
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Harnessing the Quantum Flux: Architecting and

Implementing Real - Time Data Streaming Pipelines

with Apache Kafka, Apache Flink, and Cloud -

Native Solutions

Abhijit Joshi

Staff Data Engineer – Data Platform Technology Lead at Oportun

Email: abhijitpjoshi[at]gmail.com

Abstract: The rapid evolution of data technologies has ushered in an era where real - time data streaming is pivotal for modern

enterprises. This paper delves into the architectures and technologies that enable real - time data streaming, focusing on Apache Kafka,

Apache Flink, and cloud - native solutions. It explores various use cases, including real - time analytics, monitoring, and decision -

making. By providing insights into best practices for designing and implementing robust real - time data streaming pipelines, this paper

aims to equip data engineers with the knowledge needed to harness the power of real - time data for enhanced business outcomes.

Keywords: Real - Time Data Streaming, Apache Kafka, Apache Flink, Cloud - Native Solutions, Real - Time Analytics, Data Pipelines,

Monitoring, Decision - Making, Data Architecture, Stream Processing

1. Introduction

The proliferation of data in today's digital age necessitates

innovative approaches to data management and processing.

Traditional batch processing methods are increasingly

inadequate for applications requiring instantaneous data

insights and responses. Real - time data streaming has

emerged as a critical technology, enabling organizations to

process and analyze data as it arrives, thereby facilitating

timely decision - making and enhancing operational

efficiency.

This paper aims to explore the architectures and technologies

that empower real - time data streaming, with a particular

focus on Apache Kafka, Apache Flink, and cloud - native

solutions. These technologies form the backbone of modern

real - time data processing frameworks, allowing for seamless

integration, scalability, and robustness.

By examining various use cases, this paper will highlight how

real - time data streaming can be leveraged across different

industries for real - time analytics, monitoring, and decision -

making. Furthermore, it will provide detailed methodologies

and best practices for designing and implementing effective

real - time data streaming pipelines, ensuring that data

engineers can optimize their systems for maximum

performance and reliability.

2. Problem Statement

Modern enterprises are inundated with data generated at

unprecedented volumes and velocities. The challenge lies in

the ability to ingest, process, and analyze this data in real -

time to derive actionable insights. Traditional data processing

frameworks, which rely heavily on batch processing, struggle

to meet the demands of applications requiring immediate

responses and up - to - date information.

Several critical issues underscore the need for robust real -

time data streaming solutions:

a) Latency and Timeliness:

• Batch processing introduces inherent latency due to its

periodic nature. In scenarios where decisions need to be

made within milliseconds, such as fraud detection in

financial transactions or real - time recommendation

systems in e - commerce, this delay is unacceptable.

• Real - time data streaming addresses this by processing

data as it arrives, ensuring that insights and actions are

based on the most current information.

b) Scalability:

• The exponential growth of data requires systems that can

scale horizontally to handle increased load. Traditional

systems often falter under such pressure, leading to

bottlenecks and performance degradation.

• Technologies like Apache Kafka and Apache Flink are

designed to scale out efficiently, distributing data and

processing workloads across multiple nodes to handle

high throughput.

c) Complexity of Integration:

• Enterprises often operate with heterogeneous data sources,

including databases, IoT devices, social media feeds, and

more. Integrating these diverse sources into a cohesive

real - time data pipeline is a significant challenge.

• Real - time streaming platforms provide connectors and

APIs that simplify the ingestion and integration of data

from various sources, ensuring seamless data flow and

consistency.

d) Reliability and Fault Tolerance:

• In a distributed environment, system failures are

inevitable. Ensuring data integrity and continuous

processing despite failures is crucial.

• Advanced real - time streaming architectures incorporate

mechanisms for fault tolerance and data replication,

ensuring that data processing continues uninterrupted

even in the face of hardware or network failures.

e) Resource Optimization:

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2196

https://www.ijsr.net/
mailto:abhijitpjoshi@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Efficient utilization of computational resources is essential

to manage costs and energy consumption. Traditional

systems often lead to resource underutilization or over -

provisioning due to their batch - oriented nature.

• Real - time data streaming systems dynamically allocate

resources based on the current load, optimizing the use of

CPU, memory, and network bandwidth.

To address these challenges, enterprises must adopt real - time

data streaming architectures that are scalable, resilient, and

capable of integrating diverse data sources. This paper will

delve into the detailed solutions and methodologies that

underpin these architectures, focusing on best practices for

their implementation and optimization.

