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Abstract: In the past decade, high-density SNP arrays and DNA re-sequencing have elucidated the majority of the genotypic space for a 

number of organisms, including maize, Arabidopsis and rice. For any researcher willing to define and score a phenotype across many 

individuals, Genome Wide Association Studies (GWAS) present a powerful tool to reconnect this trait back to its basic genetics. In this review 

we discuss future perspectives of AM in plants, application in other emerging research area, potential useful of new cultivar development, 

and the biological and statistical considerations that emphasize a successful association analysis. The relevance of biological factors 

including sample size, genetic heterogeneity, genomic confounding, linkage mapping, linkage disequilibrium and spurious association, and 

statistical tools to account for these are presented. GWAS can offer a valuable first insight into trait architecture or candidate loci for 

subsequent validation.  
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1. Introduction 
 

Plant Genome Sequences  

The recent advances in genome sequencing, through the 

development of second generation sequencing technologies 

potentially provide opportunities to develop millions of novel 

markers, as well as to identify genes of agronomic importance. 

Identification of all genes within a species permits an 

understanding of how important agronomic traits are 

controlled, knowledge of which can be directly translated into 

crop improvement. Reference genome sequences for several 

crop species are now becoming available and this information 

permits both the rapid identification of candidate genes 

through bioinformatics analysis, and single nucleotide 

polymorphism (SNP) discovery through comparison of the 

reference with sequence data from different cultivars. SNP 

discovery is an important area of molecular genetics research 

aimed at collecting sufficient exploitable sequence 

polymorphisms to enable high-resolution, high-throughput 

genotyping at lower costs in the future. However, for many 

crop species the efficiency of the SNP discovery process is 

often hampered by the fact that limited amounts of genome 

sequences are available (compared to Arabidopsis and rice),for 

which genome sequences are available .  

 

As a result, available high-throughput SNP genotyping 

technologies cannot be fully exploited in plant breeding at 

present due to lack of suitable „„content‟‟. This is unlike the 

situation in humans where several millions of SNPs are known 

and being utilized in population genetic analysis and medical 

diagnostics [1]. Hence, there is a need for efficient 

polymorphism discovery technologies which target unique 

genome regions in organisms lacking extensive genome 

sequence information. 

 

The association of markers with heritable traits is used to 

associate the genotype of an organism with the expressed 

phenotype, and the ability to develop millions of novel 

markers will revolutionize plant genomic research. These 

markers can be used routinely in crop breeding programs, for 

rapid crop improvement, for genetic diversity analysis, 

cultivar identification, phylogenetic analysis and 

characterization of genetic resources.  

 

In this paper we will introduce the advantages and 

disadvantages of AM, and its integration with other mapping 

methods. Future perspectives of AM in plants, application in 

other emerging research area, potential useful of new cultivar 

development. We will consider sample size and mapping 

panel composition, statistical approaches to overcome genetic 

confounding and methods to identify. 

 

Examples of Crop Genome Sequencing Projects 

Rice was the first crop genome to be sequenced [2] [3] [4], 

following shortly on from the sequencing of the first model 

plant genome, Arabidopsis thaliana [5]. Current crop genome 

sequencing projects are rapidly changing pace with the new 

technology and researchers are quickly adopting second 

generation sequencing to gain insight into their favorite 

genome.  

 

Genotyping-by-Sequencing in Plants 

Many traits in plants, such as yield, are quantitative, resulting 

from the combinatorial effect of many genes [6]. The mapping 

of underlying quantitative trait loci (QTLs) has been made 

possible by the emergence of molecular markers, genotyping 

technologies and related statistical methodologies [7]. 

Initially, the identification of QTLs was mostly based on 

linkage mapping strategies, where polymorphisms between 

two parents are detected in a segregating population, and the 

linkage of a particular region to a given phenotype can be 

determined by genotyping recombinants exhibiting phenotypic 

variations for a trait of interest [8]. However, the relatively 

small number of recombinants generated from two parents in a 

limited number of generations means that linkage mapping 

generally has low resolution, encompassing very large genetic 

and physical distance, with many possible candidate genes 

with a QTL for a trait of interest. This has led to the 
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emergence of association mapping studies, which utilize the 

natural diversity present in a multi-generational population 

and provides higher resolution than linkage mapping 

populations to map traits of interest [9] [10]. Larger genome-

wide association studies (GWAS) require hundreds of 

thousands to millions of markers to generate sufficient 

information and coverage, and getting such resolution has 

been greatly enhanced by the emergence of NGS technologies 

[11]  [12] [13] . 

