Group $\{1,-1, i,-i\}$ Cordial Labeling of Some Shadow Graphs

M. K. Karthik Chidambaram ${ }^{1}$, S. Athisayanathan ${ }^{2}$, R. Ponraj ${ }^{3}$
${ }^{1}$ Department of Mathematics, St. Xavier's College, Palayamkottai 627 002, Tamil Nadu, India Email: karthikmat5[at]gmail.com
${ }^{2}$ Department of Mathematics, St. Xavier’s College, Palayamkottai 627 002, Tamil Nadu, India Email: athisxc[at]gmail.com
${ }^{3}$ Department of Mathematics, Sri Paramakalyani College, Alwarkuruchi 627 412, Tamil Nadu, India Email: ponrajmath[at]gmail.com

Abstract

Let G be a (p, q) graph and A be a group. Let $f: V(G) \rightarrow A$ be a function. The order of $u \in A$ is the least positive integer n such that $u^{n}=e$. We denote the order of u by o(u). For each edge $u v$ assign the label 1 if $(o(f(u))$, $o(f(v)))=1$ or 0 otherwise. The function f is called a group A Cordial labeling if $|v f(a)-v f(b)| \leq 1$ and $|e f(0)-e f(1)| \leq 1$, where $v f(x)$ and eff(n) respectively denote the number of vertices labeled with an element x and number of edges labeled with $n(n=0,1)$. A graph which admits a group A Cordial labeling is called a group A Cordial graph. The Shadow graph $D 2(G)$ of a connected graph G is constructed by taking two copies of G, G^{\prime} and $G^{\prime \prime}$ and joining each vertex u^{\prime} in G^{\prime} to the neighbours of the corresponding vertex u " in G ". In this paper we define group \{1, -1 , $i,-i\}$ Cordial graphs and prove that the Shadow graphs of Path Pn and Cycle Cn are group $\{1,-1, i,-i\}$ Cordial. We also characterize shadow graph of Complete graph K_{n} that are group $\{1,-1, i,-i\}$ Cordial.

Keywords: Cordial labeling, group A Cordial labeling, group $\{1,-1, i,-i\}$ Cordial labeling, Shadow graph.
AMS subject classification: 05C78

1. Introduction

Graphs considered here are finite, undirected and simple. Let A be a group.

The order of $a \in A$ is the least positive integer n such that a^{n} $=e$. We denote the order of a by $o(a)$. Cahit [3] introduced the concept of Cordial labeling. Motivated by this, we define group A cordial labeling and investigate some of its properties. We also define group $\{1,-1, i,-i\}$ cordial labeling and discuss that labeling for some standard graphs $[1,2]$. The Shadow graph $D 2(G)$ of a connected graph G is constructed by taking two copies of G, G^{\prime} and $G^{\prime \prime}$ and joining each vertex u^{\prime} in G^{\prime} to the neighbours of the corresponding vertex $u^{\prime \prime}$ in G^{\prime}. In this paper we define group $\{1,-1, i,-i\}$

Cordial graphs and prove that the Shadow graphs of Path P_{n} and Cycle C_{n} are group $\{1,-1, i,-i\}$ Cordial. We also characterize shadow graph of Complete graph K_{n} that are group $\{1,1, i, i\}$ Cordial. Terms not defined here are used in the sense of Harary [5] and Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m, n) and m and n are said to be relatively prime if $(m, n)=1$. For any real number x, we denote by $\lfloor x\rfloor$, the greatest integer smaller than or equal to x and by $\lceil x\rceil$, we mean the smallest integer greater than or equal to x.

A path is an alternating sequence of vertices and edges, $v 1$, $e 1, v 2, e_{2}, \ldots, e_{n}-1, v_{n}$, which are distinct, such that e_{i} is an
edge joining $v i$ and $v i+1$ for $1 \leq i \leq n-1$. A path on n vertices is denoted by P_{n}. A path $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{n-1}, v_{n}$, $e_{n}, v 1$ is called a cycle and a cycle on n vertices is denoted by C_{n}. If G is a graph on n vertices in which every vertex is adjacent to every other vertex, then G is called a complete graph and is denoted by $K n$.

