
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Securing AWS EC2: Streamlining IMDS Transition from

Third-Party IMDSv1 Calls to IMDSv2 with Proxy Server

Integration

Balasubrahmanya Balakrishna

Richmond, VA, USA

Email: bbsbems[at]gmail.com

Abstract: This paper highlights the critical need to strengthen the security of Amazon Web Services (AWS) Elastic Compute Cloud (EC2)

instances by strategically migrating third-party applications from Instance Metadata Service version 1 (IMDSv1) to version 2 (IMDSv2). The

approach employs proxying, showcasing innovation in the migration process. The significance of this methodology becomes apparent when

organizations must address the imperative of upgrading third-party software to utilize IMDSv2 calls on EC2 instances. The paper introduces

an algorithmic solution in response to potential cost implications associated with such upgrades. This solution intercepts IMDSv1 calls initiated

by third-party applications, gathers metadata, and smoothly transitions to IMDSv2 calls. The result ensures a seamless achievement of the

security enhancement through a cost-effective alternative for migration. The complexities of the migration process become especially apparent

in environments where several mission-critical applications are intricately dependent on the current infrastructure, making this proxying

strategy vital. Recognizing that adopting IMDSv2 is a critical security enhancement, addressing vulnerabilities inherent in IMDSv1, this article

presents a comprehensive guide explaining the step-by-step procedure of establishing a proxy. This intermediary enables seamless

communication between third-party applications and EC2 instances, speeding the move to IMDSv2. Furthermore, the suggested proxying

strategy is helpful when cost considerations and potential disruptions associated with third-party application version upgrades are vital

variables. By providing an in-depth examination of the migration process, this paper aims to be a valuable resource, providing practical insights

and guidance to organizations looking to strengthen the security posture of their AWS EC2 instances while effectively managing the

complexities inherent in such transitions. Importantly, this new concept is scalable and, if necessary, may be deployed globally.

Keywords: IMDSv1, IMDSv2, EC2, Artifactory, Security

1. Background

1.1 Overview of AWS EC2 and IMDS

Amazon Elastic Computation Cloud (AWS EC2) is a cloud

computing web service that provides resizable computation

capability. It enables users to run virtual servers, known as

instances, on-demand to meet various computing demands.

EC2 instances are critical components of scalable and adaptable

cloud computing systems, allowing users to host applications,

manage workloads, and securely store data.

Within EC2, the Instance Metadata Service (IMDS) is a vital

component, providing a RESTful interface that gives critical

information about an instance during runtime. IMDS provides

dynamic metadata like instance type, IP addresses, and security

groups, allowing EC2 applications and services to adapt and

optimize to their environment. However, the initial

implementation, known as IMDSv1, introduced security

vulnerabilities, such as vulnerability to Server-Side Request

Forgery (SSRF) attacks.

The necessity for increased security inspired the creation of

IMDSv2, which has additional protective features. Only

authenticated queries from within the instance can access

sensitive metadata, reducing potential vulnerabilities related to

IMDSv1. Migrating from IMDSv1 to IMDSv2 is critical for

improving the security posture of EC2 instances in the ever-

changing cloud computing landscape.

1.2 IMDSv1 Versus IMDSv2[1]

The Amazon Elastic Compute Cloud (AWS EC2) Instance

Metadata Service (IMDS) is a vital component that provides

dynamic information about the operating instance. This service

has two iterations: IMDSv1 (Instance Metadata Service version

1) and IMDSv2 (Instance Metadata Service version 2), with

IMDSv2 adding additional security features over its

predecessor.

1) IMDSv1

a) Endpoint: A fixed URL, http://169.254.169.254/, reaches

IMDSv1.

b) Authentication: IMDSv1 employs a straightforward,

unauthenticated HTTP request protocol. The lack of

authentication presents security flaws, rendering it

vulnerable to attacks like SSRF (Server-Side Request

Forgery).

c) Metadata Accessibility: Without authentication or

authorization checks, any process running on the instance

has access to metadata. This unlimited access raises security

concerns, particularly in multi-tenant systems.