 
Figure 1. Steps in the GBS construction on sequencing of 325 

samples of irrigated breeding lines. Figure from [14] 

 

DNA Marker Discovery 

Single nucleotide polymorphisms now dominate molecular 

marker applications, because of recent advances in genome 

sequencing technology enabling their discovery, and the 

development of high throughput assays. As with most 

molecular markers, the factor limiting the implementation of 

SNP is the initial cost of their development [15]. SNP 

discovery involves finding differences between two 

sequences. Traditionally this has been performed through PCR 

amplification of genes⁄ genomic regions of interest from 

multiple individuals selected to represent diversity in the 

species or population of interest, followed by either direct 

sequencing of these amplicons, or the more expensive method 

of cloning and sequencing. Sequences are then aligned and 

any polymorphisms identified. 

 

This approach is frequently prohibitively expensive and time 

consuming for the identification of the large number of SNP 

required for most applications such as genetic mapping and 

association studies.  

 

Linkage Mapping  

Genetic markers, including SNPs, can be used to construct 

genetic maps of important crops. Linkage mapping allows 

scientists to identify genetic markers that are associated with 

key genes controlling agronomic and grain quality 

characteristics. Both Mendelian gene systems and quantitative 

trait loci are evaluated. The first step in linkage mapping 

involves the development of a bi-parental population derived 

from two individuals showing phenotypic variation for a trait 

of interest. Major limitations of linkage mapping approaches 

are (1) poor resolution in detecting QTL and (2) sampling of 

only two alleles at any given locus in biparental crosses of 

inbred lines [16].  Although QTL mapping has some 

limitations, this method has proven to be a powerful for 

identifying the genomic regions that are associated with 

quantitative traits.   

A RIL population starts with a cross between two unique 

parents resulting in offspring that share, 50% of their genetic 

identity with each parent. The offspring are subsequently 

advanced several generations by self-pollination reducing 

genetic heterozygosity. When lines reach an acceptable level 

of homozygosity the population is evaluated for variation in 

traits of interest. The population is also screened with genetic 

markers that are polymorphic between the two parents. The 

genotypic and phenotypic data is then analyzed together to 

identify novel marker-trait associations. Recombination 

frequency of a marker screened on the population is used to 

estimate the distance between the marker, a trait of interest, 

and other markers tested.   

 

Linkage Disequilibrium  

Linkage disequilibrium (LD) is a non random association of 

alleles at two or more different loci as those are descend from 

an ancestral chromosome. LD can occur between two loci on 

different chromosomes, such as when epistasis changes the 

fitness of a specific genotype. Several factors affect the extent 

and decay of linkage disequilibrium. All cases reduce the 

inherent genetic variability previously associated with the 

population. If fewer alleles are available for two genes the 

frequency of the remaining alleles increases, increasing the 

likelihood for association of alleles at the two loci. Naturally 

occurring genetic mutations will also cause an initial increase 

in linkage disequilibrium because the new allele frequency is 

not represented by all possible gametic combinations. 

Recombination between loci causes LD to decay, which is a 

fundamental concept of AM. Breeding system also greatly 

affects the extent of LD by affecting the rate in which LD 

decays. An outcrossing species is more likely to have greater 

LD decay because the entire population's genetic diversity is 

available every generation, to every individual producing 

offspring through cross-pollination, in turn increasing the 

potential effectiveness of recombination between unique loci. 

A typical self-pollinating species is limited in available genetic 

material to that contained within each individual reducing the 

effectiveness of recombination. Besides physical distance on 

the chromosome, many factors affect the breakdown of LD, 

including genetic drift, natural and artificial selection, mating 

system, and admixture of different populations [16]. 

 

Several statistical parameters can be used to estimate the 

extent of LD [17], most commonly r
2
, which estimates the 

correlation between allelic states of two or more given 

polymorphic loci. Based on multiple case studies in maize, LD 

decay ranges from less than 1 kbp [18] in landraces to more 

than 100 kbp in elite (more closely related) breeding lines 

[19]. Based on this, the resolution can be controlled by choice 

of association mapping panel: more elite germplasm for higher 

LD or more diverse and/or exotic germplasm for less LD. For 

example, significant marker–trait associations can be 

identified using elite lines with higher LD that will then 

require fewer markers, whereas more diverse lines with 

smaller linkage blocks (and thus lower LD) will require more 

markers.   Rice genome size is 400 mega base pair. As linkage 

disequilibrium for indica is around 75 kb so on average SNPs 

for every 75 kbp are required for AM. So, we need minimum 
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of around 5500 SNPs for coverage the whole rice genome. If 

LD is lower, then we need more SNPs for coverage the whole 

genome.  Maize needs more SNPs for QTL detection as LD in 

Maize is very small.     

