
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Linux Kernel Input Subsystem: Architecture and 

Programming Interface 
 

Anish Kumar 
 

Email: yesanishhere[at]gmail.com 

 

 

Abstract: This document provides a comprehensive overview of the Linux kernel input subsystem, covering its architecture, 

implementation, and programming interface. The paper examines the historical development, core components, and event handling 

mechanisms of the input subsystem. It aims to explain the relationship between device drivers, event handlers, and user-space applications 

while providing practical examples of driver implementation and debugging techniques. 

 

Keywords: Linux kernel, Input subsystem, Device drivers, Event handling, Input devices. 

 

1. Introduction 
 

The Linux input subsystem serves as a critical component of 

the Linux kernel, managing various input devices including 

keyboards, mice, joysticks, tablets, and other user interaction 

devices. This subsystem is essential because these devices 

typically interface through special hardware interfaces that 

require kernel-level protection and management. The kernel 

then provides a consistent, device-independent interface to 

user space through well-defined APIs. 

 

2. Historical Development 
 

The evolution of the Linux input subsystem can be traced 

through three distinct phases, each marking significant 

developments in its architecture and capabilities. 

 

Development Phases 

a) Initial Phase (1991-1999): 

• Linux kernel development begins. 

• Basic input handling through direct device access. 

• Limited device support and standardization. 

 

b) Development Phase (1999-2003): 

• Input subsystem conceptualization by Vojtech Pavlik. 

• Initial integration in kernel 2.4. 

• Development of core input architecture. 

• Implementation of basic device handlers. 

 

c) Maturation Phase (2003-Present): 

• Full integration in kernel 2.6. 

• Standardized event handling. 

• Extended device support. 

• Modern input framework development. 

• Enhanced user-space interfaces. 

 

3. Architecture Overview 
 

The Linux input subsystem follows a layered architecture that 

facilitates communication between hardware devices and 

user-space applications. 

 

 
Figure 1: Linux Input Subsystem Architecture 

 

 

1) Core Architecture 

The input subsystem's core functionality is implemented in 

the input module, serving as a communication bridge between 

device drivers and event handlers. 

 

2) Core Components 

The system consists of three main layers: 

 

a) Device Driver Layer: 

• Interfaces with specific hardware. 

• Translates device-specific signals into standard input 

events. 

• Handles device initialization and resource management. 

 

b) Input Core Layer: 

• Manages device registration and event routing. 

• Provides APIs for drivers to report events. 

• Handles event synchronization and distribution. 

 

c) Event Handler Layer: 

• Provides interface to user-space applications. 

• Processes and distributes events. 

• Manages device nodes in /dev/input. 

 

3) Event Processing Pipeline 

The event processing pipeline follows a specific path through 

the system, ensuring proper handling of input events from 

hardware to user space. 

 

Paper ID: SR230311123408 DOI: https://dx.doi.org/10.21275/SR230311123408 1852 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:yesanishhere@gmail.com


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

a) Hardware Event Generation 

• Physical input device generates signals. 

• Device-specific interrupts are triggered. 

• Hardware events are captured by device drivers. 

 

b) Event Translation 

 

 
c) Event Handling 

• Events are processed by input_handle_event(). 

• Event disposition is determined. 

• Events are filtered and routed to appropriate handlers. 

 

4) Event Structure 

Events are represented using the input_event structure: 

 

 

5) Event Types 

The system supports various event types: 
Event_Type Description 

EV_KEY Key events (Keyboard/button presses) 

EV_REL Relative events (Mouse movement) 

EV_ABS Absolute events (Touchscreen/joystick) 

EV_MSC Miscellaneous events 

EV_SW Switch events (Device state changes) 

 

6) Device Registration 

Devices are registered with the input subsystem using: 

 

7) Event Flow Control 

The input subsystem implements event flow control through: 

 

a) Event Filtering: 

• Device capability checking. 

• Event type validation. 

• Value range verification. 

 

b) Event Routing: 

• Direct event passing to handlers. 

• Event synchronization. 

• Event queueing and batching. 

 

c) Handler Management: 

• Handler registration/unregistration. 

• Event distribution to multiple handlers. 

• Handler priority management. 

 

8) Device Capabilities 

Device capabilities are managed through bitmap flags: 

 
 
4. Device Driver Implementation 
 

Implementing an input device driver requires specific 

structures and functions provided by the input subsystem. 

 

1) Basic Driver Structure 

A minimal input device driver requires: 

Paper ID: SR230311123408 DOI: https://dx.doi.org/10.21275/SR230311123408 1853 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 3, March 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
2) Event Reporting 

Events are reported using specific functions: 

• input_report_key(): For key/button events. 

• input_report_rel(): For relative movements. 

• input_report_abs(): For absolute positions. 

• input_sync(): Marks end of event report. 

 

5. Testing and Debugging 
 

Testing input device drivers requires verification at multiple 

levels to ensure proper functionality. 

 

a) Event Testing 

 

Testing input device drivers requires verification at multiple 

levels: 

 

Basic Event Testing: 

 
 

b) Device Verification 

Key Points to Verify: 

• Correct event types and codes are reported. 

• Events are properly synchronized. 

• Timing characteristics are appropriate. 

• Resource cleanup on device removal. 

 

6. Conclusion 
 

The Linux input subsystem provides a flexible and powerful 

framework for handling input events from a wide range of 

devices. Its layered architecture and standardized interfaces 

allow for easy integration of new input devices while 

providing a consistent interface for user-space applications. 

As input technologies continue to evolve, the input 

subsystem's extensible design ensures that the Linux kernel 

can adapt to support new input paradigms and devices. 

 

 

References 
 

[1] Linux Kernel Documentation, "Linux input subsystem," 

[Online]. Available: 

https://www.kernel.org/doc/Documentation/input/input.t

xt 

[2] Linux Kernel Documentation, "Input programming 

interface," [Online]. Available: 

https://www.kernel.org/doc/Documentation/input/input-

programming.txt 

[3] L. Fu, L. Xie, and Z. Zhou, "The design of touch screen 

driver based on Linux input subsystem and S3C6410 

platform," in International Conference on Information 

Science and Technology Application, 2013. 

Paper ID: SR230311123408 DOI: https://dx.doi.org/10.21275/SR230311123408 1854 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://www.kernel.org/doc/Documentation/input/input.txt
https://www.kernel.org/doc/Documentation/input/input.txt
https://www.kernel.org/doc/Documentation/input/input.txt
https://www.kernel.org/doc/Documentation/input/input.txt
https://www.kernel.org/doc/Documentation/input/input-programming.txt
https://www.kernel.org/doc/Documentation/input/input-programming.txt
https://www.kernel.org/doc/Documentation/input/input-programming.txt
https://www.kernel.org/doc/Documentation/input/input-programming.txt