2) IMDSv2:

a) Endpoint: IMDSv2 can be accessible via a flexible

endpoint such as http://169.254.169.254/ (the default) or a

user-defined endpoint. Allows users to set up a custom

endpoint for added security.

b) Authentication: IMDSv2 adds a robust authentication

Paper ID: SR24402002101 DOI: https://dx.doi.org/10.21275/SR24402002101 2158

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

system based on IAM (Identity and Access Management)

roles[3]. Each request requires a signed token obtained with

IAM credentials, giving another layer of protection.

c) Metadata Accessibility: Metadata access is restricted by

default, needing explicit approval via IAM roles. Adds

authentication checks to prevent unwanted access as part

of a defense-in-depth approach.

d) Additional Security Features: IMDSv2 has a secure token

exchange mechanism that ensures only authenticated and

authorized processes can access metadata. Supports short-

lived session tokens, limiting the window of vulnerability.

3) Migration Considerations:

Backward Compatibility: IMDSv2 builds backward

compatibility into its system, enabling a gradual migration

approach. Organizations can gradually transition existing

programs that use IMDSv1 to IMDSv2 without causing

immediate interruption.

4) Security Implications:

The migration from IMDSv1 to IMDSv2 is crucial for

addressing security concerns associated with unauthenticated

metadata access.

2. Challenges in Upgrading Third-Party Apps

Organizations must upgrade third-party apps to utilize Instance

Metadata Service version 2 (IMDSv2) on Amazon Elastic

Compute Cloud (AWS EC2) instances. These difficulties

include integration issues, potential disruptions, and cost

considerations.

a) Potential Upgrade Licensing Costs: Upgrading third-party

applications may incur additional licensing costs.

b) Time-Consuming Upgrade Process: Upgrading third-party

applications can be time-consuming.

c) Complexities in Testing Due to Mission-Critical

Dependencies: Dependence on third-party applications by

mission-critical applications complicates the testing

process for all applications.

d) Impact on Planned Activities and Teams Allocation: The

migration process might distract teams from their planned

activities.

e) Ensuring Backward Compatibility: It is essential to ensure

that the upgraded version remains backward compatible

with the current tech stack. If not, it will likely have a

cascading effect to upgrade the current tech stack before

the upgrade.

3. Proposed Solution

To solve the abovementioned concerns, let's write a Python

script that provides a solid and safe method for setting up a

proxy server to access AWS metadata. The script systematically

initializes setups, handles logs, and leverages allowlisting to

offer controlled access. Security is prioritized by authenticating

user agents, logging critical facts, and properly checking

permissions for secure endpoints. The script elegantly includes

the IMDSv2 token retrieval mechanism, increasing

communication security. A threaded server improves efficiency

by allowing concurrent HTTP requests, logging, and response

processing. Active signal handling mechanisms ensure a

seamless shutdown. The main script expertly manages periodic

token fetching, ensuring the proxy server's continuing

functionality.

4. Implementation Details

a) Global Variables and Constants

Global Variables and Constants

allowlist = []

secure_allowlist = []

token_cache = ""

token_expiry = datetime.min

token_lock = threading.Lock() # Renamed from

token_mutex

csv_mutex = threading.Lock()

token_timeout = timedelta(seconds=21600)

token_endpoint =

"http://169.254.169.254/latest/api/token"

config_file_path = "/etc/imds-proxy/"

local_log_file_path = "imds-proxy-output.log"

log_file_path = "/var/log/imds-proxy/imds-proxy.log"

csv_file_path = "/var/log/imds-proxy/useragents.csv"

secure_csv_file_path = "/var/log/imds-

proxy/useragents_security.csv"

other_uas = set()

security_credentials_uas = set()

ttl_header = "X-aws-ec2-metadata-token-ttl-seconds"

blank_ua = "<blank>"

Code Snippet 1:

Defines global variables and constants used throughout the script.

b) Initialization

Initialization

def init():

 set_up_logging()

 load_configuration()

Code Snippet 2:
The init function is called at the script's entry point to set up logging

and load configuration.

c) Logging Configuration

Logging Configuration

def set_up_logging():

 # Set up logging configuration

 pass

Code Snippet 3:

The set_up_logging function is a placeholder for setting up the logging
configuration.