Figure 2.1

2. Group $\{1,-1, i,-i\}$ Cordial graphs

Definition 2.1. Let G be a (p, q) graph and consider the group $A=\{1,-1, i,-i\}$ with multiplication. Let $f: V(G) \rightarrow$ A be a function. For each edge $u v$ assign the label 1 if ($o(f$ $(u)), o(f(v)))=1$ or 0 otherwise. The function f is called a group $\{1,-1, i,-i\}$ Cordial labeling if $|v f(a)-v f(b)| \leq 1$ and $|e f(0)-e f(1)| \leq 1$, where $v f(x)$ and $e f(n)$ respectively denote the number of vertices labeled with an element x and number of edges with $\mathrm{n}(\mathrm{n}=0,1)$. A graph which admits a group $\{1,-1, i,-i\}$ Cordial labeling is called a group $\{1,-1$,
$i,-i\}$ Cordial graph.
Example 2.2: A simple example of a group $\{1,-1, i,-i\}$ given in Fig. 2.1.

Cordial graph is

Definition 2.3. The Shadow graph $D 2(G)$ of a connected graph G is constructed by taking two copies of G, G^{\prime} and G " and joining each vertex u^{\prime} in G^{\prime} to the neighbours of the corresponding vertex u " in $G^{\prime \prime}$ ".

Example 2.4. The Shadow graph $D_{2}\left(P_{3}\right)$ is given in Fig. 2.2.

Figure 2.2
Remark 2.5. If G is a (p, q) graph then $D 2(G)$ is a $2 p, 4 q)$ graph.

Theorem 2.6. For every $n>1, D_{2}\left(P_{n}\right)$ is group $\{1,-1, i$, -i\} cordial.

Proof. Let $u 1, u_{2}, \ldots . ., u_{n}$ be the vertices of one copy of P_{n} and $v 1, v 2, v_{n}$ be the corresponding vertices of the other copy of P_{n}. Number of vertices in $D_{2}\left(P_{n}\right)$ is $2 n$ and number of edges is $4(n-1)$. Let f be a labeling defined on $V\left(D_{2}\left(P_{n}\right.\right.$)) as follows:

Define $f\left(u_{j}\right)=\left\{\begin{aligned} 1 & \text { if } \mathrm{j} \text { is even, } \\ -1 & \text { if } \mathrm{j} \text { is odd }\end{aligned}\right.$ and

$$
f\left(\mathrm{v}_{\mathrm{j}}\right)=\left\{\begin{array}{cc}
\mathrm{i} & \text { if } \mathrm{j} \text { is even } \\
-\mathrm{i} & \text { if } \mathrm{j} \text { is odd }
\end{array}\right.
$$

If n is even, say $n=2 k$, then number of edges receiving label 1 is $(k-1) 4+2=4 k-2$. If n is odd, say $n=2 k+1$, then number of edges induced with label 1 is $4 k$. Table 1 shows that f is a group $\{1,-1, i,-i\}$ cordial labeling.
Theorem 2.7. For every $n, D_{2}\left(C_{n}\right)$ is group $\{1,-1, i,-i\}$ cordial.

Proof. Let $u 1, u 2, \ldots ., u_{n}$ be the vertices of one copy of C_{n} and $v 1, v 2, v_{n}$ be the vertices of the other copy of C_{n}. Number of vertices in $D 2\left(C_{n}\right)$ is $2 n$ and number of edges in $D 2\left(C_{n}\right)$ is $4 n$.

Table 1

n	$\mathrm{v} f(1)$	$\mathrm{v} f(-1)$	$\mathrm{v} f(\mathrm{i})$	$\mathrm{v} f(-\mathrm{i})$	$\mathrm{e} f(0)$	$\mathrm{e} f(1)$
$2 \mathrm{k}, \mathrm{k} \geq 1, \mathrm{k} \boldsymbol{\varepsilon} \mathrm{Z}$	k	k	k	k	$4 \mathrm{k}-2$	$4 \mathrm{k}-2$
$2 \mathrm{k}+1, \mathrm{k} \geq 1, \mathrm{k} \boldsymbol{\varepsilon} Z$	k	$\mathrm{k}+1$	k	$\mathrm{k}+1$	4 k	4 k

Case (1): n is even.

