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SPRINGER FIBERS OF HOOK TYPE AND SCHUBERT POINTS

FELEMU OLASUPO

Abstract. This paper is a survey article aimed at extending the work of Tymoczko
and Precup in [4] and compute the Betti numbers of Springer varieties Sprλ in type A.
Specifically, we focus on the Springer varieties associated to nilpotent operators in Jordan
form of type λ = n − k, 1k and λ = λ1, λ1 − 1, 1k, (n ≥ 5, λ1 ≥ 3, k = n − (2λ1 − 1) )
and show that the Betti numbers of Sprλ equals the Betti numbers of a particular union
of Schubert varieties by setting the redundant permutation to zero. Furthermore, we
consider a special partition of generic shape λ = n− k, 1k, n ≥ 6, k = 3 and give a closed
formula which is useful in computing the number of redundant permutations and also a
closed formula that helps in determining the number of standard tableaux (of the shape
λ = n− k, 1k, k = 3, n ≥ 6) that generate the redundant permutations.

1. Introduction

Springer variety Sprλ is a subvariety of the full flag variety Fℓn(C), where Fℓn(C) is
the collection of sequences (Vi)

n
i=0 of subspaces of an n-dimensional vector space V over

the complex field (C) ordered by inclusions.That is,

Fℓn(C) = {V• : V1 ⊆ V2 ⊆ · · · ⊆ Vn = Cn}
such that dimVi = i for each i.
Fℓn(C) can also be seen as the quotient GLn(C)/B, where GLn(C) is general linear group
and B is the subgroup of upper triangular matrices, called the Borel subgroup. The
isolated points wB ∈ G/B correspond to the element of Weyl group W ∼= Sn. Where Sn is
a group of permutations of n letters.Elements of the Weyl group W indexed the B−orbit
Cw = BwB/B of Fℓn(C) called the Schubert cell. These cells are isomorphic to affine
spaces Cl(w) (Where l(w) is the length of w). The closure Cw =

⋃
v≤w Cv is a subvariety of

Fℓn(C) called the Schubert variety, where ≤ is the partial order defined on W called the
Bruhat order.

The variety Sprλ is defined as the set of flags stabilized by a nilpotent operator X, where
each nilpotent operator corresponds to a partition λ of n > 0, determined by the sizes of
Jordan blocks of X.

Sprλ = {V• ∈ Fℓn(C) : XVi ⊆ Vi, 1 ≤ i ≤ n}
Springer varieties are usually called Springer fibers, since they coincide with the fiber of
the Springer resolution of singularities over X.

Tymozcko and Precup in [4] associated a permutation wT ∈ Sn (and called it Schubert
point) to each standard tableaux of shape λ. This allowed them to give an algebraic and
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combinatorial algorithm to compute Betti numbers of Sprλ by showing that the Betti
numbers of Sprλ coincides with the Betti number of a specific union of Schubert varieties.
Though the correspondence was made expressible with the aid of row strict tableaux, but
with a limitation to nilpotent operators whose corresponding partition λ has at most three
rows or two columns.

Tymoczko [? ] computed the Betti numbers of Sprλ and show that they are enumerated
using row -strict tableaux of shape λ by giving a combinatorial rule which she named
dimension of row strict tableaux. Aba Mbirika in [3] links the dimension of each row strict
tableau to a monomial in the Gasia-Procesi basis in [2].

Though, there are well-known formulas for Poincaré polynomials of Springer fibers in all
cases [1], but our aim is to adopt the approach in [4] and extend the work of Tymoczko and
Precup in [4] beyond the limitation of nilpotent operators whose corresponding partition
has at most three rows or two columns .
Having said this, we specifically consider a nilpotent operators with Jordan canonical form
corresponding to a partitions λ = (n − k, 1k) and λ = λ1, λ1 − 1, 1k, (n ≥ 5, λ1 ≥ 3, k =
n − (2λ1 − 1) ). This, we achieve by considering the set of union of closures of Schubert
points (

⋃
CwT

) and take the redundant permutations to zero. By redundant permutations
we mean those permutations that do not correspond to any row-strict tableaux.

