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Abstract: Genome - wide association studies (GWAS) based on linkage disequilibrium (LD) provide a promising tool for the detection 

of quantitative trait loci (QTL) underlying complex agronomic traits. A total of 28 QTLs were located within the vicinity of previously 

identified QTLs for all traits using mixed linear model analysis in the irrigated elite breeding lines in dry season, and 45 QTLs in wet 

season. The highest association was for QHd3a conferring days to flowering (P < 10 - 16) followed by known QTL for grain length 

breadth ratio (P < 10 - 7 and qgy10.1 QTL for grain yield per plot (P < 10 - 6). Most QTLs had small effects which is typical of most 

quantitative traits. Most of the QTLs identified are season specific. Some other novel QTL alleles were also identified in this study that 

may be useful for increasing the yield potential in rice. These potential QTLs for selected traits are of interest to breeder and need to be 

further validated. Elite breeding populations proved to be interesting material for identifying regions involved in the variation of 

important traits in rice. This was the first study in rice in which an elite breeding panel was used. Previously for AM in rice, panels have 

consisted of land races and traditional varieties. We confirmed some regions already observed to be involved in the genetic control of 

plant height, days to flowering, length breadth ratio, 1000 grain - weight, yield per plant, filled grains per plant and grain yield per plot 

variation, Moreover, we discovered new QTLs for traits investigated. Association mapping offers great potential to enhance the genetic 

improvement of rice. The use of high throughput and cost effective next generation sequencing techniques that may enable GWA 

studies to become a popular and routine approach in rice. Accounting for population structure remains a big limitation for association 

studies that requires careful choice of germplasm and the development of advanced statistical approaches.  
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1. Introduction 
 

GWAS have emerged as a powerful approach for identifying 

genes underlying quantitative traits at an unprecedented rate 

(The International HapMap Consortium, 2005, 2007; The 

Wellcome Trust Case Control Consortium, 2007; [1]. 

However, despite their promise, GWAS have largely not 

been applied to the dissection of complex traits in crops [2] 

[3] [4]. This is mainly due to the lack of effective 

genotyping techniques for plants and the limited resources 

for developing high - density haplotype maps like those seen 

in other well - developed systems, such as the human 

genome HapMap project (The International HapMap 

Consortium, 2005, 2007; The Wellcome Trust Case Control 

Consortium, 2007). Rice is an ideal candidate system for the 

application of GWAS because it is self - fertilizing and has a 

high - quality reference genome sequence (International 

Rice Genome Sequencing Project, 2005). 

  

Association mapping, or LD mapping, has been used in a 

number of plant species in recent years ([5] [6] [7] [8] [9]. 

Association mapping has the potential of simultaneous 

discovery of gene loci responsible for multiple traits without 

the need to develop permanent segregating populations. A 

higher proportion of polymorphic molecular markers could 

provide better genome coverage than any bi - parental 

population. As association mapping exploits the historical 

recombination events that have occurred during 

establishment of the experimental population, higher 

mapping resolution could be obtained than that possible in 

small bi - parental experimental crosses [10]. This strategy 

has an advantage in the ability to detect the comparative 

effects of multiple alleles at each genetic locus that exists in 

crop germplasm.  

 

Association mapping in plants of candidate genes and 

genome - wide association studies (GWAS) have 

successfully identified associations of marker alleles with 

traits (e. g., [5] [11] [12] [13] [14] [15] [16] [17]. In barley, 

GWAS have been conducted to detect QTL in elite 

germplasm for yield and agronomic traits [6] [18], Fusarium 

head blight resistance [19], winter hardiness [20], and 

growth habit and inflorescence type [21], agronomic traits 

and yield in rice [22] [23]. GWAS were conducted to detect 

QTL for spot blotch resistance in a wild barley collection 

[24]. In addition, GWAS was conducted as the starting point 

to identify markers associated with lateral floret fertility, 

which directly led to the isolation of the INTERMEDIUM - 

C gene [25].  