   

The number of markers needed to perform genome-wide 

association mapping is determined by the extent of LD, or 

allelic association, in the species or population(s) under 

investigation. LD is defined as the nonrandom association of 

alleles at different loci in a population [16]. It is measured as 

the strength of correlation between polymorphisms (i.e., 

SNPs) caused by their shared history of recombination. Levels 

of LD are increased when polymorphisms are correlated as a 

result of linkage, selection, and/or admixture, while 

recombination and independent assortment decrease levels of 

LD.  

 

Table 1.1: Linkage disequilibrium in different plant species 
Species Mating system LD range Reference 

Maize Outcrossing 0.5-0.7 kb 

Remington et al. (2001); 

ching et al. (2002) and 

palaisa et al.(2003) 

 
Outcrossing 0.4-1.0 kb Tenaillon et al.2001 

Barley selfing 10-20 cM 
Stracke et al. (2003); 

Kraakman et al.(2004) 

Tetraploid 

wheat 
selfing 10-20 cM Maccaferri et al.(2004 

Rice selfing 100 kb Garris et al.(2003) 

Sorghum selfing <4 cM 
Deu and Glaszmann 

(2004) 

  
< 10 kb Hamblin et al.( 2004) 

Sugarcane 
outcrossing/ 

Vegetative 
10 cM jannoo et al.( 1999) 

Arabidopsis selfing 250 kb Nordborg et al.( 2002) 

Soybean selfing >50 kb Zhu et al.( 2003) 

Sugar beet outcrossing <3 cM Kraft et al.( 2000) 

Potato selfing 0.3-1 cM 
Gebhardt et al.(2004); 

Simko (2004) 

Lettuce selfing ~200 kb 
van der Voort et al. 

(2004) 

Grape 
Vegetative 

propagation 
>500 bp 

Rafalski and Morgante 

(2004) 

Norway 

spruce 
Outcrossing ~100-200 bp 

Rafalski and Morgante 

(2004) 

Loblolly 

pine 
Outcrossing 100-150 bp 

Gonzalez-Martinez 

(2004) 

Loblolly 

pine 
Outcrossing ~1500 bp 

Mneale and salolanen 

(2004) 

Source: (Table from [20], Linkage disequilibrium and 

association studies in higher plants) 

 

AM can be used on a wide range of germplasm breeding 

including diverse and important materials in which the most 

relevant genes should be segregating. Complex interactions 

(epistasis) between alleles at several loci and genes of small 

effects can be identified, pinpointing the superior individuals 

in a breeding population [10]. Sample size and structure do not 

need to be as large as for linkage studies to obtain similar 

power of detection. Finally, AM has the potential not only to 

identify and map QTL but also to identify causal 

polymorphisms within a gene that are responsible for the 

difference between two phenotypes [21]. 

 

AM suffers from some limitations such as when the 

germplasm used has population structure. When statistical 

methods to correct for population structure are applied, the 

differences between subpopulations are disregarded when 

searching for marker-trait associations. Therefore, all 

polymorphisms responsible for the phenotypic differences 

between subpopulations remain undetected, thus LD mapping 

requires a large number of markers for genotyping in GWAS. 

The number of markers depends in large part on the genome 

size and the expected LD decay; linkage mapping generally 

requires fewer markers to detect significant QTL.     

        

Alternative approaches such as linkage mapping and candidate 

gene could be feasible for other studied traits. The power of 

AM to detect an association is influenced by allele frequency 

distribution at the functional polymorphism level. The results 

of empirical studies suggest that a high percentage of alleles 

are rare [22]. Rare alleles cannot be evaluated adequately 

because, by definition, they are present in too few individuals 

and consequently lack resolution power. 

 

Population Structure 

Selection affects genomic composition and LD in a locus-

specific manner. In contrast, population structure affects LD 

throughout the genome. Consequently, genome-wide patterns 

of LD can help to understand the history of changes in 

populations [23]. Importantly, the power of AM can be 

strongly reduced as a consequence of population structure [24. 