Corollary 1.1. Let X ∈ gln(C) be a nilpotent operator of Jordan types λ = (n− k, 1k) or
λ = λ1, λ1 − 1, 1k, (n ≥ 5, λ1 ≥ 3, k = n− (2λ1 − 1) ) with more than three rows and two
columns. The Poincaré polynomial of the Springer variety P (Sprλ, t) equals the Poincaré
polynomial P (

⋃
wB∈Sprλ , CwT

), having set the redundant permutation to zero. Where T is
the standard tableau associated to wB ∈ Sprλ of shape λ.

This article contains four parts. In part 2, we briefly narrate the structure of Springer
varieties. Part 3 contains details of the description of Schubert points. Part four contains
detailed description of our results.

2. Springer Varieties Sprλ

This section contains some background information on Springer varieties.
Let n > 0 be an integer, a partition of n is a weakly decreasing sequence λ = (λ1, λ2, · · · , λl)

such that
∑l

i=1 λi = n . We say a nilpotent operator X is in Jordan form of type λ, if λ
is determined by the Jordan blocks of X.

Given a partition λ = (λ1, λ2, · · · , λl), there corresponds a Young diagram of row lengths
λi, 1 ≤ i ≤ l, which is left and top aligned. For example, the figure below shows a nilpotent
operator with Jordan type 3, 2, 1 and the associated Young diagram.

Remark 2.1. We often write λ ⊢ n to mean that λ is a partition of n. The conjugate of λ,
denoted by λ′ = λ′

1, · · ·λ′
l is obtained by reflecting Y(λ) in the main diagonal.

The dimension dλ of Sprλ is combinatorially expressed as dλ =
∑k

i=1
λ′
i(λ

′
i−1)

2
, where

λ′ = (λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
k) is the conjugate partition of λ. That is , λ′

i is the number of
λj ≥ i.

Springer varieties are irreducible in two opposites extremal cases. Namely: if X has only
one nontrivial block, i.e. λ = n, (in other words X is regular nilpotent) then Sprλ consists
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Figure 1. A Nilpotent operator and it’s corresponding Young diagram

of the single flag V0 ⊂ V1 ⊂ · · · ⊂ Vn where Vi = ker(X i).
At the other extreme, if λ = (1n),then Sprλ coincides with the whole flag varietyFℓn(C).
In any other case, Springer varieties are reducible into irreducible components. Readers
are referred to [1] for details on irreducible components of Sprλ.

3. Schubert Points of Row- Strict Tableaux of Shape λ = n− k, 1k

A row strict tableaux τ of shape λ is a filling of a Young diagram from [n] such that,
numbers in the rows increase from left to right,but if the filling of such τ increases from left
to right and from top to bottom, we call it standard Young tableaux which we sometimes
denote by T and the set of all standard tableaux corresponding to λ as (St)λ We denote
the set of all row strict tableaux corresponding to λ by (rst)λ.

1 2 5
6 7
4
3

,

1 2 5
6 7
3
4

Figure 2. Row strict and Standard tableaux

For each standard tableau T ∈ (St)λ there is an associated permutation wT ∈ Sn called
Schubert point. It known in [4] that these Schubert points are such that the length l(wT )
of each wT is equal to the dimension of the corresponding T ∈ (St)λ.

Definition 3.1. Let T ∈ (rst)λ and wT ∈ Sn be the associated permutation, where wT =
si1si2 · · · sil (expressed in reduced word), we say wT has a jump if for any two consecutive
simple transpositions siksij , ik − ij ≥ 2.

Example 3.2. wT = s3s4s5s3s4s3 has one jump which exists between the two consecutive
transpositions s5s3 .

Definition 3.3. Let wT = si1si2 · · · sil for any T ∈ (rst)λ. We say wT has a fall if for any
two consecutive transpositions siksij , ik − ij = 1.

Example 3.4. wT = s3s4s5s3s4s3 has one fall which exists between the last two transposi-
tions s4s3 .
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Definition 3.5. Let wT = si1si2 · · · sil , we define a sub-permutation wik+1 = si1si2 · · · sik ,
which is a sub-string of wT such that there is neither a jump nor a fall between any two
consecutive transpositions.