 

For most crop plants, including rice, breeding lines selected 

at the end of a selection cycle represent a potentially useful 

experimental population for AM studies. These lines may be 

evaluated in a large number of locations, over two or more 

years, for many agronomic and quality traits. However, the 

genome - wide reduction of genetic diversity observed 

during wheat breeding [26] could reduce the efficiency of 

AM for some traits. Rice population mixing lines from 

several breeding programs, each led by independent breeders 

with their own germplasm, could increase the level of 

diversity for an efficient use of AM.  

 

High throughput SNP technology made association mapping 

feasible, routine techniques. For rice, extensive genomics 

resources are available to facilitate SNP discovery. In rice, 
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this technology is more advanced compared to other crops. 

High throughput molecular marker platforms provides good 

genome coverage (from hundreds to thousands) together 

with decreasing genotyping costs have encouraged plant 

geneticists to use naturally occurring variation for 

identifying genomic regions involved in complex traits [27]. 

Association genetics offers a potentially powerful approach 

to identify genetic variants which control complex traits and 

promises to overcome several of the issues hindering the 

adoption of QTL - MAS in breeding programmes [28]. One 

of the main advantages of association mapping is the panel 

or experimental population used: association panel‟s benefit 

from decades of recombination events accumulated in a 

heterogeneous genetic background. Hence, association 

studies promise high QTL mapping resolution over a wide 

range of genetic diversity, i. e. the results should be 

applicable to all the genetic backgrounds surveyed.  

 

In rice, population structure and its effect on diversity and 

LD have been reported before. [29] detected five major 

groups from a diverse sample of 234 rice accessions 

including indica, aus, tropical japonica, temperate japonica 

and aromatic, and suggested that a higher degree of 

resolution of population structure is needed to effectively 

utilize LD for association mapping. The rice population was 

highly structured and significant LD surrounding the xa5 

locus was observed between sites up to 100 kb apart [30]. 

[31] analyzed a 500 - kb region on chromosome 6 and found 

a 250 kb selective sweep at the waxy locus that led to 

elevated LD in that region. Although the level of LD may 

vary across the genome because of different recombination 

rates, selective pressures, etc., these studies seem to indicate 

that LD decays in rice at 1 cM or less (assuming an average 

of 250 kb/cM across the genome) [32]. [33] used unlinked 

SNPs to determine the amount of background LD in five 500 

- kb regions of the rice genome in three major cultivated rice 

varieties (indica, tropical japonica, and temperate japonica) 

and in the wild ancestor of Asian rice, Oryza rufipogon, and 

found that the extent of LD is greatest in temperate japonica 

(approximately 500 kb or over), followed by tropical 

japonica (approximately 150 kb) and indica (approximately 

75 kb), compared to LD in O. rufipogon which extends over 

a much short distance (40 kb). However, other studies using 

different rice accessions indicated that LD decays at 20–30 

cM [32] [34]. These studies suggest that the extent of LD 

varies among different genomic regions [33], and different 

rice accessions studied [34].  

 

2. Materials and Methods 
 

Plant Materials 

In dry and wet season we used 431 elite breeding lines for 

phenotyping. For the genotyping we used a population 

subset from the total entries and the number of entries was 

325.  

 

Genotyping by Sequencing 

SNP genotyping was conducted in collaboration with Prof 

Susan McCouch‟s group using GBS approach in Cornell 

University. Genotyping by Sequencing was performed 

following the methods of [35]. Seeds of the lines were sent 

to the Cornell University.  

Data Filtering 

Association analyses were conducted using the Trait 

Analysis by Association Evolution, and Linkage (TASSEL) 

software version 4.1.34. The general linear model (GLM) 

and compressed Mixed Linear Model (MLM) were used for 

the association mapping. TASSEL software Version 4.1.34 

[36] was used for all AM data analysis, including filtering 

by entries (taxa) or SNP markers.  

 

We used the "Filter - > Sites" for filtering in TASSEL, and 

we calculated the "minimum counts" to calculate the call 

rates. For example, to calculate SNPs with at least 95% SNP 

data (i. e. only 5% missing data) for the 325 taxa, we 

calculated 0.95 * 325 = 309 for the minimum count.  

 

SNP data set for the population were filtered at a maximum 

count which accounted for sites where 75% of the lines have 

a call and a minimum frequency of 0.05 for the minor allele. 

