the Transformer architecture as 

presented in Fig. 2. A feed-forward layer and a multi-head 

self-attention layer coupled back-to-back with residual 

connections and normalization layers make up an encoder 

block. Deep neural networks are frequently trained using 

residual connections, which aid in learning and stabilization. 

Neural networks also frequently use the layer normalization 

operation to process sequential data. It facilitates the model 

training's quicker convergence. Two linear layers with a ReLU 

activation function make up the feed-forward layer. An 

encoder block's output feeds into the subsequent encoder 

block. Similar layers and operations make up each encoder 

and decoder block. Nevertheless, a decoder gets two inputs: 

one from the encoder that came before it and another from the 

one that came after. Three layers are present in a decoder: 

feed-forward layer, encoder-decoder attention layer, and 

multi-head self-attention layer. Remaining connections and 

layer normalization processes exist. The output of the final 

encoder is used to create a set of key and value vectors inside 

the encoder-decoder attention layer. The multi-head self-

attention layer's output, which comes before the encoder-

decoder layer, is used to create the query vectors. Depending 

on the problem being solved, a Transformer model may have 

stacks of multiple encoder and decoder blocks. The multiple 

hidden layers found in conventional neural networks are 

reminiscent of the stacked encoder/decoder blocks. It's crucial 

to remember that, typically, neither the encoder nor the 

decoder's processing results in a reduction of the 

representation's dimensions. The word sequence that has been 

mapped into word embeddings and has PEs added is the input 

for the first encoder block. 

 

4. Experiment & Results 
 

The Transformer architecture used a variety of techniques to 

stabilize the gradients while deeper networks were being 

trained. A deeper network can be trained by utilizing residual 

connections. Subsequently, an adaptive optimizer (Adam) was 

combined with layer normalization operations to offer various 

learning rates for various parameters. Transformers are 

sensitive to the learning rate, just like the majority of other 

deep learning models. Transformers can converge more 

quickly than conventional sequence models, provided that 

they have an ideal learning rate. A decline in performance is 

often seen in the first few epochs. Nonetheless, the model will 

typically begin to converge to better values after a few epochs. 

We employed a warm-up learning rate strategy that rises 

linearly for the first N training steps and falls proportionately 

to the step number's inverse square root, 1/√N. 

 

4.1 Dataset 

 

The experiments were performed on the dataset containing the 

PM2.5 of the five Chinese cities including the meteorological 

data for each of the city over the duration Jan 01, 2010 and 

Dec 31, 2015. Dew point, temperature, humidity, atmospheric 

pressure, cumulated precipitation, and wind speed were used 

for predicting the value of the PM2.5 [42]. 

 

Table 1: Dataset Description 
Item Description 

Characteristics Time Series and Multivariate 

Number of samples 43824 

Number of Attributes 06 (weather and atmospheric parameters) 

Period of Collection 2010 – 2015 

Frequency Hourly Data 

 

4.2 Data Preprocessing 

 

A statistical phenomenon known as multicollinearity happens 

when there is a strong correlation between two or more 

independent variables in a regression model. Stated 

differently, multicollinearity denotes a robust linear 

correlation between the predictor variables. Regression 

analysis may become challenging as a result, as it becomes 

more challenging to precisely identify the contributions of 

each independent variable to the dependent variable. It can be 

more difficult to interpret the data and derive significant 

inferences from the model when multicollinearity results in 
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unstable and unreliable coefficient estimates. Regression 

models must be validated and robustened, and 

multicollinearity must be identified and addressed. When two 

or more independent variables in a data frame in a regression 

model have a high correlation with one another, this is known 

as multicollinearity. 

 

The estimated regression coefficients may grow large and 

unpredictable when multicollinearity is present, making it 

difficult to draw valid conclusions about how the predictor 

variables affect the response variable. It's possible that 

multicollinearity has less of an impact on the machine-learning 

model's accuracy. However, we risk losing our ability to 

reliably assess the contributions of each individual feature in 

the model, which could pose an interpretability issue. A 

dataset can be examined for multicollinearity in a number of 

ways, including by computing the correlation matrix between 

the independent variables and utilizing the Variance Inflation 

Factor (VIF). Regularization and feature selection are two 

methods that can be used to choose a subset of independent 

variables that do not have a strong correlation with one 

another in order to address multicollinearity. The most popular 

approach, known as variance inflation factors, or VIFs, was 

applied in this work. 

