
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

AI-Powered Debugging: Exploring Machine

Learning Techniques for Identifying and Resolving

Software Errors

Venkata Baladari

Software Developer, Newark, Delaware, USA

Email: vrssp.baladari[at]gmail.com

Abstract: Software development is being revolutionized by AI - powered debugging, which uses machine learning and deep learning

methods to automate the discovery, identification, and correction of errors. Traditional debugging techniques are labour - intensive and

time - consuming, whereas AI - assisted solutions can inspect extensive code archives, identify recurring patterns, and propose on - the -

fly corrections, ultimately enhancing software stability and shortening the debugging process. Error detection is improved by supervised

and unsupervised learning models, and code repair is automated through reinforcement learning and deep learning, thereby streamlining

the debugging process. AI debugging tools are being increasingly incorporated into DevOps and CI/CD pipelines, facilitating continuous

monitoring and proactive issue resolution. Challenges including explainability, data quality, and domain - specific constraints persist as

major issues. For developers to have confidence in AI - generated debugging suggestions, it's essential to provide transparency, which

will necessitate progress in the field of explainable AI (XAI). To be effective, AI debugging models need to continuously adapt to changing

software environments. Future advances will concentrate on fine - tuning automated code repair, enhancing AI interpretability, and

maximizing debugging efficiency in complex software projects. As ongoing research and integration advance, AI - driven debugging is

poised to transform software maintenance by streamlining error resolution, making it both swifter and more dependable, and increasingly

intelligent.

Keywords: Machine Learning; AI - Powered; Artificial intelligence; Explainable AI, Debugging, AI - Powered Debugging.

1. Introduction

The software development process is complex and requires a

high degree of precision, efficiency, and dependability. The

most labor - intensive and intricate part of writing code

involves tracking down and correcting mistakes that impact

the way software operates. Manual debugging techniques

involve considerable human intervention, resulting in a

laborious and error - prone process. In light of increasing

software complexity, there is a significant need for automated

debugging tools. The advent of Artificial Intelligence and

Machine Learning has revolutionized software debugging

with new, forward - thinking methods, thereby altering how

developers detect, study, and correct errors [2] [3].

This study investigates the benefits and limitations of

artificial intelligence - based debugging methods, as well as

their potential to boost software development processes,

particularly in relation to workflow improvement. The

objective of the study is to gain a deeper understanding of the

performance of AI - driven debugging software and its

differences compared to standard debugging techniques [2]

[3].

2. Understanding AI - Powered Debugging

2.1 The Need for Automation in Debugging

Software development cycles have evolved to be more time -

pressured, requiring quick releases without compromising on

software excellence. Traditional manual debugging methods,

such as reviewing logs, employing print statements, and

relying on breakpoints, are no longer adequate to meet the

needs of contemporary software development requirements.

As the complexity of applications increases, their debugging

processes need to adapt and improve accordingly.

One of the main difficulties of manual debugging stems from

its dependence on human skill and instinct. Skilled developers

frequently invest a considerable amount of time pinpointing

the underlying reason for software malfunctions, typically

examining tens of thousands of lines of code in the process.

Manual debugging also carries the risk of developers

overlooking subtle or non - apparent mistakes. Inefficient

processes lead to postponed software deliveries and

heightened maintenance expenditures.

Automated debugging resolves these issues through the

utilization of AI - driven software, which systematically

examines code, identifies irregularities and also proposes

possible solutions. Artificial intelligence uses pattern

recognition and predictive analysis to identify potential

software bugs before they become major problems.

Automation also guarantees uniformity in error identification,

minimizing the range of outcomes resulting from human bias.

In high - stakes industries like finance, healthcare, and

cybersecurity, automated debugging is pivotal in preventing

software failures that can have far - reaching consequences

[7], [8], [10].

2.2 Key AI Techniques in Software Error Detection

Machine learning - based pattern recognition is one of the

most commonly utilized AI techniques for error detection.

This approach involves training models using large datasets

that include historical bug reports, error logs, and software

patches. Analyzing past software defects enables machine

learning algorithms to detect recurring patterns that signify

Paper ID: SR230314114650 DOI: https://dx.doi.org/10.21275/SR230314114650 1864

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

potential problems in newly written code. These models

progressively enhance their performance over time as they are

exposed to an increasing amount of data, thereby becoming

more effective in forecasting and identifying errors.

Traditional debugging techniques often miss common syntax

errors, memory leaks, and performance issues, but pattern

recognition can effectively identify these problems [4], [6],

[8], [9].