Example 3.6. Let wT = s3s4s5s3s4s3 has three sub-permutations which are: w6 = s3s4s5, w5 =
s3s4 and w4 = s3

Remark 3.7. The link between the monomial associated to the dimension of T in [3] and
the corresponding Schubert point is made obvious by the rule

wT 7−→
n−1∏
k=2

x
l(wk+1)
k+1 , (3.1)

where l(wk+1) is the length of sub-permutation wk+1.

3.1. Realizing row-strict tableaux from the associated Schubert points. Here,
we consider a systematic procedure of realizing a row-strict tableau from the associated
Schubert point. Specifically, we consider row-strict tableaux of shape λ = 3, 2, 1 and
highlight algorithms through which a row strict tableaux could be computed given an
arbitrary Schubert point.
For any T ∈ (rst)λ, let T i, i ≤ n be the tableau obtained by deleting j, i < j ≤ n.

Now, let T be a row-strict tableau of shape λ = 3, 2, 1,and wT = s3s4s3s2 be a Schubert
points, we realize T from wT as follows:

• The first sub-permutation from the left is w5 = s3s4. This implies that the number
of rows above and of the same length with the row containing 5 plus the number
of rows greater in length than the row containing 5 (either above or below ) in T 5

must be two.Hence, 5 must occur in first box (from the left) of the third row of.
That is

5

• w4 = s3 implies that the box containing 4 in T 4 has just one row either of the same
length above it or of greater length either above or below . In this case, 4 could
either be in the first box of the first row, first box or second box of the second row,
but since T is row-strict, 4 must be in the second box of the second row.

4

5

• w3 = s2, this is obvious as 3 will fill the first box in the second row and we have

3 4

5
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• 1,2 and 6 will fill the remaining cells accordingly. Hence we have

1 2 6

3 4

5

4. Outlining the main theorem

In this section, we outline the procedures that lead to our main theorem. The key step
in the proof of the main theorem is to carefully list out all permutations v ∈ Sn such that
v ≤ wT (in Bruhat order) for each Schubert point associated to standard tableaux of shape
λ = 3, 1, 1, 1 and map the redundant permutations to zero.

Theorem 4.1. Let T be a row-strict tableau of hook shape λ = (n−k, 1k), n > 2, 1 ≤ k ≤
n− 2 and λ = λ1, λ1− 1, 1k, (n ≥ 5, λ1 ≥ 3, k = n− (2λ1− 1) ). For si1si2si3 · · · siq−1siq =
w′ ≤ wT such that ,i1 = n−1 and l(w′) ≥ λ′

1, with some sijsij ′ such that |ij− ij′ | ≥ 2, 1 ≤
j ≤ q − 1, 2 ≤ j′ ≤ q. Let #v be the number of sub-permutations after sij , then there is
no row strict tableau associated to w′ if any of the conditions bellow is satisfied

(1) if #v ≥ λ′
1 − j,

(2) if #v = 1 and l(v) ≥ λ′
1 − j

Proof. Given λ = (n − k, 1k), 1 ≤ k ≤ n − 2. Suppose there exists si1si2si3 · · · siq−1siq =
w′ ≤ wT with i1 = n − 1 and |i1 − i2| ≥ 2, then n fills the cell in the second row of the
Young diagram. Hence, there are k cells left in the first column to be filled. In this case, if
#v ≥ k then there will be no enough cells to take care of the remaining sub-permutations.
Again, if |i2− i3| ≥ 2, then i2 +1 fills one of the remaining cells such that there is one cell
above it, and the empty cell(s) in the column will now be k − 1. As we move to the right
of the string, the number cells for possible filling reduce. Now denote by l(s) the length of
the remaining string and κ the number of the remaining cells.
Suppose there is no jump or fall in the remaining string and l(s) ≥ κ then the filling(s) of
the remaining cells becomes impossible.Hence w′ has no corresponding row-strict tableau.
If there are falls in the remaining string, such that the fall continues and l(s) ≥ κ then w′

has no row strict tableau. □

Definition 4.2. Let T be a row-strict tableau of shape λ and wT it’s corresponding Schubert
point. For any w′ ≤ wT (in Bruhat order), we call w′ a redundant permutation if there
exist no row-strict tableau realizable from w′.