3. Solution:

To effectively address the challenges of real - time data

streaming, a comprehensive solution architecture is required.

This architecture should leverage cutting - edge technologies

and best practices to ensure scalability, reliability, and

performance. In this section, we will delve into the core

components of a robust real - time data streaming solution,

focusing on Apache Kafka, Apache Flink, and cloud - native

technologies. We will also discuss the methodologies for

designing and implementing such a solution, including

pseudocode, algorithms, and architectural diagrams.

Core Components of Real - Time Data Streaming

Architecture

1) Data Ingestion:

• The first step in real - time data streaming is data ingestion,

where data is collected from various sources such as

databases, IoT devices, social media platforms, and

application logs.

• Apache Kafka is widely used for this purpose due to its

high throughput, scalability, and fault tolerance. Kafka

acts as a distributed log that collects, stores, and streams

data in real - time.

• Cloud - native solutions such as AWS Kinesis, Azure

Event Hubs, and Google Cloud Pub/Sub also offer robust

ingestion capabilities with managed services.

2) Stream Processing:

• Once data is ingested, it needs to be processed in real -

time to extract insights and trigger actions. This involves

filtering, aggregating, and transforming data streams.

• Apache Flink is a powerful stream processing framework

that supports complex event processing, stateful

computations, and windowing operations. It is designed to

process data with low latency and high throughput.

• Cloud - native stream processing services such as AWS

Kinesis Data Analytics, Azure Stream Analytics, and

Google Cloud Dataflow provide managed environments

for real - time data processing.

3) Data Storage:

• Processed data needs to be stored for further analysis,

querying, and reporting. Real - time storage solutions must

support high write and read speeds.

• Apache Cassandra and Amazon DynamoDB are

commonly used for storing real - time data due to their

scalability and high performance.

• Cloud data warehouses such as Amazon Redshift,

Google BigQuery, and Azure Synapse Analytics also

support real - time data ingestion and querying.

4) Data Visualization and Analytics:

• Real - time data insights are often visualized through

dashboards and analytics platforms to facilitate decision -

making.

• Grafana and Kibana are popular open - source tools for

creating real - time dashboards.

Designing a Real - Time Data Streaming Pipeline

Designing an effective real - time data streaming pipeline

involves several key steps. Below is an outline of the process,

along with pseudocode and architectural diagrams to illustrate

the methodologies.

Step 1: Setting Up Data Ingestion with Apache Kafka

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2197

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Explanation:

• Data Ingestion: Multiple data sources (e. g., IoT devices,

logs) send data to Kafka producers.

• Kafka Cluster: Kafka brokers store the data in distributed

partitions.

• Data Consumption: Kafka consumers and Kafka

Streams read data for further processing.

• Stream Processing: Data is processed for real - time

analytics and event handling.

• Storage & Visualization: Processed data is stored and

visualized.

Pseudocode for Kafka Producer:

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2198

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Step 2: Implementing Stream Processing with Apache Flink

Explanation:

• Kafka Integration: Flink reads data from Kafka topics.

• Flink Processing: Data undergoes multiple transformations including mapping, filtering, windowing, and aggregation.

• Output Integration: Processed data is written back to Kafka and Cassandra.

• Visualization: Data stored in Cassandra and Kafka is visualized using real - time dashboards and Grafana.

Pseudocode for Flink Job:

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2199

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Step 3: Real - Time Data Storage with Apache Cassandra

Explanation:

• Flink to Cassandra: Data from Flink is written to a Cassandra cluster.

• Cassandra Storage: Data is distributed across multiple nodes for high availability.

• Data Querying: Different types of queries are executed on the stored data.

• Visualization & Analytics: Data is visualized and analyzed using Grafana and custom applications.

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2200

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Once the data is processed in real - time, it needs to be stored in a database that supports high write and read speeds, ensuring

data availability for further querying and analysis.

Pseudocode for Writing to Apache Cassandra:

Step 4: Data Visualization and Analytics with Grafana

Real - time data insights are often visualized through dashboards to facilitate decision - making. Grafana is a powerful tool for

creating real - time dashboards that integrate with various data sources.

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2201

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Explanation:

• Data Source: Grafana pulls data from Cassandra and

Kafka.

• Grafana: Centralized dashboard management.

• Dashboards: Multiple panels displaying various real - time

metrics.

• Decision - Making: Insights derived from dashboards

inform business decisions.

Setting Up Grafana:

• Step 1: Install Grafana on your server or use a hosted

Grafana service.