Unsupervised anomaly detection is a crucial AI - powered

method that enables the recognition of unforeseen actions

occurring during software operation [13]. Unlike supervised

learning models that depend on pre - labelled datasets,

unsupervised learning algorithms identify anomalies in

normal system behavior without prior knowledge of specific

faults. Software execution patterns are frequently grouped

using clustering techniques and auto - encoders, which can

help identify outliers that may signify potential bugs. This

method is particularly beneficial for identifying runtime

errors, security vulnerabilities, and infrequent yet crucial

software flaws that conventional debugging techniques may

not be able to detect.

Besides pattern recognition and anomaly detection, Natural

Language Processing (NLP) has a vital role in error analysis.

Advanced debugging tools incorporate NLP models to

scrutinize log files, error messages, and documentation in

order to derive significant insights. AI systems can decipher

intricate and unclear error messages, converting them into

more actionable debugging recommendations for

programmers. By deciphering human - readable text, tools

driven by NLP facilitate the connection between user error

messages and their underlying sources, thereby streamlining

the debugging process to be more intuitive and less labor -

intensive [6], [8], [9].

Adaptive debugging strategies are further improved by the AI

- driven approach known as reinforcement learning. In this

approach, AI models learn the best debugging actions by

interacting with the software environment and receiving

feedback based on their performance. Reinforcement learning

allows systems for debugging to modify and refine their

methods over time, resulting in enhanced capabilities to

detect and correct software errors. In dynamic and rapidly

changing software environments, this method is particularly

beneficial, especially where error patterns often shift and

adjust frequently [14].

Automated code repair is increasingly relying on deep

learning methods, including neural networks and

transformers [11], [12], [15]. These models study large

databases of source code to discover common techniques used

by developers to fix particular kinds of errors. Artificial

intelligence - powered tools can aid developers in

automatically resolving coding errors by creating possible

solutions, thus eliminating the need for manual input. This

approach substantially decreases debugging time and

improves software dependability by offering tailored

solutions based on thorough data examination.

2.3 Traditional vs. AI - Driven Debugging Approaches

Historically, software debugging has depended on manual

procedures that necessitate developers to methodically

pinpoint, examine, and rectify errors within their code.

Conventional methods for identifying issues often include

static code analysis, where developers review the source code

for possible bugs, or dynamic debugging, which involves

executing the program and observing its behavior to identify

irregularities. Several commonly used debugging methods

involve placing breakpoints, inserting print statements, and

utilizing logging capabilities to monitor program execution.

These methods are effective for small - scale projects, but they

are impractical for large and intricate software systems.

Manual debugging is a labor - intensive process which relies

heavily on a developer's expertise and is vulnerable to human

error, rendering it unsuitable for contemporary, extensive

applications requiring swift rectification of errors [6].

In contrast, AI - driven debugging automates the debugging

process, thereby substantially increasing efficiency and

precision. Machine learning algorithms integrated into AI -

powered debugging tools enable them to automatically scan

codebases, recognize patterns, and pinpoint potential errors,

eliminating the need for human involvement. These systems

can process enormous amounts of code in real time, thereby

shortening the time required for debugging and enhancing

overall software dependability. AI - driven methods use

predictive analytics to anticipate future software faults, giving

developers the opportunity to resolve problems ahead of time.

Machine learning algorithms, trained on large datasets of

historical software defects, are capable of identifying frequent

coding mistakes and recommending suitable corrections. AI -

driven debugging tools use NLP to interpret complicated error

messages and logs, converting them into clearer

recommendations for programmers [6].

The primary distinction between conventional and AI - based

debugging techniques is rooted in their scalability and

automation functionalities. Conventional debugging

techniques often require developers to manually track and

rectify mistakes, rendering them impractical for extensive

projects. In contrast, automated debugging using artificial

intelligence powers most of the error detection and resolution

process, allowing developers to concentrate on more strategic

tasks. Traditional debugging methods can be inconsistent,

particularly when human developers try to resolve existing

issues, as they may overlook small problems or inadvertently

introduce new errors. Nevertheless, AI - powered debugging

tools adopt data - driven methods to reduce the likelihood of

human mistake [6].