Population structure occurs from the unequal distribution of 

alleles among subpopulations of different ancestries. When 

these subgroups are sampled to construct a germplasm panel 

for AM, the intentional or unintentional mixing of individuals 

with different allele frequencies creates LD. Significant LD 

between unlinked loci results in false-positive associations 

between a marker and a trait. Significant associations between 

polymorphisms at the maize Dwarf8 gene and variation in 

flowering time Reported in [25], but they also stated that up to 

80% of the false positive associations resulted from population 

structure. The occurrence of spurious associations is markedly 

higher in adaptation-related genes because they show positive 

correlations with the environmental variables under which 

they have evolved, and as a result, the genomic regions 

carrying these genes could present stronger population 

differentiation.  

 

Several statistical models take into account the potential effect 

of population structure. A commonly used algorithm was 

reported by [26] implemented in the software STRUCTURE 

[27] [28]. Other methods are based on Principal Component 

Analysis (PCA) [29], and Principal Coordinate Analysis and 

Modal Clustering (PCoA-MC) [30]. 

 

Kinship Relationships  

Kinship describes the probability that two homologous genes 

are identical by decent in a given sample. However, kinship 

relationships have not been considered in most plant mapping 
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or marker-assisted selection strategies. Mixed models using 

variance component approaches that account for kinship 

estimates have been exploited in animal research for over two 

decades [31]. [32] Extended the mixed model of Henderson to 

detect QTL by interval mapping in animal systems. In [33] 

developed a mixed model for hybrid crops incorporating 

effects for general combining ability of markers associated 

with agronomic traits. [34] Developed a mixed model for self 

pollinating plants that accounted for multiple location effects 

and kinship based on pedigree records. [34] Applied single 

and multiple marker analyses in the mixed model format for 

candidate loci and genes associated with bread quality traits in 

wheat (Triticum aestivum L.).  

 

Effect of Population Structure on Phenotype 

Spurious associations between genotype and phenotype 

caused by population structure must be detected among 

unrelated individuals in association studies to reduce Type I 

errors (eg. false positive). Clustering techniques are one 

approach to identify stratified populations. For example, the 

model-based clustering “Structure” software program 

identifies putative population structure and assigns individuals 

to subgroups based on genotype frequencies [35]. 

 

However, if population structure is found to explain too much 

of the variation, then structured association analyses will have 

little power to detect the effects of individual genes. It is 

essential that the effect of population structure be examined 

and accounted for when doing association studies for any 

given trait.  

 

Population Size and Power to Detect Associations 

Simulation studies have demonstrated that sufficient power 

exists to detect SNP phenotype associations for QTL that 

account for as little as 5% of the phenotypic variation when 

approximately 500 individuals are genotyped for 

approximately 20 SNPs within the candidate gene region  

[36]. Importantly this model-based study found that more 

power is achieved by increasing the number of individuals in 

the population than by increasing the SNP density within the 

candidate gene. 

 

It is important that plant geneticists should not completely 

abandon linkage mapping in favor of association analysis. The 

relative benefits of association analysis compared with linkage 

analysis are species-specific, as well as population-specific. 

For example, in species with low genetic diversity, linkage 

analysis is expected to be superior to association analysis. In 

this case even the best germplasm collection will not contain 

enough diversity to offset the loss in statistical power in 

association analysis.  

 

To exploit fully the benefits of association analysis as a 

genetic/ genomic tool in other plant species, a substantial 

effort is needed to assemble association populations, analyze 

the LD present within each population, and describe the 

population structure for various plant species. However, once 

an association population has been developed for a species, as 

the current population has, a community effort is needed to 

characterize the population phenotypically in order to 

maximize its potential use in crop improvement. 

Table 1.2: Association Mapping Studies in Plant 

Plant species Populations Sample size 

Background 

marker Traits References 

Maize Diverse inbred lines 92 141 Flowering time Thornsberry et al. (2001) 

 

Elite inbred lines 71 55 Flowering time Andersen et al.(2005) 

 

Diverse inbred lines 

and landraces 375+275 55 Flowering time 

Camus-Kulandaivelu et al. 

(2006) 

 

Diverse inbred lines 95 192 Flowering time Salvi, 2007 

 

Diverse inbred lines 102 47 Kernel composition start pasting properties Wilson et al.(2004) 

 

Diverse inbred lines 86 141 maysin synthesis Szalma et al.(2005) 

 

Elite inbred lines 75 

 

Kernel color palaisa et al.( 2004) 

 

Diverse inbred lines 57 

 

sweet taste Tracy et al.( 2006) 

 

Elite inbred lines 553 8950 Oleic acid content Belo et al.(2008) 

 

Diverse inbred lines 282 553 carotenoid content Harjes et al.( 2008) 

     

Olsen et al.(2004) 

Arabidopsis Diverse ecotypes 95 104 Flowering time 

 

 

Diverse ecotypes 95 2553 Disease resistance Aranzana et al.(2005) 