• Step 2: Add your data source, such as Prometheus,

InfluxDB, or directly from databases like Cassandra.

• Step 3: Create a new dashboard and add panels to

visualize your data streams.

Step 5: Ensuring Scalability and Fault Tolerance

Ensuring that a real - time data streaming pipeline can scale

and remain fault - tolerant is crucial. Here, we will discuss

how to achieve these objectives using Apache Kafka, Apache

Flink, and cloud - native solutions.

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2202

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Explanation:

• Kafka Cluster: Illustrates how partitions and replicas are

distributed across Kafka brokers to ensure fault tolerance.

• Flink Cluster: Shows how Flink task managers and task

slots enable parallel processing.

• Checkpointing: Demonstrates how Flink uses

checkpoints to save the state and recover from failures.

Scalability:

• Horizontal Scaling: Both Kafka and Flink are designed

to scale horizontally. For Kafka, this involves adding more

brokers to the cluster, which can handle more partitions

and thus more data. For Flink, adding more task managers

allows for parallel processing of data streams.

• Partitioning in Kafka: Kafka topics are partitioned, and

each partition can be processed independently. By

increasing the number of partitions, you can distribute the

load across multiple consumers, enhancing throughput.

• Parallelism in Flink: Flink allows you to configure the

level of parallelism, which defines how many parallel

instances of each operation will be executed. This ensures

that data processing can keep up with the ingestion rate.

Fault Tolerance:

• Replication in Kafka: Kafka ensures fault tolerance

through replication. Each partition can have multiple

replicas, distributed across different brokers. If a broker

fails, another broker with the replica can take over.

• Checkpointing in Flink: Flink supports stateful stream

processing, and it uses checkpoints to periodically save the

state of the application. In case of a failure, Flink can

restore the state from the latest checkpoint, ensuring no

data is lost.

• Exactly - Once Semantics: Both Kafka and Flink support

exactly - once processing semantics, which guarantees that

each record is processed exactly once even in the presence

of failures.

Step 6: Implementing Security and Data Governance

Security and data governance are critical components of a real

- time data streaming architecture. Ensuring that data is

securely transmitted, processed, and stored, while

maintaining compliance with regulatory requirements, is

essential for protecting sensitive information and maintaining

trust.

Security:

• Encryption: Use encryption for data in transit and at rest.

Kafka supports SSL/TLS for encrypting data in transit.

For data at rest, use encryption mechanisms provided by

the underlying storage systems (e. g., AWS KMS for S3,

Transparent Data Encryption for Cassandra).

• Authentication and Authorization: Implement robust

authentication and authorization mechanisms. Kafka

integrates with Kerberos, LDAP, and SSL for

authentication. Use Kafka's Access Control Lists (ACLs)

to manage permissions.

• Network Security: Ensure network security through the

use of firewalls, VPNs, and VPCs. Limit network access

to only trusted IP addresses and services.

Data Governance:

• Data Lineage: Track the flow of data from ingestion to

processing and storage. This helps in auditing and

understanding the data lifecycle. Tools like Apache Atlas

can be used to manage data lineage.

• Compliance: Ensure compliance with data protection

regulations such as GDPR, CCPA, and HIPAA. Implement

data anonymization and masking techniques where

necessary.

• Data Quality: Implement data quality checks to ensure

the integrity and accuracy of the data being processed. Use

tools like Apache Nifi for data validation and cleansing.

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2203

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Explanation:

• Security: Covers encryption (SSL/TLS for data in transit,

encryption at rest), authentication (Kerberos, LDAP),

authorization (Kafka ACLs), and network security

(firewalls, VPNs, VPCs).

• Data Governance: Includes data lineage tracking

(Apache Atlas), compliance with regulations (GDPR,

CCPA, HIPAA), and ensuring data quality (Apache Nifi

for validation and cleansing).

Step 7: Performance Optimization

To ensure that a real - time data streaming pipeline operates

efficiently, performance optimization is crucial. This involves

tuning various components to maximize throughput,

minimize latency, and ensure resource utilization is optimal.

Performance Optimization Techniques:

1) Kafka Optimization:

• Broker Configuration: Fine - tune broker settings such

as num. io. threads, num. network. threads, and log.

segment. bytes to optimize I/O performance.

• Producer Configuration: Adjust producer settings like

batch. size, linger. ms, and compression. type to balance

latency and throughput.

• Consumer Configuration: Optimize consumer settings

such as fetch. min. bytes, fetch. max. wait. ms, and max.

poll. records to improve data consumption rates.