Remark 4.3. We classify permutations w′ described in the above theorem as redundant
permutations.

We conquer the limitation on the computation of Betti numbers of Springer varieties
in [4], by setting the redundant permutations equal to zero. This enables us to compute
the Poincaré polynomial of Springer fibers associated to partition of hook shape with no
limitation on either rows or columns.

Corollary 4.4. Let X ∈ gln(C) be a nilpotent operator of Jordan types λ = (n− k, 1k) or
λ = λ1, λ1 − 1, 1k, (n ≥ 5, λ1 ≥ 3, k = n− (2λ1 − 1) ) with more than three rows and two
columns. The Poincaré polynomial of the Springer variety P (Sprλ, t) equals the Poincaré
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polynomial P (
⋃

wB∈Sprλ , CwT
), having set the redundant permutation to zero. Where T is

the standard tableau associated to wB ∈ Sprλ of shape λ.

Proof. since the partitions λ in these cases have more than three rows or two columns,
there would definitely exits some w′ ≤ wT with no associated row-strict tableau which
we referred to as redundant permutations. Setting the redundant permutations to zero,
the equality between P (Sprλ, t) and P (

⋃
wB∈Sprλ , CwT

) is established in theorem 4.4 and

theorem 3.5 of [4] □

Example 4.5. Consider λ = 3, 1, 1, 1, there are 120 row-strict tableaux, 10 out of which are
standard tableaux. The 10 standard tableaux and their associated Schubert points wT are:
1 2 3
4
5
6

s3s4s5s3s4s3,

1 2 4
3
5
6

s3s4s5s3s4s2,

1 2 5
3
4
6

s3s4s5s2s3s2,

1 2 6
3
4
5

s2s3s4s2s3s2,

1 3 5
2
4
6

s3s4s5s2s3s1,

1 3 6
2
4
5

s2s3s4s2s3s1,

1 4 5
2
3
6

s3s4s5s1s2s1,

1 5 6
2
3
4

s1s2s3s1s2s1,

1 3 4
2
5
6

s3s4s5s3s4s1,

1 4 6
2
3
5

s2s3s4s1s2s1,

Let G = GL6. For each Schubert point associated to the standard tableau, we consider
the union of the Shubert varieties

Cs3s4s5s3s4s3 , Cs3s4s5s3s4s2 , Cs3s4s5s2s3s2 , Cs2s3s4s2s3s2 , Cs3s4s5s2s3s1 , Cs2s3s4s2s3s1 , Cs3s4s5s1s2s1 ,

Cs1s2s3s1s2s1 , Cs3s4s5s3s4s1 , Cs2s3s4s1s2s1 .