Although AI - driven debugging offers numerous benefits,

occasionally, AI models may generate incorrect error

notifications, mistakenly flagging innocuous code sections as

problematic, or struggle to accurately comprehend intricate

software logic. Explainability is a major issue, as developers

could find it difficult to comprehend how AI algorithms came

up with particular debugging suggestions. Ongoing

developments in explainable AI (XAI) and model

interpretability are addressing these concerns, thereby

enhancing the reliability and user - friendliness of AI - driven

debugging processes [1].

Paper ID: SR230314114650 DOI: https://dx.doi.org/10.21275/SR230314114650 1865

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Machine Learning Techniques for

Debugging

3.1 Supervised Learning for Error Detection

Machine learning techniques frequently employed for

software error detection include supervised learning. This

method utilizes labeled datasets, which consist of historical

code errors and their corresponding corrections, to train and

develop models. Supervised models can accurately identify

new software errors by drawing upon prior experience from

previous debugging cases. These models apply classification

and regression algorithms to forecast potential software flaws

based on characteristics derived from the source code.

Supervised learning in debugging offers a significant benefit

through its capacity to deliver precise and clearly defined

information regarding software problems. Models trained on

extensive collections of previously identified bugs are

capable of identifying similar faults in novel codebases. Tools

utilizing supervised learning techniques, like static code

analyzers, scan source code to identify patterns that match

known bugs. Commonly employed techniques for identifying

defect - prone areas in software projects include decision

trees, Support Vector Machines (SVM), and neural networks,

thereby enabling developers to anticipate and resolve issues

prior to their escalation [15].

The success of supervised learning largely hinges on the

quality and breadth of the training data used. The model may

struggle to generalize effectively to new and unrecognized

bug patterns if it is trained on a restricted collection of errors.

It is essential to keep datasets current and include newly found

software flaws in order to enhance the model's performance

over time. Supervised learning continues to serve as a core

method in AI - driven debugging, enabling developers to

rapidly pinpoint and rectify errors with minimal hands - on

involvement.

3.2 Unsupervised Learning in Anomaly Identification

Unlike supervised learning, unsupervised learning does not

require labelled data. It identifies patterns and irregularities in

software execution by detecting behavior that deviates from

the norm. Debugging heavily relies on anomaly detection,

particularly in pinpointing unanticipated software glitches

that have not been encountered before.

Several clustering algorithms, including k - means and

Density - Based Spatial Clustering of Applications with Noise

(DBSCAN), are crucial for categorizing comparable code

patterns and pinpointing anomalies that could signal possible

errors. Neural networks known as auto - encoders, which are

utilized for anomaly detection, acquire concise

representations of software behavior and highlight

discrepancies that may indicate potential errors. These models

are capable of identifying uncommon or intricate problems,

like security vulnerabilities and performance bottlenecks, that

do not follow regular or predictable patterns [15], [16].

Figure 1: k - means and DBSCAN (Accessed from https: //doi. org/10.1016/j. jocs.2021.101445)

Unsupervised learning in debugging offers significant

advantages, particularly its capacity to identify previously

never encountered bugs. Conventional debugging techniques

rely heavily on established guidelines, rendering them

insufficient in addressing newly arising software weaknesses.

In contrast, unsupervised models are able to adjust

automatically to shifting software settings, enabling them to

detect irregularities instantly.

Unsupervised learning still presents challenges, including

notably high false - positive rates, which can lead to normal

software variations being incorrectly identified as errors. To

accurately identify anomalies, it is crucial to make precise

threshold adjustments in fine - tuning detection models,

thereby striking a balance between identifying genuine

defects and avoiding excessive false alarm notifications.

Despite the lack of supervision, unsupervised learning retains

its potential to detect and reveal previously unknown software

flaws.

3.3 Reinforcement Learning for Adaptive Debugging

Reinforcement learning enables models to support an

adaptive debugging approach through trial and error based

learning. Distinguishing it from supervised and unsupervised

learning, reinforcement learning employs an agent - based

system through which models interface with a software

environment and receive feedback in the form of rewards or

penalties. This enables debugging models to adapt their

approaches in real - time and enhance their capacity to

identify and rectify errors over the course of time [14].

In a real - life based debugging system, a continuous agent

examines various debugging steps, including changing code

parts, executing test examples, and reviewing execution

records. Repeated exposure enables the model to determine

which actions are most effective in resolving bugs

successfully. A Reinforcement Learning agent could be

trained to recommend the most efficient debugging

procedures based on past instances, thus streamlining the

Paper ID: SR230314114650 DOI: https://dx.doi.org/10.21275/SR230314114650 1866

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

debugging process and minimizing the requirement for

manual involvement, as shown in prior cases.