2) Flink Optimization:

• Parallelism: Increase the parallelism level in Flink to

distribute the processing load across more task slots.

• State Management: Use efficient state backends like

RocksDB for managing large stateful operations.

• Checkpointing: Configure checkpoint intervals to

balance between state persistence and processing latency.

3) Resource Management:

• Autoscaling: Implement autoscaling policies for cloud

resources to dynamically adjust the number of instances

based on the workload.

• Resource Allocation: Ensure that sufficient CPU,

memory, and network resources are allocated to Kafka and

Flink components to avoid bottlenecks.

4) Monitoring and Tuning:

• Metrics Collection: Use monitoring tools like

Prometheus, Grafana, and Kafka Manager to collect and

visualize performance metrics.

• Alerting: Set up alerts to notify when performance

metrics exceed predefined thresholds.

• Regular Tuning: Continuously tune configurations based

on monitoring insights to maintain optimal performance.

Uses

Real - time data streaming technologies have a wide range of

applications across various industries. Here are some key use

cases:

1) Real - Time Analytics:

• Finance: Instantaneous fraud detection by analyzing

transaction patterns in real - time.

• E - commerce: Real - time recommendation systems that

suggest products based on user behavior.

• Healthcare: Monitoring patient vitals and triggering

alerts for critical conditions.

2) Monitoring:

• IT Operations: Real - time monitoring of system logs and

metrics to detect anomalies and prevent downtime.

• Industrial IoT: Monitoring machinery and equipment in

real - time to predict failures and schedule maintenance.

• Telecommunications: Real - time network performance

monitoring to ensure quality of service.

3) Decision - Making:

• Smart Cities: Analyzing traffic data in real - time to

manage traffic flow and reduce congestion.

• Retail: Real - time inventory management to optimize

stock levels and reduce wastage.

• Energy: Monitoring energy consumption in real - time to

balance supply and demand efficiently.

These use cases demonstrate the versatility and impact of real

- time data streaming, enabling organizations to respond

swiftly to changing conditions and make informed decisions.

Impact

Real - time data streaming significantly enhances operational

efficiency and decision - making across various industries.

Key impacts include:

a) Improved Response Times:

• Enables immediate actions based on current data, reducing

delays and improving service quality.

b) Increased Operational Efficiency:

• Automates data processing and analysis, minimizing

manual intervention and errors.

c) Enhanced Customer Experience:

• Provides personalized services and timely

recommendations, boosting customer satisfaction and

engagement.

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2204

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

d) Cost Savings:

• Optimizes resource utilization and reduces downtime,

leading to significant cost reductions.

e) Competitive Advantage:

• Equips businesses with timely insights, allowing them to

stay ahead in the market by making informed decisions

quickly.

Scope

The scope of real - time data streaming encompasses a wide

array of applications and industries:

1) Industries:

• Finance: Fraud detection, real - time trading.

• Healthcare: Patient monitoring, predictive analytics.

• Retail: Dynamic pricing, inventory management.

• Manufacturing: Predictive maintenance, quality control.

• Telecommunications: Network optimization, customer

service enhancements.

2) Technologies:

• Data Ingestion: Apache Kafka, AWS Kinesis.

• Stream Processing: Apache Flink, Google Cloud

Dataflow.

• Data Storage: Apache Cassandra, Amazon DynamoDB.

• Visualization: Grafana, Kibana.

3) Future Trends:

• Edge Computing: Processing data closer to the source for

reduced latency.

• AI and Machine Learning: Real - time model training

and inference.

• IoT Integration: Expanding use cases with increased

sensor data availability.

The extensive scope ensures that real - time data streaming

remains relevant and continues to evolve, addressing

emerging challenges and opportunities across various sectors.

4. Conclusion

Real - time data streaming is transforming how organizations

process and analyze data, enabling immediate insights and

actions. By leveraging technologies like Apache Kafka and

Apache Flink, businesses can enhance operational efficiency,

improve customer experiences, and gain a competitive edge.

As the landscape of data streaming continues to evolve,

embracing these technologies and best practices will be

crucial for staying ahead in an increasingly data - driven

world.

Future Research Area

Future research in real - time data streaming can focus on:

1) Integration with AI and Machine Learning:

• Enhancing real - time analytics with advanced predictive

models.

2) Edge Computing:

• Developing frameworks for processing data at the edge

to reduce latency and bandwidth usage.

