
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhancing Software Quality through AI - Assisted

Code Review: Insights from AWS Cloud

Infrastructure Development

Sai Tarun Kaniganti

Abstract: Code review is a fundamental component of software development, serving as the primary mechanism for verifying code

quality, minimizing defects, and promoting team cooperation. While being effective, the envisioned traditional code review processes can

be very time - consuming and contain a high risk of human errors. The following paper aims at discussing the effects of code review on

the quality of the developed software as well as relying on the existing scholarly studies and practical experience. Further, we discuss the

possibility of adopting AI and ML for enriching the code review process. Therefore, based on the usage of AI, this paper presents a

framework that aims at promoting the utilization of code reviews, especially in the AWS cloud infrastructure development domain

(Robertson et al., 2021). This approach is one of the attempts to delegate the time - consuming work to machines, get wise

recommendations, and, as a result, enhance the software quality without putting the pressure on human evaluators.

Keywords: code review, software quality, AI in code review, minimizing defects, AWS cloud development

1. Introduction

Code review remains to be one of the fundamentals of

contemporary approaches to the formation of software

products, as well as their quality assurance. It entails a

conducted review on the code modifications by a different

developer or other teammates prior to its merge with the

primary source. This methodical approach is an attempt to

find a range of problems, which can be viewed as failures:

defects, bugs, security holes, performance issues and

deviation from coding standards and conventions. Code

changes, thus, can undergo a strict examination in order to

identity possible flaws that could affect software quality or

value.

Conducting a code review is a strong driver towards

improving the software quality that is accomplished at

different stages of the system’s development. Not only do

code reviews prevent mistakes, but, by reaching out to other

team members for help reviewers get to improve compliance

with coding standard and choice of specific design patterns.

It is applied in this context to encourage the practice of team

- work and uniformity in the dissemination of information

with the aim of increasing the quality of health care while

maintaining a constant ethical and professional standard.

Code reviews are crucial as they help avoid the so - called

technical debt which is the sum of costs that appear if the

existing code is not improved on time. As a result, it is

possible to refuse from the delegation of too many tasks at

once, while finding and fixing bottlenecks at the beginning of

the development process helps to avoid the constant increase

in technical debt that leads to code maintainability and

scalability problems in the future. These activities also

prevent many future development costs and contribute to

greater flexibility and responsiveness of the firm’s software

projects.

Code review is not just about identifying errors but it also

makes code review a tool for growth and learning to the

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1737

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

development teams. Code reviews as well as peer working

imply the ability to share knowledge, get a better

understanding of the best practices, as well as maintain the

relevant knowledge of new technologies and approaches

within the field. Bearing this in mind, this change iteration

enhances the software development professionalism of the

participants and the group solution as a whole.

Code review does not posit an antioxidant in the incremental

development process but an activity that defines software

quality and team work. Through the adoption of formal code

review strategies that are effectively implemented in an

organization’s working system, the risk management is

readily enhanced, and code quality is optimally optimized

with a culture of perfectionism established in all the working

systems of the organizations. Adopting the aforementioned

best practices means that the products that are developed can

not only meet their intended purpose and be secure but also

be responsive to the changing requirements of its users and

the advancements in technology.

Figure 1: Why - code - review - matters

Based on research works and literature on code reviews, this

paper aims at establishing how code review has influenced the

quality of software products. This paper also presents the

possibility of using AI and ML in improving the code review

step and give proposal for a framework of using AI assisted

code review in proposed architecture.