    

Flowering time Zhao et al.( 2007) 

 

Diverse accessions 96 

 

Shoot branching Ehrenreich et al.(2007) 

Sorghum Diverse inbred lines 377 47 Community resource report Casa et al.(2008) 

Wheat Diverse cultivar 95 95 Kernel size, milling quality Breseghello and Sorrells, (2006b) 

Barley Diverse cultivar 148 139 days to heading, leaf rust, Yellow dwarf virus Kraakman et al.(2006) 

    

days to heading, leaf rust, Yellow dwarf virus 

 Rice Diverse land races 105 

 

Glutinous phenotype olsen and purugganan,( 2002) 

 

Diverse land races 577 577 Starch quality Bao et al.(2006) 

 

Diverse land races 103 123 Yield and its component Agrama et al.(2007) 

Table from [37]. 

 

TASSEL -Software for Association Analysis  
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A variety of software packages are available for data analysis 

in association mapping. Trait analysis by association, 

evaluation, and linkage (TASSEL; 

http://www.maizegenetics.net) is the most commonly used 

soft ware for association mapping in plants and is frequently 

updated as new methods are developed [38]. In addition to 

association analysis methods (i.e., logistic regression, linear 

model, and mixed model), TASSEL may also be used for 

calculation and graphical display of linkage disequilibrium 

statistics and browsing and importation of genotypic and 

phenotypic data. STRUCTURE software typically is used to 

estimate Q [35]. Current examples include the GLM and the 

multiple regression models combined with the estimates for 

false discovery rate. TASSEL can also be used for calculation 

and graphical display of LD statistics, analysis of population 

structure using PCA, and tree plots of genetic distance. 

Although TASSEL can handle both SSR and SNP markers, 

the latest version only accepts SNPs. For SSR analysis, users 

must continue with TASSEL v. 2.1. Alternatively, GenStat 

offers traditional statistical analyses as well as linkage and 

AM analyses for SSRs. 

 

The TASSEL software program (http://www.maizegenetics. 

net) incorporates population structure and kinship estimates 

into a mixed model for association genetics of unrelated 

individuals [39]. However, the mixed model has not been 

extensively explored in selfing species such as rice. The 

TASSEL mixed model was used recently in association 

studies of a complex agronomic trait in barley [40]. Epistasis 

was postulated to impact the ability to detect marker-trait 

associations for the selected population of inbred varieties.  

 

Phenotyping for association mapping  

 

Field Design 

The importance of phenotyping has not received as much 

attention as genotyping. While accuracy and throughput of 

genotyping have dramatically improved, obtaining robust 

phenotypic data remains a hurdle for large-scale association 

mapping projects. Because association mapping often involves 

a relatively large number of diverse accessions, phenotypic 

data collection with adequate replications across multiple 

years and multiple locations is challenging. Efficient field 

design, appropriate statistical method and consideration of 

QTL × environmental interaction should be explored to 

increase the mapping power, particularly if the field conditions 

are not homogenous [41].  

 

Data Collection 

Collection of high quality phenotypic data is essential for 

genetic mapping research. Association mapping studies often 

are long-term projects, with phenotyping being conducted over 

years in multiple locations [42]. In this framework, any newly 

discovered candidate gene polymorphism can always be tested 

for association with existing phenotypic data.  

 

Looking forward  

GWAS methodology has advanced such that it is now a 

powerful tool for the analysis of simple traits under additive 

genetic scenarios, and for the dissection of more complex 

genetic architectures. Many phenotypes of interest in humans 

and plants are highly quantitative, and as such GWAS may fail 

to uncover the causative loci we seek. One possible solution is 

to refine the phenotype of interest by scoring a trait more 

proximal to the underlying genetics [43]. This has the 

potential to reduce the number of loci that contribute to the 

trait and thus increase the power to detect them. It is an 

important consideration (or limitation) that even under the 

simple simulation scenario of a single causative locus with 

high heritability, the most significant SNP is not always the 

true causative locus. Such a synthetic association is a natural 

consequence of the linkage and error structure of the data, and 

thus may persist despite an increase in the sample size. 

 

The literature now contains numerous examples of GWAS 

that uncover the underlying genetics. Still, missing genotypes, 

genetic heterogeneity, unexpected LD, small effects size, low 

allele frequency or complex genetic architectures remain a 

challenge. The collection of GWAS methods to account for 

such factors will continue to grow. However, the best 

predictors of success will remain a well-defined trait, an 

appropriate statistical model and finally, the validation of 

candidates. 
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