Reinforcement learning is especially beneficial in dynamic

software environments, where new bug patterns typically

arise regularly. A reinforcement learning - based debugging

system continuously updates its knowledge to adapt to

emerging programming errors and modify its approaches in

response. Additionally, reinforcement learning can be

integrated with other AI methods to boost its efficacy,

including leveraging NLP for improved error message

analysis or deep learning for automated patch creation [6],

[11], [12], [14].

Training reinforcement learning models effectively

necessitates significant computational resources and a

substantial amount of time. Implementing a new debugging

approach often requires a lot of trial and error, which can

make the initial process very expensive. Ensuring that

reinforcement learning agents do not recommend inaccurate

or unproductive debugging actions remains a challenge.

Despite its current limitations, RL - driven debugging has the

potential to significantly improve the automation of software

maintenance and the optimization of error resolution

strategies.

3.4 Deep Learning Approaches for Automated Code

Fixing

Deep learning has significantly impacted debugging

capabilities by allowing AI models not only to identify

software faults but also to recommend and implement

corrective actions. Unlike conventional debugging techniques

that concentrate on pinpointing errors, advanced deep

learning models employ sophisticated neural networks to

automatically produce corrected versions of flawed code.

This approach substantially shortens the debugging

timeframe and lessens the workload for developers in

resolving faults [11], [12], [15].

Transformer - based models, like DeepCode and Codex from

OpenAI, are showing great potential for debugging by

examining code fragments and suggesting modifications.

These models are trained on extensive collections of source

code and debugging logs, enabling them to grasp the purpose

behind the code and produce contextually accurate

corrections. Error detection and correction in code have also

been facilitated by the application of Recurrent Neural

Networks (RNNs) and Convolutional Neural Networks

(CNNs), which help identify structural problems within the

code [15], [17], [18].

Sequence - to - sequence neural networks, a type of generative

model, facilitate automated code rectification by forecasting

absent or flawed code segments based on adjacent context.

These models are also capable of examining software patches

from open - source repositories and determining the most

effective methods for correcting prevalent programming

mistakes. Developers can get real - time recommendations for

enhancing code quality by incorporating deep learning into

their debugging software, thereby decreasing their

dependence on manual debugging methods [5], [11], [12].

Deep learning has significant advantages but also poses

difficulties, particularly in terms of interpretability and

generalization. Automated solutions generated by AI may not

always adhere to established coding standards, and there is a

risk of introducing unforeseen consequences if the model

misreads the software's underlying logic. Furthermore,

training deep learning models for debugging purposes

necessitates access to substantial, diverse datasets that are not

always readily available.

Nonetheless, ongoing research in explainable AI (XAI) and

fine - tuning techniques continues to enhance the

dependability of deep learning - based debugging systems [1]

[11].

Figure 2: Explainable AI (Accessed from https: //www.netapp. com/blog/explainable - ai/)

Paper ID: SR230314114650 DOI: https://dx.doi.org/10.21275/SR230314114650 1867

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4. AI Tools and Frameworks for Debugging

4.1 Overview of AI - Powered Debugging Tools

Automated debugging tools, powered by artificial

intelligence, facilitate the automation of error detection, code

analysis, and bug resolution, while offering developers

insightful suggestions for enhancing software quality [5].

These tools employ a range of AI methods, including NLP for

deciphering error messages, machine learning models for

pattern recognition, and deep learning algorithms for

automated code correction [6], [11], [12]. Several commonly

utilized AI - driven debugging tools are included in this

category.

• DeepCode: An application utilizes machine learning

algorithms to examine code and supply instant

recommendations for error identification and

performance enhancement [17].

• Codex (OpenAI - powered models): An AI - driven

programming assistant identifies errors and creates

corrected code with the ability to comprehend the context

it is working in [18].

• BugLab: An autonomous AI debugging framework uses

research - based methods to identify and rectify software

weaknesses by drawing on past mistakes [20].

• Facebook Infer: A static analysis tool employs artificial

intelligence methods to identify potential glitches in both

mobile and backend software before it is released [21].

4.2 Benefits and Challenges of AI - Based Debugging

Implementing AI technology into debugging processes has

several advantages, making it an appealing option for

contemporary software development practices. A major

benefit is the automation of tedious debugging processes,

enabling developers to concentrate on more complex issue

resolution rather than manually tracking down mistakes.