Figure 2: Types of code review

Code Review and Software Quality

Research on the benefits of code review is extensive, and all

prior studies have suggested that code review has a positive

influence on quality. Kemerer and Paulk’s study also

confirmed that design and code inspections bring a tangible

difference in decreasing the density of defects in the students’

submissions in SEI. Likewise, in a case study of large open -

source projects, McIntosh et al. identified a strong correlation

between code review coverage, participation and reviews

made by expert reviewers and post - release defects as a

measure of long term software quality (McIntosh et al., 2016).

large - scale empirical studies conducted on open - source

projects, as discussed by McIntosh et al., further stress on the

importance of code reviewing practices. According to their

findings, the percentage of code reviews along with

developers’ involvement to that process and post - release

defects are significantly negatively related. Experts’ opinions

can help the teams avoid certain pitfalls when it comes to

reviewing and reduce risks and increase software quality in

the long run. Besides compliance to coding standards, this

structured approach also promotes knowledge sharing and

skill development of the engineers

Code review encourages team learning and career

development among the development teams. From reviews,

developers get lessons that contain other ways of doing

things, standard practices, and new technologies. Such

exchange of ideas not only benefits every participating

member’s efficiency but also develops the organizational

culture of constant improvement. Combined over time, this

process gradually occurs, which helps shape the coding

practices and the use of new techniques that raise the quality

and efficiency of software development.

Figure 3: Code review vector art

It is important to mention that code reviews are critical in

managing codebase, as well as its expandability.

Architectural guidelines are attained through a systematic

analysis of code structure and its logic with the overall check

and ensure the individual components of the software have

valid compatibility, which is maintainable in the extended life

cycle of the software. This managed approach helps to avoid

technical debt issues and allows for future changes and

evolution with little to no impact. By having a reliable review

strategy in place, an organisation can successfully cope with

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1738

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

highly intricate codebases and keep up with the discharge of

fresh features and improvements that are imperative for

realigning with the market’s higher expectations.

It can be said that the body of knowledge on how code

reviews are effectively practiced is solid and well - reasoned

to be considered a key practice in the SDLC. Through the

pinning down of defects and amelioration of software quality,

code reviews also alienate collaborative work and transfer of

knowledge during the present project but also contribute in

building phase for sustainable success and creative work in

software engineering. Therefore, because of such practices,

and the use of innovative technologies in the development of

those systems, the significance of code reviews in the

production of quality and reliable systems in today’s complex

market environment cannot be overemphasized.

Code reviews help identify and address various types of

issues, including:

1) Functional Defects: Inefficiencies in the flow of the style

in reference to the architectural, logical, and syntax of the

code that will create wrong responses or results.

2) Performance Issues: Due to some ineffective algorithms

which can slow down the program execution and

consume a lot of resources.

3) Security Vulnerabilities: There are areas of the code

which have certain flaws, and anyone with ill intent can

take advantage of and cause system or data leakage.

4) Maintainability Concerns: Code that is hard to read,

write, or change is likely to cause new errors when new

enhancements are made on the program.

5) Coding Standard Violations: Variations in the use of

standard coding standards/procedures which can make

the code difficult to understand and manage.

If the problems are detected early in the lifecycle, the code

reviews can greatly enhance the quality of the developed

products and decrease the amount of wasted effort for

refactoring and fixing of unnoticed bugs that could reach the

production stage.

Table 1: Benefits and challenges of code reviews presented

Category Details

Benefits of Code Reviews

Knowledge

Sharing

Facilitates knowledge sharing among team

members, allowing less experienced developers to

learn from their more experienced peers.

Improved

Collaboration

Encourages open communication and collaboration

within the development team, fostering a culture of

continuous improvement.

Early

Detection of

Issues

Identifies defects and issues early in the

development process, preventing them from

escalating into larger problems and reducing

debugging time.

Enhanced

Code Quality

Ensures adherence to coding standards and best

practices, maintaining high code quality that is

easier to understand, maintain, and extend.

Reduced

Technical

Debt

Helps keep technical debt in check by addressing

suboptimal code and architectural decisions,

leading to a more stable and maintainable

codebase.

Challenges in Traditional Code Review Processes

Time -

Consuming

Manual code reviews can be time - consuming,

especially for large codebases or complex changes,

slowing down the development process.

Human Error

Reviewers may overlook certain issues due to

fatigue, oversight, or lack of expertise, resulting in

undetected defects or inconsistencies.