The working genotype data set for GWAS were generated 

after imputation of missing genotypes, with a total of 64, 

903 SNP sites for the population (minor allele frequency > 

0.05).  

 

In order to obtain a minimum minor allele count (MAC) of 

5, we have used a MAF of 0.02. We determined this as 

follows: The total number of taxa = 325. In order to derive a 

suitable MAF, a minimum MAC (marker allele count) of 5 

was used which provided a MAF=0.02. We filtered the 

SNPs at a call rate of 75% (i. e.244 out of 325 taxa), which 

means that the MAC should be 5/244, which corresponds to 

MAF = 0.02 (MAF is based on the number of lines with a 

SNP call, not the total number of taxa). After doing this, we 

get 64, 903 SNPs. Then we proceeded with MLM with this 

“final” dataset (325 taxa x 64, 903 SNPs).  

 

Analysis Population Structure 

Related individuals share both causal and non - causal 

alleles, and that LD between these sites can lead to synthetic 

associations, are actually a single problem, that of 

confounding due to genetic background [37]. A powerful 

method to account for this artifact was first developed in the 

field of animal breeding: mixed models that handle 

population structure by accounting for the amount of 

phenotypic covariance that is due to genetic relatedness (i. e. 

including relationship or kinship as a random term within 

the model). Since then, mixed models have been applied to 

GWAS [11] [38] [39] and can markedly reduce the number 

of false positive associations.  

 

Principle component analysis was done using the 

TRANSFORM function in TASSEL. PCA is a statistical 

tool that transforms a set of correlated variables into a 

smaller number of uncorrelated variables called principal 

components (PCs). The first PC captures as much of the 

variation as possible, and the succeeding PCs account for a 

decreasing fraction of the remaining variance. PCs were 

generated using the filtered SNP data set with minor allele 

frequency > 0.05. The filtered genotype was then 

transformed using the default option of collapse of non - 

major alleles.  

 

Kinship 

To minimize spurious associations, we compared mixed 

linear model (MLM) with PCA plus kinship, and kinship 
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only. Both methods produced identical results. The MLM 

model with the kinship matrix was only selected for further 

analysis.  

 

Association Analysis  

Several statistical models were used to test associations 

between markers and traits. These models, described by 

[11], included a naïve GLM model with no correction for 

population structure, a Q - model with a Q - matrix and a PC 

- model with a PC - matrix as cofactors for correcting 

population structure, and a MLM model with a K - matrix 

(mixed model without an inferred population structure as 

cofactor), a Q–K - model and a PC–K - model (mixed 

models with inferred population structures as fixed effects). 

All analysis was performed using TASSEL 4.1.34. The p 

value distributions are shown with a Q–Q plot, which 

displays the observed p values against the cumulative P 

values in a negative log10 scale. Under the assumption that 

the set of genetic markers are unlinked to QTLs, the p values 

of the association tests are expected to have a uniform 

distribution, indicated by the diagonal line [38]. A large 

deviation from this null expectation implies that the 

statistical test may indicate spurious associations. The 

cumulative distribution of p values across the different 

models permitted identification of the most reliable models, 

which were subsequently used for all the traits of this 

investigation.  

 

Mixed Linear Model Analysis 

The mixed linear model (MLM) approach has been 

demonstrated to be an improved method of simultaneously 

accounting for population structure and multiple levels of 

relatedness among individuals [39]. However, with the 

MLM method, a large dataset requires more computation 

time. To reduce this computation time, [40] described a 

quicker: „„compressed MLM method‟‟ which is 

implemented by TASSEL.  

 

MLM uses both fixed and random effects which 

incorporates kinship among the individuals. For running the 

mixed linear model, a kinship matrix was generated using 

only SNP markers sites with no missing data. A united data 

file with the genotype and phenotype of the lines was 

created. The united file along with kinship matrix was used 

to analyze associations using MLM across 64, 903 SNPs. 

The compression level was set to optimum level [40] to 

reduce computation time. The MLM analysis gives 3 outputs 

the model statistics, model effects and the compression if 

applied. The model statistics gives the P - value from the F - 

distribution for which we used a cut - off P < 0.0001 and this 

output also gives the R
2
 for the marker. The model effects 

indicate the allelic states and effect of the state.  