Let $n=2 k, k \geq 1, k \in \mathrm{Z}$. Let f be a labeling defined on the vertices as follows:

Define $f(u j)=\left\{\begin{aligned} 1 & \text { if } \mathrm{j} \text { is even, } \\ -1 & \text { if } \mathrm{j} \text { is odd and }\end{aligned}\right.$

$$
f\left(\mathrm{v}_{\mathrm{j}}\right) \quad= \begin{cases}\mathrm{i} & \text { if } \mathrm{j} \text { is even } \\ -\mathrm{i} & \text { if } \mathrm{j} \text { is odd }\end{cases}
$$

Number of edges with label $1=4 k$.
Case (2): n is odd.
Let $n=2 k+1, k \geq 1, k \in \mathrm{Z}$. Let f be a labeling defined on the vertices as follows:

$$
\begin{aligned}
\text { Define } f\left(u_{j}\right) & =\left\{\begin{aligned}
1 & \text { if } \mathrm{j} \text { is even, } \\
-1 & \text { if } \mathrm{j} \text { is odd }
\end{aligned}\right. \\
\mathrm{f}(\mathrm{v} 3) & =\begin{aligned}
1 & \text { and }
\end{aligned} \\
f\left(\mathrm{v}_{\mathrm{j}}\right) & =\left\{\begin{aligned}
\mathrm{i} & \text { if } \mathrm{j} \text { is even, } \\
-\mathrm{i} & \text { if } \mathrm{j} \text { is odd and } \mathrm{j} \neq 3
\end{aligned}\right.
\end{aligned}
$$

Number of edges with label $1=4 \mathrm{k}+2$.
Table 2: Shows that f is a group $\{1,-1, \mathrm{i},-\mathrm{i}\}$ cordial

labeling						
n	$\mathrm{v} f(1)$	$\mathrm{v} f(-1)$	$\mathrm{v} f(\mathrm{i})$	$\mathrm{v} f(-\mathrm{i})$	$\mathrm{e} f(0)$	$\mathrm{e} f(1)$
$2 \mathrm{k}, \mathrm{k} \geq 1, \mathrm{k} \boldsymbol{\varepsilon} \mathrm{Z}$	k	k	k	k	4 k	4 k
$2 \mathrm{k}+1, \mathrm{k} \geq 1, \mathrm{k} \boldsymbol{\varepsilon} Z$	$\mathrm{k}+1$	$\mathrm{k}+1$	k	k	$4 \mathrm{k}+2$	$4 \mathrm{k}+2$

Theorem 2.8. $D_{2}\left(K_{n}\right)$ is group $\{1,-1, i,-i\}$ cordial iff $n=$ 4, 7 or 9 .

Proof. Let $u 1, u 2, \ldots ., u_{n}$ be the vertices of one copy of K_{n} and let $v 1, v 2$, , v_{n} be the vertices of another copy of K_{n}. Note that $\mathrm{D}_{2}\left(K_{n}\right)=K 2 n-X$ where X is a perfect matching. Number of vertices in $D 2\left(K_{n}\right)$ is $2 n$ and number of edges is $4 \mathrm{nC}_{2}=4 \mathrm{n}(\mathrm{n}-1) / 2=2 \mathrm{n}(\mathrm{n}-1)$. Suppose $D 2\left(K_{n}\right)$ is group $\{1$, $-1, i,-i\}$ cordial and let f be a group $\{1,-1, i,-i\}$ cordial labeling of $D 2\left(K_{n}\right)$. So each vertex label appears $\mathrm{n} / 2$ times and each edge label appears $n(n-1)$ times.

Case (1): n is even.
Let $n=2 k, k \geq 1, k \in \mathrm{Z}$. Degree of each vertex is $2(2 k-1)$. We need to give label 1 to k vertices and get $2 k(2 k-1)$ edges with label 1 . But it is possible to take only 2 vertices so that each choice gives edge label 1 to $2(2 k-1)$ edges. Thus $k=2$ and so $n=4$.