Inconsistent

Quality

The quality of code reviews can vary based on the

reviewers' experience and diligence, leading to

uneven code quality and missed issues.

Review

Fatigue

Repeatedly reviewing large volumes of code can

lead to review fatigue, decreasing the overall

effectiveness of the code review process.

Scalability

As the codebase grows in size and complexity,

scaling the code review process to keep up with the

volume of changes becomes challenging.

Enhancing Code Reviews with AI and ML

To address these challenges, integrating AI and ML

techniques into code review processes can provide significant

enhancements: To address these challenges, integrating AI

and ML techniques into code review processes can provide

significant enhancements:

1) Automating Routine Checks: AI can help in freeing up

the reviewers’ time by performing automated checks for

the coding standards, often seen bugs, and potential

security issues.

2) Intelligent Recommendations: It is possible for a

developer to use an ML model for assistance on some

areas in the code sets that the model has identified from

the code base and make better suggestions for coding.

3) Predictive Analysis: Compared to human review, AI can

find areas of the code which are most probable to contain

defects using the historical information, thus, the

reviewer’s effort can be directed to the right places.

4) Scalability: The outlined AI - assisted tools could work

with the extension of the size and the complexity of the

code and require the rate and extend of the review to be

constant to the size of the change.

5) Continuous Learning: Unlike other techniques, AI and

ML models can improve from new code changes and

reviews over the exit of time.

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1739

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Incorporating the use of AI and ML would mean that

development teams are able to increase the effectiveness of

code reviews and at the same time, improve on the quality of

the final software products developed without burdening the

reviewers with more work. It also has an added advantage of

not only setting high standards of code quality in the

organization but also invites the spirit of improvements

among the congregation of the team (Wrenn et al., 2010).

There is the possibility of obtaining an efficient analysis of

the dynamics of shifts in code quality. By analyzing code and

possibly distilling it for patterns that are likely to lead to bugs

or hinder performance, the teams can prevent some of them

from ever resurfacing in the finalized products. Besides, risk

avoidance the above mentioned predictive capability is

beneficial in influencing cultural aspects within the

development team for carrying out improvement continually.

These reviews benefit developers in the sense that the nature

of the reviews and feedback given allows them to improve

their performance and therefore beneficial for raising the

general level of quality in code (Bacchelli & Bird, 2013).

 In addition to increasing code quality, the integration of AI

and ML fosters teamwork as well as the sharing of

information and ideas among developers. In this way, these

procedures and prototypes impose order when it comes to

review and setting goals and objectives: they provide

measurable data and a clear range of what it may be

reasonable to expect. Team members can benefit from using

automated suggestions and corrections they include in

relation to other team members as well as raise the standards

of coding within the organization as groups members learn

from each other.

The integration of AI/ML in code reviews increases

productivity and quality and evolves the development culture.

It tends to think outside the box while sticking to the

procedures and offering the authority to teams to

systematically produce better software solutions that address

both the technical and commercial specification. In the future,

the application of these technologies will likely grow even

more when it comes to software development since the

productivity which they offer will help to identify new ways

of improving the code and the performance of the teams.

Code Review Processes and Best Practices

Code review is a mix of technical practices and cultural

activities; the improvement of code review extends to certain

more operational notions (Kononenko et al., 2016). Here are

some key best practices for code review, with additional

information to enhance the understanding and

implementation of these practices: Here are some key best

practices for code review, with additional information to

enhance the understanding and implementation of these

practices:

1) Automate Code Reviews

• Integrate Tools: Static code analyzers, linters, integration

into the CI/CD pipeline should be used for the first level

of analysis. Code quality can be ensured and checked with

the help of such tools as SonarQube, ESLint,

CodeClimate, etc., which are able to detect typical

problems, violations of coding standards as well as

represent detailed reports.

• Automated Testing: Use continuous integration testing to

check whether new code will work with unit, integration

and end to end tests before the code goes through to the

next stage. This helps in avoiding simple mistakes from

taking the attention of the reviewers and attract their

attention to other issues of immense importance.