Artificial intelligence tools can rapidly scan extensive code

repositories, identifying discrepancies, performance

roadblocks, and security weaknesses with relatively little

human involvement. Faster debugging cycles result from

improved efficiency, thereby decreasing development

expenses and shortening product launch deadlines.

A significant benefit of AI - based debugging is its ability to

predict potential issues. Unlike conventional tools that depend

on post - mortem debugging, AI systems are capable of

foreseeing potential software crashes using historical data and

past bug reports. Tackling potential problems proactively

reduces the severity of risks, thereby enhancing the

dependability and resilience of software. AI debugging tools

also enable continuous learning, allowing them to refine their

capabilities with each new software project they analyze,

resulting in improved error detection accuracy and more

intelligent debugging suggestions.

While AI - based debugging offers several benefits, it also

poses several significant challenges. The main issue at hand

is the ability to understand the debugging recommendations

provided by AI. Developers often struggle to comprehend the

logic supporting a specific debugging suggestion due to the

opaque nature of various AI models, which function similarly

to uninterpretable 'black boxes’. Lack of transparency can

cause uncertainty about fully trusting the results of AI - driven

debugging tools, particularly in situations where applications

are critical to a mission.

A major obstacle is the reliance on high - quality training data.

Effective training of AI debugging tools necessitates large

quantities of accurately labeled data, and if the training data

contains biases, omissions, or outdated information, the

resulting AI model may produce unreliable or deceptive

debugging recommendations. Having a diverse and current

dataset is essential for keeping AI - driven debugging tools

dependable.

Furthermore, AI - driven debugging tools may encounter

difficulties in dealing with domain - specific errors that

demand a profound comprehension of business principles. AI

is highly effective at detecting common software problems

including syntax errors, memory leaks, and security risks, but

it tends to struggle with more complex issues that are tied to

specific industry standards and needs, which typically require

human insight and experience [4]. Ultimately, AI debugging

solutions are most effective when combined with a hybrid

methodology, enhancing traditional debugging techniques

rather than replacing them entirely.

5. Conclusion

Software development has been revolutionized by the use of

artificial intelligence for debugging, which has streamlined

the process of identifying and resolving errors. Unlike

conventional debugging techniques which demand

considerable manual input, AI - driven solutions use machine

learning and deep learning to examine large quantities of

code, detect recurring patterns, and propose revisions in real

time. These developments decrease the time spent on

debugging, enhance the reliability of software, and allow for

the proactive prevention of errors by forecasting potential

problems before they lead to system failures. Plugging AI into

contemporary development workflows, including DevOps

and CI/CD pipelines, facilitates ongoing monitoring and fine

- tuning of software, thereby enabling quicker and more

reliable deployments.

Despite the advantages it offers, AI debugging currently

encounters difficulties, including the requirement for

explainable AI to increase transparency and confidence in AI

- generated solutions. The effectiveness of debugging models

hinges on access to high - quality training data, and the

presence of biases or data gaps can result in flawed

suggestions. Debugging tools should support and augment

human knowledge, rather than supplanting it, thereby

facilitating the identification and resolution of intricate logic

and domain - specific problems. Advancements in AI

technology will concentrate on refining the process of

automated code repair, improving the interpretability of

models, and smoothly incorporating AI debugging into

software development environments in the future. Continued

innovation in AI is poised to transform software maintenance

by streamlining the debugging process, rendering it more

efficient, intelligent, and dependable.

Paper ID: SR230314114650 DOI: https://dx.doi.org/10.21275/SR230314114650 1868

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 3, March 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] van der Velden BHM, Kuijf HJ, Gilhuijs KGA,

Viergever MA. Explainable artificial intelligence

(XAI) in deep learning - based medical image analysis.

Med Image Anal.2022; 79: 102470. doi: 10.1016/j.

media.2022.102470.

[2] Barenkamp M, Rebstadt J, Thomas O. Applications of

AI in classical software engineering. AI Perspect.2020;

2 (1): 1. doi: 10.1186/s42467 - 020 - 00005 - 4.

[3] Khaliq Z, Farooq SU, Khan DA. Artificial intelligence

in software testing: Impact, problems, challenges, and

prospect. Published 2022.

[4] Clause JA, Orso A. LEAKPOINT: Pinpointing the

causes of memory leaks. In: Proceedings of the

International Conference on Software Engineering

(ICSE). ACM; 2010: 515 - 524.

[5] Veeramachaneni V. AI - driven software development:

enhancing code quality and maintainability through

automated refactoring. Int J Recent Dev Sci

Technol.2021; 5 (6): 94 - 101.