 

The correlation strength between the independent variables is 

ascertained by VIF. Regressing a variable against all other 

variables yields the prediction. To find out how well an 

independent variable is described by the other independent 

variables, one can calculate its R^2 value. A high R^2 value 

indicates a strong correlation between the variable and the 

other variables. This is represented by the VIF, which is as 

follows: 

 

 
 

Table 2: Results of VIF Analysis 

Variable VIF 

DewPoint 3.75 

Temp 5.18 

Combined wind direction 2.63 

Pressure 4.24 

Cumulated wind speed 1.56 

 

In the experiments for training the model only four out of five 

available parameters were used. Temperature was removed as 

VIF value was greater than 5. The threshold value was fixed 

based on the literature study conducted. 

 

4.3 Proposed Transformer Architecture Improvements 

 

Several improvements to the Transformer architecture have 

been put forth in an effort to address some of the issues 

surrounding the attainment of stable training with deeper 

architectures. Improved weight initialization methods and the 

relocation of layer normalization operations have been the 

main optimizations done to balance residual dependencies. 

More stable training has resulted from these enhancements, 

and in certain situations, they have even removed the need to 

employ some of the original architecture's suggested practices. 

Post-layer normalization, or post-LN, is the term used to 

describe the original Transformer architecture, in which the 

layer normalization is situated outside the residual block. Post-

LN requires a learning rate warm-up strategy and converges 

much more slowly. Using a pre-layer normalization (pre-LN) 

Transformer, as suggested in the literature, this problem was 

solved and it was demonstrated that gradients could converge 

more quickly with no warm-up. This can be accomplished by 

balancing the residual dependencies and managing the 

gradient magnitudes with the Pre-LN Transformer [40]. 

Despite not requiring learning rate warm-up, the Pre-LN 

Transformer architecture performs less well empirically than 

the Post-LN Transformer architecture (Fig. 3). 

 
Figure 3: Schematic view of post-LN Transformer and pre-

LN Transformer [40] 

 

It is difficult to train these deep Transformer models from 

scratch on small datasets because they require large datasets. 

For small datasets to function effectively, pre-trained models 

and small batch sizes are needed. However, training more 

Transformer layers becomes more challenging due to these 

two requirements. 

 

The updates' variance increases when a small batch size is 

used. Generally speaking, the model may not generalize well, 

even with large batch sizes. Improved initialization strategies 

may occasionally optimize the model and improve its 

performance on smaller datasets. For Transformers, the most 

popular scheme is Xavier initialization. The goal of the 

experiments was to determine how learning rate affected 

model performance and how those effects related to one 

another. The findings showed that while too high of a learning 

rate can result in non-convergence, small learning rates 

typically have slower convergence. During the training, 

gradient clipping was applied. If there are too many steps, this 

method usually prevents divergence and exploding gradients. 

Transformers avoid using other gradient clipping techniques 

that might cause slower convergence, such as selecting a step 

size based on the batch size. 
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With reference to Root Mean Square Error" (RMSE), the 

Transformer architecture outperformed sequence-to-sequence 

models with attention, LSTMs, and ARIMA. In the second 

experiment, multivariate time-series data were used to test the 

Transformer architecture. But the outcomes did not 

significantly improve as a result of this. In the third 

experiment, each scalar input xt is embedded into a d-

dimensional time-delay space to create Time-delay embedding 

(TDE). 