• Continuous Integration: I have integrated continuous

integration systems that check the code and run tests as

soon as some changes are made. This allows problems to

be caught early and also keeps up the quality of code in

the project high.

2) Establish Review Guideli

• Create Checklists: Create long list checklists that will also

reference overall areas to focus on specifically for coding

standards, security, performance, and maintainability.

Adapt these checklists for the task and keep them as your

reference updated with the project needs.

• Documentation: Ensure you develop and update properly

a document that outlines the reviews’ protocols and makes

it easily available to the extend of being a constant

reminder to all. This can include some examples of what

good sample and features can and should contain and what

weaknesses and mistakes one should beware of.

• Standardization: Make certain that all the participants of

the team know and follow the rules and regulation to

ensure better and standard code quality all through the

project.

3) Foster a Collaborative Culture

• Constructive Feedback: Thoroughly explain and

recommend that people giving their reviews should be

polite. It is still better to use positive language and make

recommendations rather than focusing on the problematic

aspects (Ramani et al., 2018).

• Blame - Free Environment: Support the view that it is okay

to make mistakes as they proffer learning experiences. Do

not use the ‘name and shame’ method but rather work on

making all individuals better in their work.

• Pair Programming: It is recommended that pair

programming in the areas of the code that are important or

complicated should be implemented, where two

programmers log in at one workstation.

• Regular Meetings: One of the recommendations entails

regualr meetings that will involve the team with a view of

outlining the findings of the review session, sharing

knowledge as well as dealing with cyclic problems or

concerns.

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1740

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4) Involve Diverse Perspectives

• Cross - Functional Teams: Involves cross - functional

team members including the front - end developers, back

- end developers, security engineers as well as QA testers

in code reviews to make thorough checks.

• Rotation of Reviewers: Swap reviewers often so that they

do not become too biased and look at the code reviews in

a rather different way. It also entails viewing a wider field

as will be explained later on thus assisting in identifying a

more diverse array of problems.

• Encourage Inclusivity: Make sure that everyone on the

team is encouraged to give his/her input during code

reviews and does not feel inferior because he/she is less

experienced.

5) Prioritize Code Quality

• Set Quality Gates: Establish quality check points that

through, code has to pass before it is merged. These can

include passing the automated tests, getting to code

coverage thresholds, and meeting performance goals.

• Allocate Time: Make sure that proper amount of time is

available for the code inspection process. This should not

be a reason to quickly write reviews in order to meet set

time lines as this compromises the quality of the code.

• Quality Metrics: Review the ways and means to quantify

indicators of quality that are traceable from feedback

given by one or more independent reviews such as the

number of defects identified in given reviews for

evaluating standards of code quality maintained by

developers.

6) Continuous Improvement

• Feedback Loop: Put in place a way of gathering opinions

on the conduciveness of the environment for code reviews.

Make it a practice to seek feedback on a regular basis from

the developers and the reviewers looking at the possible

changes that need to be implemented.

• Metrics and Analysis: The metrics concerning code

reviews must be tracked and include review time, the

number of defects observed, and the activity of the

reviewers. Apply these measurements in order to evaluate

the efficiency of the code review process and to define the

trends and potential problems.

• Training and Development: To enhance the quality of

codes that are to be generated by the team members in

future, it is important to have a code review process that is

well enhanced for the team so as to be able to avail

continuous training and development programs. This can

involve such things as workshops, which can be like

webinars, and courses related to new methods and tools on

the Internet.

• Celebrate Successes: Learn from successfully completed

code reviews and other enhanced software quality. You

can praise the work of reviewers and developers who

ensure high quality and make a positive example and boost

the team’s morale.

• Experimentation and Adaptation: Support trail of different

code review approaches and tools. The process might have

to be fluid and be changed as found fit for the team and

project and be aware of new methodology/technologies

which might improve the review process.

Figure 4: Static Code Analysis

Table 2: Best Practices for Effective Code Reviews

Best Practice Description

Small and Frequent Reviews

Incremental

Changes

Encourage developers to submit smaller,

more frequent code changes for review.