Paper ID: SR24402002101 DOI: https://dx.doi.org/10.21275/SR24402002101 2159

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

d) Configuration Loading

Configuration Loading

def load_configuration():

 global allowlist, secure_allowlist

 try:

 with open("config.yaml", "r") as config_file:

 config = yaml.safe_load(config_file)

 allowlist = config.get("allowlist", [])

 secure_allowlist = config.get("secure_allowlist",

[])

 except Exception as e:

 print(f"Error reading config file: {e}")

 sys.exit(1)

Code Snippet 4:

The load_configuration function reads the configuration from the
config.yaml file and populates the allowlists.

e) CSV Writing

CSV Writing

def write_to_csv(filename, ua):

 with csv_mutex:

 with open(filename, mode="a", newline="",

encoding="utf-8") as file:

 writer = csv.writer(file)

 writer.writerow([ua])

Code Snippet 5:

The write_to_csv function writes a user agent (ua) to a CSV file
(filename) in a thread-safe manner

f) Secure Endpoint Check

Secure Endpoint Check

def check_secure_endpoint(path):

 secure_endpoints = ["security-credentials"]

 return any(endpoint in path for endpoint in

secure_endpoints)

Code Snippet 6:
The check_secure_endpoint function checks if the provided path

corresponds to a secure endpoint.

g) User Agent Authentication Check

User Agent Authentication Check

def check_user_agent(ua, is_secure_endpoint):

 is_authenticated = False

 if is_secure_endpoint:

 with csv_mutex:

 if ua not in security_credentials_uas:

 security_credentials_uas.add(ua)

 write_to_csv(secure_csv_file_path, ua)

 if ua in secure_allowlist:

 is_authenticated = True

 else:

 with csv_mutex:

 if ua not in other_uas:

 other_uas.add(ua)

 write_to_csv(csv_file_path, ua)

 for prefix in allowlist:

 if ua.startswith(prefix):

 is_authenticated = True

 break

 return is_authenticated

Code Snippet 7:
The check_user_agent function has been updated to handle user agent

authentication based on whether it's a secure endpoint or not.

For secure endpoints, it checks if the user agent is in the
secure_allowlist and adds it to the security_credentials_uas set.

For non-secure endpoints, it checks if the user agent starts with any

prefix in the allowlist and adds it to the other_uas set.

The function returns True if the user agent is authenticated.

h) Request Authorization Check

Request Authorization Check

def check_request_allowed(req):

 ua = req.headers.get("User-Agent", blank_ua)

 path = urlparse(req.path).path

 is_secure_endpoint = check_secure_endpoint(path)

 return check_user_agent(ua, is_secure_endpoint)

Code Snippet 8:

The check_request_allowed function checks if the request is allowed
based on the user agent and endpoint.

i) IMDSv2 Token Fetching

IMDSv2 Token Fetching

def fetch_imds_v2_token():

 with token_lock: # Renamed from token_mutex

 global token_cache, token_expiry

 if token_cache and datetime.now() < token_expiry:

 return

 try:

 resp = requests.put(token_endpoint,

headers={ttl_header: "21600"})

 resp.raise_for_status()

 token_cache = resp.text.strip()

 token_expiry = datetime.now() + token_timeout

 except requests.RequestException as e:

 print(f"Failed to fetch IMDSv2 token: {e}")

Code Snippet 9:

The fetch_imds_v2_token function fetches the IMDSv2 token if it's

not in the cache or has expired.
It uses a lock (token_lock) to ensure thread safety when fetching and

updating the token.

Paper ID: SR24402002101 DOI: https://dx.doi.org/10.21275/SR24402002101 2160

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

j) Proxy Suffix Appending

Proxy Suffix Appending

def append_proxy_suffix(ua):

 return ua + "(imds-proxy)"

Code Snippet 10:

The append_proxy_suffix function appends "(imds-proxy)" to a given

user agent (ua).

k) Proxy Request Handling

Proxy Request Handling

class ProxyHandler(BaseHTTPRequestHandler):

 def do_GET(self):

 ua = self.headers.get("User-Agent", blank_ua)

 # Log User-agents

 log_fields = {

 "user_agent": ua,

 "method": self.command,

 "uri": self.path,

 "remote_ip": self.client_address[0],

 "headers": dict(self.headers),

 }

 print("Received request", log_fields)

 # Check User-agent is on allow list

 if not check_request_allowed(self):

 print(f"Unauthorized User-Agent detected:

{ua}")

 self.send_response(401)

 self.end_headers()

 return

 # If an IMDS v1 request is made, append the token

for v2 calls

 if self.headers.get("X-aws-ec2-metadata-token") is

None:

 print("Attempting to fetch IMDSv2 token")

 try:

 fetch_imds_v2_token()

 self.headers["X-aws-ec2-metadata-token"] =

token_cache

 print(f"Added token to request:

{token_cache}")

 except Exception as e:

 self.send_response(500)

 self.end_headers()

 self.wfile.write(f"Failed to fetch IMDSv2

token: {e}".encode())

 return

 proxy_request = requests.Request(

 self.command,

f"http://169.254.169.254{self.path}",

headers=dict(self.headers)

).prepare()

 response = requests.Session().send(proxy_request)

 self.send_response(response.status_code)

 for key, value in response.headers.items():

 self.send_header(key, value)

 self.end_headers()

 self.wfile.write(response.content)

Code Snippet 11:

The ProxyHandler class handles incoming HTTP GET requests.It logs
user agent information, checks if the request is allowed, and appends

the IMDSv2 token if needed.The response from the IMDS server is

then forwarded back to the client.

l) Threaded HTTP Server

Threaded HTTP Server

class ThreadedHTTPServer(ThreadingMixIn,

HTTPServer):

 pass

Code Snippet 12:

The ThreadedHTTPServer class is a mix-in class that enables
threading for the HTTP server.

m) Proxy Server Execution

Proxy Server Execution

def run_proxy_server():

 server = ThreadedHTTPServer(("127.0.0.1", 9090),

ProxyHandler)

 print("Starting proxy...")

 server.serve_forever()

Code Snippet 13:

The run_proxy_server function creates a threaded HTTP server and
starts serving requests indefinitely.

n) Signal Handling and Sgutdown

Signal Handling and Shutdown

def shutdown_server(signum, frame):

 print("Shutdown signal received, exiting proxy...")

 sys.exit(0)

if __name__ == "__main__":

 init()

 scheduler = threading.Thread(target=lambda:

time.sleep(5) or fetch_imds_v2_token())

 scheduler.daemon = True

 scheduler.start()

 signal.signal(signal.SIGINT, shutdown_server)

Paper ID: SR24402002101 DOI: https://dx.doi.org/10.21275/SR24402002101 2161

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 signal.signal(signal.SIGTERM, shutdown_server)

 run_proxy_server()

Code Snippet 14:
The main block initializes the script, starts a thread to fetch the IMDSv2

token periodically, and sets up signal handlers for graceful shutdown.

The proxy server runs in the main thread.

o) Automated Deployment of the above Python Script from

JFrog Artifactory on AWS EC2

The EC2 user data section executes the script. It updates the

system, installs required packages, sets up JFrog Artifactory,

downloads and runs a Python script, and generates user,

directory, and iptables rules for secure IMDS proxy operation.

The iptables rules specifically divert traffic that does not

originate with the designated user ('proxy_user') that is destined

for the IMDS IP address ('169.254.169.254') on port 80 to a

local destination ('127.0.0.1:9090'). This thorough

configuration strengthens the IMDS proxy by ensuring only

authorized users can access the metadata service, enhancing

overall system integrity.

#!/bin/bash

Function to create directory if it doesn't exist

create_directory() {

 if [! -d "$1"]; then

 mkdir -p "$1"

 chown "$2":"$2" "$1"

 chmod "$3" "$1"

 fi

}

Function to create user if it doesn't exist

create_user() {

 if id "$1" &>/dev/null; then

 echo "$1 already exists"

 else

 output=$(useradd -r -M -s /sbin/nologin "$1" 2>&1)

 exit_code=$?

 fi

 if [$exit_code -ne 0]; then

 echo "Failed to add user $1. Error: $output"

 else

 echo "User $1 added successfully."

 fi

}

Update the system and install necessary packages

sudo yum update -y

sudo yum install -y python3 curl iptables

JFrog Artifactory Configuration

ARTIFACTORY_URL="https://your-artifactory-url.com"

LOCAL_DIRECTORY="/path/to/local/directory"

Python Script Download and Execution

create_directory "$LOCAL_DIRECTORY" "" 0755

curl -o "$LOCAL_DIRECTORY/imds_proxy.py"

"$ARTIFACTORY_URL/imds_proxy.py"

chmod +x "$LOCAL_DIRECTORY/imds_proxy.py"

pip3 install -r "$LOCAL_DIRECTORY/requirements.txt"

IMDS Proxy Configuration

LOG_DIR="/var/log/imds-proxy"

CONFIG_DIR="/etc/imds-proxy"