 

Association mapping was performed using a significant 

level of P < 10
 - 4

, which has been used in other GWAS 

experiments in rice [41]; [42]. Manhattan plots were used to 

graphically represent of QTLs for each trait. The MLM 

output from TASSEL was filtered using Excel. The most 

highly significant SNPs for each QTL peak are reported. For 

major QTL peaks, defined by those QTLs accounting for a 

relatively large proportion of the phenotypic variance (R
2
) 

and defined by many significant SNPs, only the top 5 (five) 

SNPs (defined by the lowest P value) are represented.  

3. Results 
 

 
Figure 1: Scatter plot matrix showing the first four principle 

components of the genotype dataset. PCA analysis was 

performed after removing the japonica outliers. 

 

Preliminary PCA was performed after GBS data was 

generated (n = 368). A total of 31 taxa were omitted as these 

taxa represented outliers with probably many japonica 

introgressions. The irrigated breeding lines are 

predominantly indica. It was very clear from the PCA that 

about 13 entries were not in the same sub population as the 

majority of entries and these were readily identified using 

only the first two eigenvectors. When these were pulled out 

and the remaining entries were re - analyzed using PCA 

again, another group of 18 entries was identified as a 

separate sub population, but it was much less distinct that 

the first group. Another 13 samples were removed due to 

low SNP calls (probably due to row template quality). PCA 

was performed again after this analysis and cluster analysis 

to confirm population structure using TASSEL (Fig 1)  

 

 
Figure 2a and 2b: Comparison of yield QTLs between dry 

and wet seasons. Circles indicate the significant QTLs. 

Previously identified yield QTLs are also indicated with 

arrows. 
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4. Discussion 
 

QTLs with small effects, which is consistent with the genetic 

control of many quantitative traits. Only flowering date had 

large QTL with phenotypic effect (25 - 30%). For both the 

small and large effect QTL, we identified previously 

detected QTL.  

 

There were considerable differences in the QTL regions 

between dry and wet seasons. This is also consistent in the 

combine analysis. So, this is normal to get different QTLs 

across seasons. For most of the traits, QTLs were not 

detected in the same genomic location across seasons (Fig 

2a and 2b).  

 

Flowering, grain length and grain length breadth ratio were 

consistent across seasons as they had significant SNPs 

across both seasons. Most of the QTLs were season specific. 

Based on environment and physical data for rice growing 

season, there are marked differences which are very obvious 

to field breeders or researcher. These are clearly demonstrate 

the genetic control of the traits studies are dependent on 

environmental factors, and highlight the need for conducting 

over multiple seasons of data for field experiments.  

 

Some previously detected QTLs or known genes co - 

localized with QTL detected in this study. Comparative 

mapping of these previously detected QTLs could enable the 

QTL region to be delimited within a narrow region, and 

even locate the actual genes controlling the QTL. There are 

several bioinformatics methods (e. g. C Map) which could 

be used to compare QTLs between independent experiments. 

However many other QTL represent putative novel QTL and 

those QTLs may be of interest to breeders and geneticists.  

Data shown that common QTLs are detected in yield with 

flowering time and filled grain per plant across different 

chromosome. Data also shown that common QTL detected 

in yield with flowering time, flag leaf width and 1000 GW. 

Data shown that the suggested peak in dry season which are 

not in significant level (as our cut off P < 0.0001). But we 

found some previously detected known QTLs. Data also 

shows that there are many significant QTL across different 

chromosomes and some previously detected known QTLs 

were also detected.  

 

Furthermore, these QTLs detected in this study represent 

QTLs that are highly relevant in irrigated breeding materials 

and therefore are of great interest to rice breeders.  

 

Yield is the ultimate goal for molecular breeding for 

breeders. There are few reports for marker assisted breeding 

for yield. Previous work focused on yield components only 

and there are very few reports on this topic. The QTLs 

detected for yield in dry and wet seasons were clearly season 

specific and there were no significant QTLs detected across 

both seasons. For the dry season no significant QTLs 

detected for yield per plot. However they have three 

suggestive QTL or possively several suggestive QTL on 

chromosome 1, 2, 6, 8 and 9. Further research is required to 

validate the QTLs across seasons and years. In other words 

compare QTL results across different dry and different wet 

seasons.  