Smaller changes are easier to review and

reduce the risk of introducing significant

defects.

Batch Reviews

Avoid large batch reviews as they can be

overwhelming and prone to oversight.

Smaller reviews facilitate quicker feedback

and more manageable review sessions.

Clear Communication Channels

Review Tools

Utilize code review tools that support clear

communication, such as GitHub, GitLab, or

Bitbucket. These tools allow inline comments

and discussions directly within the code,

making it easier to track feedback and

resolutions.

Documentation of

Decisions

Document the reasoning behind significant

code review decisions and changes. This

helps maintain a record of the rationale for

future reference and onboarding new team

members.

Encourage Pre - Review Practices

Self - Review

Encourage developers to self - review their

code before submitting it for peer review.

This helps catch obvious errors and ensures

the code is in the best possible state before

others review it.

Peer Programming

Sessions

Implement peer programming or "buddy"

review sessions where two developers work

together on writing and reviewing code in

real - time. This fosters collaboration and

immediate feedback.

Feedback on Reviews

Reviewer

Feedback

Provide feedback to reviewers on their review

quality and thoroughness. This can help

reviewers improve their skills and ensure a

consistent review standard across the team.

Developer

Response

Encourage developers to respond

constructively to review feedback and engage

in discussions to clarify and address

concerns. This promotes mutual

understanding and shared goals for code

quality.

Leveraging AI in Code Reviews

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1741

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Best Practice Description

AI Assistance

Integrate AI - powered tools that can provide

intelligent code suggestions, identify patterns

of defects, and predict areas prone to errors.

Tools like Amazon CodeGuru, DeepCode,

and Codota can enhance the review process

with data - driven insights.

Continuous

Learning Models

Utilize continuous learning models that adapt

and improve over time based on the feedback

and outcomes of previous code reviews. This

ensures the AI tools become more effective

and accurate.

Leveraging AI and ML for Code Review

While coming to manual code reviews they are undoubtedly

helpful, but they are time - consuming necessarily and are

prone to errors that a human being might commit (Luxton -

Reilly et al., 2018). AI and ML bring a promising supplement

to conventional code review techniques; these methods may

help to deal with the mentioned issues and improve the

effectiveness and reliability of the review.

Automated code reviews helps AI to review source code by

analyzing the code base with the help of predefined rules and

coding standards as well as previously failed code reviews

data. These tools can find various types of defects pertaining

to code quality, security, performance, and the like that are

not easily defined in terms of formal rules.

Through the AI and ML technologies in code review, the

more objective and discernible reviews can be done by

machines while human reviewers concentrate in complex and

relative aspects of software evaluations. The use of AUT is

not only a much quicker method of review but also yields

improved results, thus increasing the quality of the software

produced with less flaws and openings to a breach.

Code review tools also become more sophisticated using AI

and ML techniques (Shah, 2019). They can update

information and results that improve and perfect the service

of presenting useful information promptly. This, in turn,

boosts the effectiveness of the tools because the

recommendations they generate are obtained through a

refined process based on the CODE’s characteristics and its

changing needs through subsequent iterations.

Even though the utilization of AI in code reviewing has

numerous benefits, it should always be stressed that AI does

not replace but enhances human judgment (Luxton, 2014). It

is always necessary for a human to make a decision, to read

between the lines, to juge and make decision and to make sure

that code refactoring is in line with overall project and users

necessities.

Figure 5: AI based code review system

Some potential applications of AI and ML in code review

include: Some potential applications of AI and ML in code

review include:

1) Static Code Analysis: Static source code analysis can be

done without actually running the code; this speeds up

the code evaluation process, and detects such problems

as syntax error, code odor, insecurity, and

noncompliance to the standard coding style.

2) Code Similarity Detection: ML algorithms can actually

be taught to identify code clones or duplicated code

which in turn makes code maintainability to become a

problem and technical debt as well.