Case (2): n is odd.
Let $n=2 k+1, k \geq 1, k \in \mathrm{Z}$. Degree of each vertex is $4 k$. If we give label 1 to k vertices then at most $k .4 k=4 k^{2}$ edges can receive label 1. But we need to give label 1 to $k(4 k+2)=$ $4 k^{2}+2 k$ vertices. So $k+1$ vertices have to be given label 1 . If the choice of $k+1$ vertices is among $\{u 1, u 2, u n\}$ or among $\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$, then we have $4 k+(4 k-1)+$ $\ldots . .+(4 k-k)=2 k(2 k+1)$ which on simplification gives $k^{2}-$ $3 k=0$. So $k=3$ and hence $n=7$.

Volume 12 Issue 12, December 2023

Suppose some vertices in the choice of $k+1$ vertices is among $\left\{u 1, u 2, \ldots . ., u_{n}\right\}$ and some are in $\left\{v 1, v_{2}, \ldots . ., v_{n}\right\}$. As $u i$ and $v i$ are alone non-adjacent, a group $\{1,-1, i,-i\}$ cordial labeling is possible only by taking $u i$ and v_{i} in pairs. Any other choice produces less edges with label 1.

Subcase (1): $k+1$ is even.
We need to have $2(4 k)+2(4 k-2)+\ldots . .+2\left(4 k-2\left({ }^{k+1}-1\right)\right)$ $=2 k(2 k+1)$ which on simplification gives $\mathrm{k} 2-4 \mathrm{k}-1=0$ on simplification gives $k^{2}-4 k-1=0$ and so $k=2 \pm \sqrt{5}$ which isisimpossis impossible as k is an integer.

Subcase(2): $k+1$ is odd.
In this case, we need to have, $2(4 k)+2(4 k-2)+\ldots+2(4 k$ $-2(\underline{\underline{k}}-1))+(4 k-2 k / 2)=2 k(2 k+1)$ which on simplification gives $k^{2}-4 k=0$. So $k=4$ and hence $n=9$. Thus $n=4,7$ or 9.

Conversely, for $n=4$, the function f defined by $f(u 1)=f$ $(v 1)=1, f(u 2)=f(v 2)=-1, f(u 3)=f(v 3)=i, f(u 4)=f$ $(v 4)=-i$ is a group $\{1,-1, i,-i\}$ cordial labeling. For $n=7$, the function g defined by, $g\left(u_{j}\right)=1$ for $1 \leq j \leq 4, g(u j)=-1$ for $5 \leq j \leq 7, g(v j)=i$ for $1 \leq j \leq 4, g(v j)=-i$ for $5 \leq j \leq 7$ is a group $\{1,-1, i,-i\}$ cordial labeling. For $n=9$, the function h defined by, $h(u 1)=h(v 1)=h(u 2)=h(v 2)=h(v 3)$ $=1, h(u j)=-1$ for $4 \leq j \leq 8, h(u 9)=h(v 3)=h(v 4)=h(v 5)=$ $i, h(v j)=-i$ for $6 \leq j \leq 9$ is a group $\{1,-1, i,-i\}$ cordial labeling.

Theorem 2.9. $D 2\left(J_{n}\right)$ is group $\{1,-1, i,-i\}$ cordial if and only if $n \in\{2,4,5,7,9,11,12,13,15,17,19\}$.

Proof. $D 2\left(J_{n}\right)$ has $2 n+8$ vertices and $4(2 n+5)$ edges. Let the vertices of ne copy of $D 2\left(J_{n}\right)$ be labeled as $u, v, x, y, u i(1$ $\leq \mathrm{I}$ of the other copy be labeled as $\mathrm{u}^{\prime}, \mathrm{v}^{\prime}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \mathrm{v}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{n})$.

Case (1): n is even.