[6] Lertvittayakumjorn P, Toni F. Explanation - based

human debugging of NLP models: A survey. Trans

Assoc Comput Linguist.2021; 9: 1508 - 1528. doi:

10.1162/tacl_a_00440.

[7] Song Y, Xie X, Liu Q, Zhang X, Wu X. A

comprehensive empirical investigation on failure

clustering in parallel debugging. J Syst Softw.2022;

193: 111452. doi: 10.1016/j. jss.2022.111452.

[8] Sun J, Liao QV, Muller M, Agarwal M, Houde S,

Talamadupula K, Weisz JD. Investigating

explainability of generative AI for code through

scenario - based design.27th International Conference

on Intelligent User Interfaces (IUI '22); March 22,

2022; Helsinki, Finland. ACM. doi:

10.1145/3490099.3511119.

[9] Young MM, Himmelreich J, Honcharov D,

Soundarajan S. Using artificial intelligence to identify

administrative errors in unemployment insurance. Gov

Inf Q.2022; 39 (4): 101758. doi: 10.1016/j.

giq.2022.101758.

[10] Li S, Zhou J, Huang Z, Hu X. Recognition of error

correcting codes based on CNN with block mechanism

and embedding. Digit Signal Process.2021; 111:

102986. doi: 10.1016/j. dsp.2021.102986.

[11] Di Caprio D, Santos - Arteaga FJ. Enhancing the

pattern recognition capacity of machine learning

techniques: The importance of feature positioning.

Mach Learn Appl.2022; 7: 100196. doi: 10.1016/j.

mlwa.2021.100196.

[12] Sarker IH. Machine learning: algorithms, real - world

applications and research directions. SN Comput

Sci.2021; 2 (160). doi: 10.1007/s42979 - 021 - 00592 -

x.

[13] Zeufack V, Kim D, Seo D, Lee A. An unsupervised

anomaly detection framework for detecting anomalies

in real time through network system’s log files

analysis. High - Confidence Computing.2021; 1 (2):

100030. doi: 10.1016/j. hcc.2021.100030.

[14] Singh V, Chen SS, Singhania M, Nanavati B, Kar AK,

Gupta A. How are reinforcement learning and deep

learning algorithms used for big data - based decision

making in financial industries – A review and research

agenda. Int J Inf Manag Data Insights.2022; 2 (2):

100094. doi: 10.1016/j. jjimei.2022.100094.

[15] Roshanzamir A, Aghajan H, Soleymani Baghshah M.

Transformer - based deep neural network language

models for Alzheimer’s disease risk assessment from

targeted speech. BMC Med Inform Decis Mak.2021;

21 (92). doi: 10.1186/s12911 - 021 - 01456 - 3.

[16] Fahim A. K and starting means for k - means

algorithm. J Comput Sci.2021; 55: 101445. doi:

10.1016/j. jocs.2021.101445.

[17] V. Rus, P. Brusilovsky, L. J. Tamang, K.

Akhuseyinoglu, and S. Fleming, “DeepCode: An

Annotated Set of Instructional Code Examples to

Foster Deep Code Comprehension and Learning, ” in

Intelligent Tutoring Systems. ITS 2022, S. Crossley

and E. Popescu, Eds. Cham, Switzerland: Springer,

2022, vol.13284, Lecture Notes in Computer Science.

doi: 10.1007/978 - 3 - 031 - 09680 - 8_4.

[18] Prenner JA, Robbes R. Automatic program repair with

OpenAI's Codex: Evaluating QuixBugs. Published

2021. Available from: https: //arxiv.

org/abs/2111.03922.

[19] Lu S, Duan N, Han H, Guo D, Hwang S, Svyatkovskiy

A. ReACC: A Retrieval - Augmented Code

Completion Framework. Published online 2022.

Available from: https: //arxiv. org/abs/2203.07722.

[20] Allamanis M, Jackson - Flux H, Brockschmidt M. Self

- Supervised Bug Detection and Repair. Published

2021. Available from: https: //arxiv.

org/abs/2105.12787

[21] Sabir A, Lafontaine E, Das A. Analyzing the impact

and accuracy of Facebook activity on Facebook's ad -

interest inference process. Proc ACM Hum - Comput

Interact.2022; 6 (CSCW1): Article 76. doi:

10.1145/3512923.

Paper ID: SR230314114650 DOI: https://dx.doi.org/10.21275/SR230314114650 1869

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