3) Code Comprehension: The pragmatic approach in the

analysis of code comments, the names of variables and

functions may use the methods of natural language

processing for the evaluation of the quality of the naming

or for the identification of potential problems in this

relation.

4) Code Refactoring Suggestions: Some of these tools are

capable of advising the programmer of areas that require

refactoring due to poor readabilty, complexity of

maintaince, or for optimization of performance in

accordance with set standards and practices.

5) Personalized Code Review Recommendations: The ML

models can be trained on historical data of code review

to suggest the areas of the code review which can be

reviewed by an individual and it can also prioritize the

issues according to choice of the particular reviewer and

need of the particular project.

AI and ML Impact in Code Review

AI and ML in Code Review Description

Real - time Code Analysis

AI and ML enable real - time analysis of code during development, offering

immediate feedback to developers. This proactive approach helps detect and address

issues early.

Continuous Learning and Improvement

AI and ML models continuously learn from new data and feedback, refining their

algorithms over time. This iterative process enhances accuracy and relevance in code

review.

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1742

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

AI and ML in Code Review Description

Enhanced Development Processes

Integrating AI and ML enhances software development by improving code quality,

streamlining workflows, and reducing manual effort. It fosters a culture of continuous

improvement and innovation.

Complementing Human Expertise

These technologies automate repetitive tasks and provide valuable insights,

complementing human expertise in making informed decisions and driving better

software development outcomes.

Proposed Architecture for AI - Assisted Code Review

To effectively integrate AI - assisted code review into existing

development workflows, we propose the following high -

level architecture:

1) Code Repository: The object of the creation, namely the

implementation together with the related metadata (for

example, the changes history, issues tracker) is placed in

a version control system, typically – Git.

2) Code Review Tool: There is a code review tool (for

example Gerrit, use pull requests in Github) that tracks

changes and helps developers to submit them for review

and discuss on them.

3) AI - Assisted Code Review Engine: This component

includes a number of AI and ML models basing on the

results of previous code reviews, coding standards as

well as coding best practices. Does the evaluation of code

changes to propose advice, caution, or suggested

enhancements and recommendations based on the

information that is provided.

4) Code Analysis Pipeline: CI/CD pipe - line is also

deployed to initiate the AI - based code analysis

mechanism, collate the analysis findings, and

disseminate the same to the reviewers through the code

review application.

5) Feedback Loop: The reviewer decisions such as

approval, rejection and comments about the code review

changes are gathered and incorporated into the AI models

to retrain the AI for continuous improvement of the

recommendations regarding the code changes.

The integration of code review with AI tools makes the

possibility of integrating AI with the existing development

processes easy since it is done in a way that accommodates

the human factor as well.

Table 3: Enhancement to proposed architecture

Enhancements to Proposed Architecture Description

Integration with Development Tools
Seamless integration with IDEs and development environments to provide real -

time feedback to developers during code creation and modification.

Advanced AI Models

Implementation of advanced AI techniques like NLP for better code

comprehension and sentiment analysis of comments, improving the depth of AI -

assisted reviews.

Scalability and Performance
Optimization of the AI - assisted code review engine to handle large codebases

and frequent code submissions efficiently, ensuring reliable performance at scale.

Security and Privacy

Implementation of robust security measures to safeguard sensitive code and

review data processed by AI models, complying with stringent privacy

regulations.

Visualization and Reporting
Integration of visualization features and detailed reports in the code review tool to

summarize AI analysis findings, aiding easier review and decision - making.

Real - World Example: Amazon Web Services Projects

While serving at the Software Development Engineer

position at Amazon Web Services (AWS), I was involved in

numerous projects regarding cloud computing services as

well as structures (Quadri, 2017). An example of it was

creating and continuously supporting a solution for

containerized applications’ coordination and management in

availability zones and regions.