That the set
⋃

CwT
of all permutations w ≤ wT for each T ∈ (St)λ in Bruhat order is

• s3s4s5s3s4s3, s3s4s5s3s4, s3s4s5s4s3, s4s5s3s4s3, s3s4s5s3, s3s4s5s4, s5s3s4s3, s4s5s3s4, s4s5s4s3,
s3s4s5 s3s4s3 s5s3s4 s4s5s3 s4s5s4 s5s4s3 s3s4, s5s3, s4s5, s4s3, s5s4, s3, s4, s5, e
• s3s4s5s3s4s2, s3s4s5s3s4, s3s4s5s3s2, s3s4s5s4s2, s4s5s3s4s2, s3s4s5s3, s3s4s5s4, s3s4s5s2,
s3s4s3s2, s5s3s4s2, s4s5s3s4, s4s5s3s2, s4s5s4s2, s4s3s4s2, s3s4s5, s3s4s3, s3s4s2, s5s3s4, s5s3s2,
s4s5s3, s4s5s4, s4s5s2, s4s3s2, s5s4s2, s3s4, s5s3, s3s2, s4s5, s4s3,
s4s2, s5s2, s2, s3, s4, s5, e
• s3s4s5s2s3s2, s3s4s5s2s3, s3s4s5s3s2, s3s4s2s3s2, s4s5s2s3s2, s3s4s5s2, s3s4s5s3, s3s4s2s3,
s3s4s3s2, s3s4s5s2s3s2, s5s3s2s3, s4s5s2s3, s4s5s3s2, s4s2s3s2, s3s4s5, s3s4s2,
s3s4s3, s5s3s2, s4s5s2, s4s5s3, s4s2s3 s4s3s2, s5s2s3, s3s4, s5s3, s3s2,
s4s5, s4s2, s4s3, s5s2, s2s3, s2, s3, s4, s5, e
• s2s3s4s2s3s2, s2s3s4s2s3, s2s3s4s3s2, s3s4s2s3s2, s2s3s4s2s3, s2s3s4s3s2, s2s3s4s2, s2s3s4s3,
s4s2s3s2, s3s4s2s3, s3s4s3s2, s2s3s4 s2s3s2, s4s2s3, s3s4s2, s3s4s3, s4s3s2, s2s3, s2s4, s3s4, s3s2,
s4s3, s2, s3, s4 e
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• s3s4s5s2s3s1, s3s4s5s2s3, s3s4s5s2s1, s3s4s5s3s1, s3s4s5s3s1, s5s3s2s3s1, s4s5s2s3s1, s3s4s5s2,
s3s4s5s3, s3s4s5s1, s3s4s2s3, s3s4s2s3, s3s4s2s1, s3s4s3s1, s5s3s2s3, s5s3s2s1, s3s2s3s1, s4s5s2s3,
s4s5s2s1, s4s5s3s1, s4s2s3s1, s5s2s3s1, s3s4s5, s3s4s2, s3s4s3, s3s4s1, s5s3s2, s5s3s1, s3s2s1,
s4s5s2, s4s5s3, s4s5s1, s4s2s3, s4s2s1, s4s3s1, s5s2s1, s2s3s1, s3s4, s3s2, s3s1, s4s5,
s4s2, s4s3, s4s1, s4s1, s5s2, s5s3, s5s1, s2s1, s1, s2, s3, s4, s5, e
• s2s3s4s2s3s1, s2s3s4s2s3, s2s3s4s2s1, s2s3s4s3s1 s3s4s2s3s1, s2s3s4s2, s2s3s4s3, s2s3s4s1, s2s3s2s1,
s4s2s3s1, s3s4s2s3, s3s4s2s1, s3s4s3s1,
s2s3s4, s2s3s2, s2s3s1, s4s2s3, s4s2s1, s3s4s2, s3s4s3,
s3s4s1, s3s2s1, s4s3s1, s2s3, s4s2, s2s1, s3s4, s3s2, s3s1, s4s3, s4s1, s1, s2, s3, s4, e
• s3s4s5s1s2s1, s3s4s5s1s2, s3s4s5s2s1, s3s4s1s2s1, s5s3s1s2s1,
s4s5s1s2s1, s3s4s5s1, s3s4s5s2,
s3s4s5s1, s3s4s1s2, s3s4s2s1, s5s3s1s2, s5s3s2s1, s3s1s2s1, s4s5s1s2, s4s5s2s1, s4s1s2s1, s5s1s2s1, s3s4s5,
s3s4s1, s3s4s2, s5s3s1, s5s3s2, s3s1s2,
s3s2s1, s4s5s1,
s4s5s2, s4s1s2, s4s2s1, s5s1s2, s5s2s1,
s1s2s1, s3s4, s3s5, s3s1, s3s2, s4s5, s4s1, s4s2, s5s1,
s5s2, s1s2, s2s1, s1, s2, s3, s4, s5, e
• s1s2s3s1s2s1, s1s2s3s1s2, s1s2s3s2s1, s2s3s1s2s1, s1s2s1s3, s1s2s3s2, s3s1s2s1, s2s3s1s2, s2s3s2s1,
s1s2s3, s1s2s1, s3s1s2, s2s2s3, s2s3s2, s3s2s1, s1s2, s3s1, s2s1, s2s3, s3s2, s1, s2, s3, e
• s3s4s5s3s4s1, s3s4s5s3s4, s3s4s5s3s1, s3s4s5s4s1, s4s5s3s4s1, s3s4s5s3, s3s4s5s4, s3s4s5s1,
s3s4s3s1, s5s3s4s1, s4s5s4s1, s4s5s3s4, s4s5s3s1,
s4s5s4s1, s4s3s4s1, s3s4s5, s3s4s3, s3s4s1, s5s3s4,
s5s3s1, s4s5s3, s4s5s4, s4s5s1, s4s3s1, s5s4s1,
s5s4, s5s1, s1, 3s3, s4, s5, e
• s2s3s4s1s2s1, s2s3s4s1s2, s2s3s4s2s1, s2s3s1s2s1, s3s4s1s2s1, s2s3s4s1, s2s3s4s2, s2s3s1s2,
s2s3s1s2, s2s3s2s1, s3s4s1s2, s3s4s2s1, s3s1s2s1, s4s1s2s1, s2s3s4,
s2s3s1, s2s3s2, s4s2s1,
s2s1s2, s3s4s1, s2s1s2, s3s4s1, s3s4s2, s3s1s2, s3s2s1, s4s1s2, s2s3,
s4s2, s2s1, s3s4, s3s4, s3s1, s3s2, s4s1, s1s2, s1, s2, s3, s4, e