IMDS_PROXY_SERVICE="imds-proxy"

PROXY_USER="proxy_user"

Install Python (if not already installed)

if ! command -v python3 &>/dev/null; then

 sudo yum install -y python3

fi

User Creation and iptables Rules

create_user "$PROXY_USER"

yum install -y iptables

/sbin/iptables -t nat -A OUTPUT -m owner ! --uid-owner

"$PROXY_USER" -d 169.254.169.254 -p tcp -m tcp --

dport 80 -j DNAT --to-destination 127.0.0.1:9090

service iptables save

Log and Config Directory Creation

create_directory "$LOG_DIR" "$PROXY_USER" 0750

create_directory "$CONFIG_DIR" "$PROXY_USER"

0700

Config.yaml File Creation

cat <<EOL > "$CONFIG_DIR/config.yaml"

allowlist:

 - aws-sdk-

 - Botocore/

 - Boto3/

 - aws-cli/

 - aws-chalice/

 - Java/

secure_allowlist:

 - Java/11.x.xx

EOL

chown "$PROXY_USER":"$PROXY_USER"

"$CONFIG_DIR/config.yaml"

chmod 0600 "$CONFIG_DIR/config.yaml"

Systemd Service File Creation

cat <<EOL >

"/etc/systemd/system/$IMDS_PROXY_SERVICE.service

"

[Unit]

Description=$IMDS_PROXY_SERVICE Service

After=network.target

[Service]

User=$PROXY_USER

ExecStart=/usr/bin/python3

"$LOCAL_DIRECTORY/imds_proxy.py"

WorkingDirectory=/opt/imds-proxy/

Restart=always

[Install]

WantedBy=multi-user.target

EOL

Service Startup

systemctl daemon-reload

systemctl enable "$IMDS_PROXY_SERVICE.service"

systemctl start "$IMDS_PROXY_SERVICE.service"

Code Snippet 15: Bootstrap Script to run in EC2 User Data

Paper ID: SR24402002101 DOI: https://dx.doi.org/10.21275/SR24402002101 2162

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

5. Considerations

Use the application's performance test suite to evaluate the

proxy server on the EC2 instance (specified in the previous

section) on the selected EC2. Throughout the performance test,

watch the EC2 CloudWatch metric 'MetadataNoToken'[2]. This

statistic is vital since it allows you to evaluate the proxy server's

ability to handle metadata requests without tokens. By

continuously monitoring this indicator, you can gain insight

into the proxy server's performance under varied loads,

ensuring it manages metadata requests successfully, even in

tokenless settings. This method improves the complete

evaluation of the proxy server's capabilities and their impact on

the EC2 instance's performance in real-world usage scenarios.

6. Conclusion

This paper illustrates fortifying AWS Elastic Compute Cloud

(EC2) instances by transforming third-party applications from

IMDSv1 to IMDSv2. The provided Python code snippets

outline a user-agent-based solution to challenges such as

upgrading third-party software, managing time-consuming

migrations, and relying on mission-critical programs. The

'proxyHandler' method actively orchestrates secure transitions,

ensuring uninterrupted operations. This technique diminishes

security vulnerabilities while concurrently decreasing potential

disruptions and licensing costs. The article advocates the global

adoption of this strategy, highlighting its strategic significance

in enhancing AWS EC2 security. As enterprises confront

evolving cloud ecosystems, this white paper acts as a practical

guide, delineating a robust strategy to fortify AWS EC2

instances against future risks. Moreover, this approach is

adaptable to Java/Javalin or GoLang implementation.

References

[1] AWS (2023, September 28). Get the full benefits of

IMDSv2 and disable IMDSv1 across your AWS

infrastructure. AWS Security Blog.

https://aws.amazon.com/blogs/security/get-the-full-

benefits-of-imdsv2-and-disable-imdsv1-across-your-aws-

infrastructure/

[2] AWS (n.d.). List the available CloudWatch metrics for

your instances. Amazon Elastic Compute Cloud.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

viewing_metrics_with_cloudwatch.html

[3] AWS (n.d.). Tools for helping with the transition to

IMDSv2. Amazon Elastic Compute Cloud.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

instance-metadata-transition-to-version-2.html

Paper ID: SR24402002101 DOI: https://dx.doi.org/10.21275/SR24402002101 2163

https://www.ijsr.net/