Let $n=2 k, k \geq 1, k \in \mathrm{Z}$. Let f be a group $\{1,-1, i,-i\}$ cordial labeling of $D 2\left(J_{n}\right)$. Each vertex label should appear k +2 times and each edge label should appear $8 k+10$ times. Any choice of $k+2$ vertices without vertices from $\left\{u, v, u^{\prime}\right.$, $\left.v^{\prime}\right\}$ or with more than 1 vertex from $\left\{u, v, u^{\prime}, v^{\prime}\right\}$ is not a group $\{1,-1, i,-i \quad\}$ cordial labeling. Without loss of generality choose u and let
$f(u)=1$. This induces $4 k+4$ edges with label 1. If $f(x)=f$ $\left(x^{\prime}\right)=f(y)=f\left(y^{\prime}\right)=1$, then we need to have $5+5+4+4+$ $3(\mathrm{k}-3)=4 \mathrm{k}+6$ which on simplification gives $k=6$. If $f(x)=f$ $\left(x^{\prime}\right)=f\left(y^{\prime}\right)=1$, then we need to have $5+5+4+3(2)=4 k$ +6 which gives $k=2$. If $f(x)=f\left(x^{\prime}\right)=1$, then $5+5+(k-$ 1) $3=4 k+6$ which gives $k=1$. If $f(x)=f(y)=1$, then $5+4$ $+(k-1) 3=4 k+6$ which gives $k=0$. All other possibilities give negative values for k. Thus $k=1,2$, 6 so that $n=2,4$, 12.

Case (2): n is odd.
Let $n=2 k+1, k \geq 1, k \in \mathrm{Z}$. Let f be a group $\{1,-1, i,-i\}$ cordial labeling of $D 2\left(J_{n}\right)$. Two vertex labels should appear
$k+2$ times and two other labels should appear $k+3$ times. Number of edge labels with label 1 is $8 k+9$. As in Case(1), we need to have $f(u)=1$. This induces edge label 1 to $4 k+6$ edges. If $f(x)=f\left(x^{\prime}\right)=f(y)=f\left(y^{\prime}\right)=1$, then either $5+5+4+4+(k-3) 3=4 k+3$ or $5+5+4+4+(k-2) 3=4 k+$ 3 and so $k=6$ or 9 . If $f(x)=f\left(x^{\prime}\right)=f(y)=1$, then either $k=$ 5 or $k=8$. If $f(x)=f\left(x^{\prime}\right)=1$, then $k=4$ or $k=7$. If $f(x)=f$ $(y)=1$, then either $k=3$ or $k=6$. If $f(x)=1$, then $k=2$ or k $=5$. If $f(x) \neq 1, f(y) \neq 1, f\left(x^{\prime}\right) \neq 1, f\left(y^{\prime}\right) \neq 1$, then $k=0$ or k = 3. Thus $k \in\{2,3,4,5,6,7,8,9\}$ and so $n=5,7,9,11$, $13,15,17,19$.

Conversely, suppose $n\{2,4,12,5,7,9,11,13,15,17,19\}$. If $n=2$, define f by $f(u) \stackrel{2}{=} f(x)=f\left(x^{\prime}\right)=1 ; f(v)=f(y)=f\left(u^{\prime}\right)$ $=-1 ; f\left(y^{\prime}\right)=f\left(v^{\prime}\right)=f(u 1)=i ; f(u 2)=f(v 1)=f(v 2)=-i$.

If $n=4$, define f by $f(u)=f(x)=f\left(x^{\prime}\right)=f(y)=1 ; f(v)=f$ $\left(y^{\prime}\right)=f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=-1 ; f(u i)(1 \leq i \leq 4)=i ; f(v i)(1 \leq i \leq 4)$ $=-i$.

If $n=12$, define f by $f(u)=f(x)=f\left(x^{\prime}\right)=f(y)=f\left(y^{\prime}\right)=1 ; f$ $(u i)(1 \leq i \leq 3)=1 ; f(v)=f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f(u i)(4 \leq \leq 12) ; f$ $\left(v_{i}\right)=-i$ for $\left.1 \leq i \leq 8 . i \leq 8\right)=-1 ; f(u i)=f(v i)=i(9 \leq i$

If $n=5$, define f by $f(u)=f(x)=f(u i)(1 \leq i \leq 2)=1 ; f(v)=f$ $(y)=f(u i)(3 \leq i \leq 4)=-1 ; f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f\left(x^{\prime}\right)=f\left(y^{\prime}\right)=f$ $(u 5)=i ; f(v j)(1 \leq j \leq 5)=-i$.