 

5. Summary and Conclusion  
 

A total of 28 QTLs were located within the vicinity of 

previously identified QTLs for all traits using MLM analysis 

in the irrigated elite breeding lines in dry season, and 45 

QTLs in wet season. The highest association was for QHd3a 

conferring days to flowering (P < 10
 - 16

) followed by known 

QTL for grain length breadth ratio (P < 10
 - 7

 and qgy10.1 

QTL for grain yield per plot (P < 10
 - 6

). These potential 

QTLs for selected traits are of interest to breeder and need to 

be further evaluated. They may represent novel QTL alleles 

that may be useful for increasing the yield potential in rice. 

Although the resolution varied among loci, mostly due to 

LD, the resolution was less than 3 cM or ~750 kb. However, 

the peak signals of the GWAS - identified loci often 

appeared near (but not within) the known genes. For the 

known QTL with large effects, as in the case of days to 

flowering, the distance from the observed peak to the 

QHd3a locus was in the exact same position. Similar results 

were found for length breadth ratio and yield per plot. With 

this resolution, no further QTL mapping or fine - mapping is 

needed because the SNP is already very near to the gene. 

Association mapping enabled the identification of QTL with 

better resolution.  

 

Elite breeding populations proved to be interesting material 

for identifying regions involved in the variation of important 

traits in rice. This was the first study in rice in which an elite 

breeding panel was used. Previously for AM in rice, panels 

have consisted of land races and traditional varieties. In bred 

wheat, a panel comprising elite breeding lines was also used 

for test weight, grain yield and heading date. We confirmed 

some regions already observed to be involved in the genetic 

control of plant height, days to flowering, LBR, 1000GW, 

YPP, FGP and YLD variation, including one region of plant 

height on chromosome 8, covering gene ph8, flowering gene 

in chromosome 3 included QHd3a, 1000GW gene included 

tgw6 gene in chromosome 6, gw5 gene in chromosome 5; 

YPP gene yd6 in chromosome 6; FGP gene QNFGP - 1 - 1 

gene in chromosome 1; and YLD gene yld8.5 in 

chromosome 8, qgy10.1 gene in chromosome 10 and qYl - 6 

- 1 gene in chromosome 6, those become likely candidate 

genes. Moreover, we discovered new QTLs involved in 

those traits.  

 

To mitigate the shortcomings of GWAS in inbreeding crops, 

future association studies might implement novel strategies 

such as joint linkage and LD mapping which were already 

successfully applied in various species. However the 

experimental design needs to be more powerful to improve 

the detection accuracy and reduce the genotype x 

environment interaction. This experiment will also allow 

testing several models of genomic selection with one or two 

training populations and one or two validation populations.  

 

Association mapping offers great potential to enhance the 

genetic improvement of rice. The use of high throughput and 

cost effective next generation sequencing techniques that 

may enable GWA studies to become a popular and routine 

approach in rice. Accounting for population structure 

remains a big limitation for association studies that requires 

careful choice of germplasm and the development of 

advanced statistical approaches. In addition, as the size of 
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populations and the density of marker screening rapidly 

increase, so does the probability of detecting non - linked 

(false) associations. These issues reinforce the need to 

independently validate candidate genes and/or markers in 

diverse genetic backgrounds (independent populations) to 

eliminate false positives. A simple way to validate QTLs is 

to use/produce biparental mapping populations and use 

linkage based QTL mapping. The SNPs associated with the 

QTLs could be directly used to confirm marker –trait 

association. There is also a need for large - scale cost - 

effective precision phenotyping, which remains a major 

logistical challenge and bottleneck to the development of 

molecular genetics research and breeding programs. 

Nevertheless, significant progress is being made in 

facilitating technologies for such phenotyping. Finally, there 

is undoubtedly an urgent need to bridge the gap between 

genomics researchers and molecular breeders in developed 

and developing countries, and particularly to share new 

knowledge faster and to enable gains in genetic 

improvement to catch up with those in the leading rice 

producing countries. If successful, millions of dollars of 

genomics research investment may finally benefit the 

poorest people in the world.  
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