To achieve better results in this project, we used a method of

a comprehensive code review to discuss the quality of the

code. Any change made to the code also had to first pass

through a peer review where it would be checked and changed

before it merged with the mainstream code (Allamanis et al.,

2014). Personally, I used Git – a version control system – to

enable an efficient code review by synchronizing the tool used

with the version control system we were using

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1743

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

To enhance the code review process, we explored the use of

AI - assisted code review tools (Yu et al., 2019). One tool we

evaluated was Amazon CodeGuru, an AI - powered service

that provides intelligent recommendations for improving code

quality and identifying potential issues. Here's an example of

how we leveraged Amazon CodeGuru in our code review

process:

python

Example Python code snippet

import boto3

def lambda_handler (event, context):

 # Create an S3 client

 s3 = boto3. client ('s3')

 # Get the bucket and object key from the event

 bucket = event ['Records'] [0] ['s3'] ['bucket'] ['name']

 key = event ['Records'] [0] ['s3'] ['object'] ['key']

 # Download the object from S3

 try:

 response = s3. get_object (Bucket=bucket, Key=key)

 data = response ['Body']. read ()

 # Process the data

 #. . .

 except Exception as e:

 print (f"Error: {e}")

 raise e

In this example, Amazon CodeGuru could provide

recommendations for improving code quality, such as:

1) Resource Leak: The response object from the s3.

get_object call should be closed to release system

resources.

2) Exception Handling: The broad Exception catch could

mask important exceptions, making it harder to diagnose

and fix issues.

3) Logging: Adding more informative logging statements

could improve debugging and monitoring capabilities.

Based on these recommendations, we could refactor the code

to address the identified issues, improving its quality and

maintainability

python

Refactored code with improvements

import boto3

import logging

logger = logging. getLogger (__name__)

def lambda_handler (event, context):

 # Create an S3 client

 s3 = boto3. client ('s3')

 # Get the bucket and object key from the event

 bucket = event ['Records'] [0] ['s3'] ['bucket'] ['name']

 key = event ['Records'] [0] ['s3'] ['object'] ['key']

 # Download the object from S3

 try:

 response = s3. get_object (Bucket=bucket, Key=key)

 data = response ['Body']. read ()

 # Process the data

 #. . .

 except Exception as e:

 logger. error (f"Error processing object {key} from bucket

{bucket}: {e}")

 raise

 finally:

 # Close the response object to release resources

 if response:

 response ['Body']. close ()

In this refactored version, we addressed the resource leak by

closing the response object in a finally block, improved

exception handling by logging more informative error

messages, and added a logger for better monitoring and

debugging capabilities (Melo et al., 2019).

By integrating AI - assisted code review tools like Amazon

CodeGuru into our development workflow, we were able to

identify and address potential issues more efficiently,

improving the overall quality and maintainability of our

codebase.

2. Conclusion

Code review processes play a crucial role in software

development by identifying and addressing potential issues

early in the development cycle. This proactive approach not

only improves software quality but also reduces technical

debt and enhances code maintainability. Moreover, effective

code review practices foster a collaborative environment

where team members share knowledge and best practices,

contributing to continuous improvement across the

development lifecycle.

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1744

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The integration of AI and ML techniques into code review

processes represents a significant advancement. AI - assisted

tools can offer intelligent recommendations, automate routine

checks, and analyze historical data to enhance the accuracy

and relevance of their assessments over time. By leveraging

these capabilities, organizations can streamline the review

process, allowing human reviewers to focus on higher - level

analysis and strategic decision - making.

To effectively integrate AI - assisted code review into existing

workflows, organizations should adopt a well - defined

architecture. This architecture should include robust tools for

code analysis, seamless integration with version control

systems, and mechanisms for continuous feedback and

improvement. By combining human expertise with AI -

powered analysis, teams can optimize code quality, boost

developer productivity, and enhance overall software

reliability.

As AI and ML technologies continue to evolve, we anticipate

further advancements in code review automation. Future

developments may include more personalized

recommendations tailored to individual coding styles, real -

time analysis during code creation, and predictive analytics to

anticipate potential issues before they arise. However, it's

essential to maintain a balanced approach, recognizing that AI

should support, rather than replace, human judgment and

domain expertise in code evaluation.