 

This study takes into account a number of metrics, including 

Index of Agreement (IA), Root Mean Square Error (RMSE), 

Mean Absolute Percentage Error (MAPE), and Mean Absolute 

Error (MAE). In time series forecasting, these metrics are 

frequently employed as assessment metrics. The values 

obtained with the RMSE, MAPE, and MAE metrics close to 0 

indicate a more accurate model. IA is a bounded, non-

dimensional measure of the model prediction error degree, 

with values closer to 1 denoting a better match, according to 

[20]. The following mathematical formulas, which are listed in 

Table 3, were used to calculate these metrics: 

 

Table 3: Performance Metrics 
Metric Formula 

RMSE 
1

𝑛
  (𝑝𝑟𝑒𝑑 𝑖 − 𝑔𝑡(𝑖))2
𝑛

𝑖=1

 

MAPE 
1

𝑛
  𝑝𝑟𝑒𝑑 𝑖 − 𝑔𝑡 𝑖  

𝑛

𝑖=1

 

IA 1−
 (𝑝𝑟𝑒𝑑 𝑖 − 𝑔𝑡 𝑖 )2𝑛

𝑖=1

 ( 𝑝𝑟𝑒𝑑 𝑖 − 𝑔𝑡    +  𝑔𝑡 𝑖 − 𝑔𝑡    )2𝑛
𝑖=1

 

 

where𝑛 is the total number of samples, 𝑝𝑟𝑒𝑑(𝑖) is the model 

prediction for the 𝑖𝑡ℎ sample and 𝑔𝑡(𝑖) is the respective 

ground truth. As was already mentioned, PM2.5 

concentrations are predicted using a transformer architecture. 

Furthermore, two distinct architectures—the Long-Sort Term 

Memory RNN and the LSTM-RNN with attention—have also 

been taken into consideration. The variance inflation factors of 

the model were used to select the meteorological variables.  

The MinMaxScaler estimator is used to transform features for 

the pre-processing of data by scaling each feature to a 

specified range (e.g., between zero and one). The PM2.5 

concentrations in ambient air input data were reframed as a 

supervised learning problem because they matched a 

multivariate time series. 

 

Table 4: Comparison of proposed model’s performance 
Models RMSE MAPE MAE IA 

LSTM 6.19 0.72 4.38 0.80 

LSTM + Attention 5.63 0.50 4.33 0.83 

Transformer 4.98 0.48 3.86 0.85 

 

For every model, the activation function, optimizer, learning 

rate, and batch size were fixed. The size of each Multi-Head 

Attention module used in transformer models and the number 

of attention heads it contains was fixed as values 8 and 10, 

respectively, in the proposed model. Similarly, Feed Forward 

Part, which corresponds to the transformer model's encoder, 

was set to 10. The results produced by the transformer model 

are superior to those produced by the MLP and LSTM models.  

Table 3 displays the obtained results for each of the suggested 

models. In the case of Transformer-based PM 2.5 estimation, 

the prediction results using models demonstrate a low error of 

RMSE and MAE metrics (4.98 and 3.86, respectively).  

Similarly, the obtained result for the IA metric—a 

standardized measure of the degree of model prediction error 

that varies between 0 and 1—was 0.83. Because the LSTM 

model is unable to learn large order dependence in sequence 

prediction problems, the highest error was obtained for time 

windows of 24 hours. 

 

5. Conclusion 
 

When it comes to handling time-series tasks, the Transformer 

architecture has shown to be an effective substitute for LSTMs 

and RNNs, while also surpassing their drawbacks. There have 

been suggestions for alterations to the original Transformer 

architecture in order to handle time-series data effectively. To 

train Transformer models effectively, a number of best 

practices have been implemented. This study's VIF correlation 

analysis highlights how crucial it is to eliminate 

meteorological variables that aren't necessary for the model 

training process. The accuracy of trained models is ascertained 

by comparing the three models. Results from experiments are 

presented along with comparisons between them, which 

demonstrate improvements over the obtained results when the 

transformer model is used. The experimental result 

demonstrates how the transformer models' attention modules 

can be used to identify pertinent features in the data and 

improve the accuracy of PM2.5 concentration estimates. The 

precision of PM2.5 concentrations that transformer models 

yielded could serve as a foundation for the creation of fresh 

ideas that make use of attention modules.Future research will 

address the open challenge of developing robust, self-aware 

Transformer architectures using uncertainty estimation in 

time-series prediction. 
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