3) Scalability and Performance:

• Exploring new architectures and algorithms to improve

the scalability and performance of real - time data

streaming systems.

4) Security Enhancements:

• Innovating security protocols to protect data in

increasingly complex environments.

5) Regulatory Compliance:

• Adapting streaming systems to evolving data privacy

regulations globally.

References

[1] M. Zaharia et al., "Structured Streaming: A Declarative

API for Real - Time Applications in Apache Spark, "

Proc. of the 2018 ACM SIGMOD International

Conference on Management of Data, June 2018.

[Online]. Available: https: //people. eecs. berkeley.

edu/~matei/papers/2018/sigmod_structured_streamin

g. pdf

[2] AWS Big Data Blog, "A side - by - side comparison of

Apache Spark and Apache Flink for common

streaming use cases, " AWS, 2023. [Online]. Available:

https: //aws. amazon. com/blogs/big - data/a - side - by

- side - comparison - of - apache - spark - and - apache

- flink - for - common - streaming - use - cases/

[3] Design Gurus, "Kafka Streams vs. Apache Flink vs.

Apache Storm: Stream Processing Showdown, "

Design Gurus, June 12th 2023. [Online]. Available:

https: //www.designgurus. io/blog/kafka - streams -

%20apache - flink - apache - storm

[4] M. Kleppmann, "Designing Data - Intensive

Applications, " O'Reilly Media, 2017.

[5] J. Kreps et al., "Kafka: A Distributed Messaging

System for Log Processing, " Proc. of the 6th

International Workshop on Networking Meets

Databases (NetDB), June 2011.

[6] J. Kreps, "Questioning the Lambda Architecture, "

O'Reilly Radar, 2014. [Online]. Available: https:

//www.oreilly. com/radar/questioning - the - lambda -

architecture/

[7] V. Gulisano et al., "StreamCloud: An Elastic and

Scalable Data Streaming System, " IEEE Trans.

Parallel Distrib. Syst., vol.23, no.12, pp.2351 - 2365,

Dec.2012.

[8] M. Chowdhury et al., "Managing Data Transfers in

Computer Clusters with Orchestra, " ACM SIGCOMM

Computer Communication Review, vol.41, no.4, pp.98

- 109, Oct.2011.

[9] P. Carbone et al., "Apache Flink™: Stream and Batch

Processing in a Single Engine, " IEEE Data Eng. Bull.,

vol.38, no.4, pp.28 - 38, Dec.2015.

[10] J. Ekanayake et al., "Twister: A Runtime for Iterative

MapReduce, " Proc. of the First International

Workshop on MapReduce and Its Applications, ACM,

June 2010.

[11] C. W. Tsai et al., "Big Data Analytics: A Survey, "

Journal of Big Data, vol.2, no.21, Dec.2015.

[12] A. Toshniwal et al., "Storm[at]Twitter, " Proc. of the

2014 ACM SIGMOD International Conference on

Management of Data, June 2014.

[13] M. Zaharia et al., "Resilient Distributed Datasets: A

Fault - Tolerant Abstraction for In - Memory Cluster

Computing, " Proc. of the 9th USENIX Conference on

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2205

https://www.ijsr.net/
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://people.eecs.berkeley.edu/~matei/papers/2018/sigmod_structured_streaming.pdf
https://aws.amazon.com/blogs/big-data/a-side-by-side-comparison-of-apache-spark-and-apache-flink-for-common-streaming-use-cases/
https://aws.amazon.com/blogs/big-data/a-side-by-side-comparison-of-apache-spark-and-apache-flink-for-common-streaming-use-cases/
https://aws.amazon.com/blogs/big-data/a-side-by-side-comparison-of-apache-spark-and-apache-flink-for-common-streaming-use-cases/
https://aws.amazon.com/blogs/big-data/a-side-by-side-comparison-of-apache-spark-and-apache-flink-for-common-streaming-use-cases/
https://www.designgurus.io/blog/kafka-streams-%20apache-flink-apache-storm
https://www.designgurus.io/blog/kafka-streams-%20apache-flink-apache-storm
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 11, November 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Networked Systems Design and Implementation

(NSDI 12), Apr.2012.

[14] A. Alexandrov et al., "The Stratosphere Platform for

Big Data Analytics, " VLDB Journal, vol.23, no.6,

pp.939 - 964, Dec.2014.

Paper ID: SR24627194249 DOI: https://dx.doi.org/10.21275/SR24627194249 2206

https://www.ijsr.net/