The impact of code review processes on software quality

hinges not only on technical practices but also on cultural

factors within the development team. Creating a culture that

values open communication, constructive feedback, and

continuous learning is crucial. By embracing best practices

and fostering collaboration among team members,

organizations can maximize the effectiveness of code reviews

in improving software reliability and maintaining high

standards of code craftsmanship.

In conclusion, the effective integration of AI and ML into

code review processes offers promising opportunities for

enhancing software quality and developer efficiency. By

combining the strengths of AI - driven automation with

human judgment and collaborative effort, organizations can

achieve significant improvements in code reliability,

maintainability, and overall software performance.

Embracing these advancements while upholding cultural

values of teamwork and continuous improvement will be key

to realizing the full potential of code review practices in

modern software development.

Flow Chart: Integration of AI and ML in Code Review

Processes

References

[1] Allamanis, M., Barr, E. T., Bird, C., & Sutton, C. (2014,

November). Learning natural coding conventions. In

Proceedings of the 22nd acm sigsoft international

symposium on foundations of software engineering

(pp.281 - 293).

[2] Kononenko, O., Baysal, O., & Godfrey, M. W. (2016,

May). Code review quality: How developers see it. In

Proceedings of the 38th international conference on

software engineering (pp.1028 - 1038).

[3] Luxton, D. D. (2014). Recommendations for the ethical

use and design of artificial intelligent care providers.

Artificial intelligence in medicine, 62 (1), 1 - 10.

[4] Luxton - Reilly, A., Lewis, A., & Plimmer, B. (2018,

January). Comparing sequential and parallel code

review techniques for formative feedback. In

Proceedings of the 20th Australasian Computing

Education Conference (pp.45 - 52).

[5] McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E.

(2016). An empirical study of the impact of modern

code review practices on software quality. Empirical

Software Engineering, 21, 2146 - 2189.

[6] Melo, H., Coelho, R., & Treude, C. (2019, February).

Unveiling exception handling guidelines adopted by

java developers. In 2019 IEEE 26th International

conference on software analysis, evolution and

reengineering (SANER) (pp.128 - 139). IEEE.

[7] Quadri, S. (2017). Cloud computing: migrating to the

cloud, Amazon Web Services and Google Cloud

Platform (Master's thesis, S. Quadri).

[8] Ramani, S., Könings, K. D., Mann, K. V., Pisarski, E.

E., & van der Vleuten, C. P. (2018). About politeness,

face, and feedback: exploring resident and faculty

perceptions of how institutional feedback culture

influences feedback practices. Academic Medicine, 93

(9), 1348 - 1358.

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1745

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 2, February 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[9] Robertson, J., Fossaceca, J. M., & Bennett, K. W.

(2021). A cloud - based computing framework for

artificial intelligence innovation in support of

multidomain operations. IEEE Transactions on

Engineering Management, 69 (6), 3913 - 3922.

[10] Shah, V. (2019). Towards Efficient Software

Engineering in the Era of AI and ML: Best Practices and

Challenges. INTERNATIONAL JOURNAL OF

COMPUTER SCIENCE AND TECHNOLOGY, 3 (3),

63 - 78.

[11] Wrenn, B., Kotler, P., & Shawchuck, N. (2010).

Building strong congregations: Attracting, serving, and

developing your membership. Autumn House

Publishing.

[12] Yu, Z., Carver, J. C., Rothermel, G., & Menzies, T.

(2019). Searching for better test case prioritization

schemes: A case study of ai - assisted systematic

literature review. arXiv preprint arXiv: 1909.07249.

[13] Bacchelli, A., & Bird, C. (2013, May). Expectations,

outcomes, and challenges of modern code review. In

2013 35th International Conference on Software

Engineering (ICSE) (pp.712 - 721). IEEE.

Paper ID: SR24716230727 DOI: https://dx.doi.org/10.21275/SR24716230727 1746

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