If $n=7$, define f by $f(u)=f(x)=f(y)=f(u 1)=f(u 2)=1 ; f$ $(v)=f(u 3)=f(u 4)=f(u 5)=f(u 6)=-1 ; f(u 7)=f\left(u^{\prime}\right)=f$ $\left(v^{\prime}\right)=f\left(x^{\prime}\right)=f\left(y^{\prime}\right)=f(v 1)=i ; f(v j)(2 \leq j \leq 7)=-i$.

If $n=9$, define f by $f(u)=f(x)=f\left(\mathrm{x}^{\prime}\right)=f\left(u_{i}\right)(1 \leq \mathrm{i} \leq 3)=1 ; f$ $(v)=f(\mathrm{y})=f\left(\mathrm{y}^{\prime}\right)=f\left(u^{\prime}\right)=f\left(\mathrm{v}^{\prime} 6\right)=\mathrm{f}\left(\mathrm{u}_{4}\right)=-1 ; f\left(u_{j}\right)(5 \leq \mathrm{j} \leq 9)$ $=f\left(\mathrm{v}_{1}\right)=f\left(v_{2}\right)=i ; f\left(v_{j}\right)(3 \leq j \leq 9)=-i$.

If $n=11$, define f by $f(u)=f(x)=f\left(u_{j}\right)(1 \leq j \leq 6)=1 ; f(v)$ $=f(y)=f(u j)(7 \leq j \leq 11)=f\left(x^{\prime}\right)=-1 ; f\left(y^{\prime}\right)=f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f$ $(v j)(1 \leq j \leq 4)=$
$i ; f(v j)(5 \leq j \leq 11)=-i$.
If $n=13$, define f by $f(u)=f(x)=f\left(x^{\prime}\right)=f(y)=f\left(y^{\prime}\right)=f$ $(u j)(1 \leq j \leq 3)=1 ; f(v)=f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f(u j)(4 \leq j \leq 8)=-1$; $f(u j)(9 \leq j \leq 13)=f(v j)(1 \leq j \leq 4)=i ; f(v j)(5 \leq j \leq 13)=-i$.

If $n=15$, define f by $\left.f(u)=f(x)=f\left(x^{\prime}\right)=f(u j)(1 \leq j \leq 7)\right)=$ $1 ; f(v)=f(y)=f\left(y^{\prime}\right)=f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f(u j)(8 \leq j \leq 12)=-1 ; f$ $(u j)(13 \leq j \leq 15)=f(v j)(1 \leq j \leq 6)=i ; f(v j)(7 \leq j \leq 15)=-i$.

If $n=17$, define f by $f(u)=f(x)=f\left(x^{\prime}\right)=f(y)=f(u j)(1 \leq j$ $\leq 7)=1 ; f(v)=f\left(y^{\prime}\right)=f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f(u j)(8 \leq j \leq 14)=-1$; $f(u j)(15 \leq j \leq 17)=f(v j)(1 \leq j \leq 7)=i ; f(v j)(8 \leq j \leq 17)=-i$.

If $n=19$, define f by $f(u)=f(x)=f\left(x^{\prime}\right)=f(y)=f\left(y^{\prime}\right)=f$ $(u j)(1 \leq j \leq 7)=1 ; f(v)=f\left(u^{\prime}\right)=f\left(v^{\prime}\right)=f(u j)(8 \leq j \leq 16)=$ $-1 ; f(u j)(17 \leq j \leq 19)=f(v j)(1 \leq j \leq 8)=i ; f(v j)(9 \leq j \leq 19)$ $=-i$.

In all the cases, the f defined is a group $\{1,-1, i,-i\}$ cordial

Volume 12 Issue 12, December 2023 www.ijsr.net

labeling.

References

[1] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group A cordial labeling of Graphs, International Journal of Applied Mathematical Sciences, Vol.10, No.1, 2017,pp 1-11 .
[2] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group $\{1,-1, \mathrm{i},-\mathrm{i}\}$ Cordial labeling of sum of P_{n} and K_{n}, Journal of Mathematical and computational Science, Vol.7, No.2(2017),335-346
[3] Cahit, I., cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23(1987) 201-207
[4] Gallian, J. A, A Dynamic survey of Graph Labeling, The Electronic Jour nal of Combinatories Dec7(2015), No.D56.
[5] Harary, F., Graph Theory, Addison Wesley, Reading Mass, 1972.