Remark 4.6. It is observed from the above example that there are 124 permutations in CwT

instead of 120. The good news here is that exactly 4 (s5s2s3s2s1, s5s3s2s1, s5s3s1s2s1, s5s3s1s2)
out the 124 permutations are redundant and these are taken to zero. Therefore, the
Poincaré polynomial is

P (
⋃

CwT
, t) =

6∑
k=1

bkt
k = 10t6 + 26t5 + 35t4 + 29t3 + 14t2 + 5t+ 1

Lemma 4.7. Given a partition λ of hook type, the minimal length of redundant permuta-
tion is λ′

1

Proof. Let si1si2si3 · · · siq−1siq = w′ ≤ wT be a permutation that satisfies any of the condi-
tions in theorem 4.1. If l(w′) = λ′

1, then , placing n in the second cell of the first column
from above left the remaining λ′

1 transpositions in the string with λ′
1− 1 cells,now suppose

that there is no jump or fall in the remaining string, then the number of the available
cells will not be sufficient.Also, if there are falls in the remaining string then there will be
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no enough cell to take the remaining numbers since each transposition corresponds to a
number in {1, 2, 3, · · · , n} Since #v = λ′

1. □

Finally, we consider a special partition of generic shape λ = n− k, 1k, n ≥ 6, k = 3 and
give a closed formula which is useful in computing the number of redundant permutations
and also a closed formula that helps in determining the number of standard tableaux
(of the shape λ = n− k, 1k, k = 3, n ≥ 6) that generate the redundant permutations.

Theorem 4.8. Let #(rw)λ and #(rT )λ respectively be the number of redundant permuta-
tions and the number of row standard Young Tableaux of shape λ = n − 3, 13, n ≥ 6 that
generate the redundant permutations. Then,

#(rw)λ =
λ3
1 − 7λ1 + 6

3
(4.1)

and

#(rT )λ =
λ3
1 − 7λ1 + 6

6
(4.2)

Proof. By continuous computation, starting with n ≥ 6 and λ = n − 3, 13, we came up
with the table below.

n 6 7 8 9 10

λ 3,1,1,1 4,1,1,1 5,1,1,1 6,1,1,1 7,1,1,1

#(rT )λ 2 7 16 30 50

#(rw)λ 4 14 32 60 100

The sequence generated in the above table by #(rT )λ coincised with number Un of inscrib-
able triangles within a (n+4)-gon sharing with them its vertices but not its sides. That
is,

Un =
(n− 1)n(n+ 4)

6
(OEISA005581). (4.3)

Let n = (λ1 − 1), then the above equation gives #(rT )λ. Obtaining #(rw)λ is straight
forward since #(rw)λ = 2#(rT )λ □
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