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Abstract: Among the most frequently encountered problems in the cloud computing system seems to be independent job scheduling. 
The Grey Wolf Optimization and Artificial Bee Colony (GWO-ABC) approach is a brand-new hybrid optimization technique that is 
proposed in this work. The GWO-ABC is used to enhance multi-job scheduling inside a cloud computing system. It imitates the hunting 
and grouping behaviour of wolves and ants. The proposed multi-objective model seems to be the foundation of the GWO-ABC scheduler. 
In aspects of cost, degree of imbalance, makespan, resource utilisation, and energy usage, the experiment outcomes on the trialed data 
demonstrated that the GWO-ABC scheduler outperforms the outcomes of the Round Robin (RR) method, conventional Whale 
Optimization Algorithm (WOA), and Vocalisation of Humpback WOA (VWOA). The results of the simulation clearly show that the 
GWO-ABC method is better than the algorithms that are currently being used. 
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1. Introduction 
 
The term "Cloud" refers to a network of linked computers 
that contains multiple unified computing resources. Cloud 
computing, which aims to supply the necessary virtualized 
capabilities for back-end operations in numerous multi-
tier functionalities, has nowadays become an essential 
component of information technologies. Additionally, 
cloud computing can offer access to a variety of 
applications, as well as its Data Centers (DCs) may offer 
ample storage for keeping the cloud customer's vital data 
as well as some security solutions. Cloud computing, 
which aims to supply the necessary virtualized capabilities 
for back-end operations in numerous multi-
tier functionalities, has nowadays become an essential 
component of information technologies [1]. The IT 
industry is changing and becoming more uniform thanks to 
cloud computing. It can arrange on-demand exposure to a 
configurable commodities pool that has been shared and 

available to all users, with little need for cloud provider 
collaboration or administration [2]. This technology has 
some gains, including the ability to enhance the 
cost, time, storage gains, and stack adjusting in the 
marketplace. With this invention, all apps can continue to 
operate on a virtual system, and all services are shared 
among the VMs [3]. Each application is unique. Cloud 
computing job scheduling requires an effective method. 
Scheduling systems can be divided into heuristic and 
meta-heuristic scheduling strategies [4-6], as demonstrated 
in figure 1. Single- and multi-objective scheduling systems 
are further subcategories of meta-heuristic techniques [7-
8]. Cloud Service Providers (CSPs) and cloud customers, 
who frequently have competing goals in the workflow and 
job scheduling issues, seem to be the two primary players 
in the cloud computing industry. A novel hybrid Grey 
Wolf Optimization and Artificial Bee Colony (GWO-
ABC) technique has been put forth in this study as a 
solution to this issue. 

 

 
Figure 1: Scheduling algorithms classification 
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1.1.  Workflow and Job Scheduling 
A workflow could be described using a Directed Acyclic 
Graph (DAG), where nodes represent edges and tasks 
indicate priority. Any process can be data-, computation-, 
or communication-intensive. There are two types of 

processes: non-deterministic and deterministic. Earlier, job 
and input/output interactions must be understood. The 
latter involves workflow design during operation. 
Workflow and job scheduling problems include assigning 
the right virtual machine (VM) to each task. 

 

 
Figure 2: Workflow and job scheduling objectives

Several independent or working clouds may make up a 
multi-cloud system. By distributing the scheduling queries 
over various clouds, multi-cloud setups typically try to 
reduce dependence on any one CSP and 
boost effectiveness and throughput. 
 

2. Related Works 
 
It can be difficult to select a VM from a variety of data 
hubs with a variety of characteristics like lowered energy 
usage, ideal response time, cost minimization, etc. in a 
cloud Infrastructure as a Service (IaaS) setting due to the 
diversification of offerings concerning resources and 
innovation. As a result, V. Karunakaran [9] presented a 
hybrid method predicated on a non-dominated sorting 
genetic and gravitational search algorithm (NSGA and 
GSA) that simplifies VM choice for scheduling systems. 
 
Qi Qi et al. [10] firstly developed and published a Multi-
task Deep Reinforcement Learning (DRL) technique for 
scalable parallel Task Scheduling (MDTS). To address 
multi-objective work scheduling issues in cloud computing 
systems, LaithAbualigah and Ali Diabat[11] have 
developed a unique hybrid antlion optimization technique 
with elite-based differential evolution. This solution was 
dubbed MALO. Thus, in an attempt to address the task 
scheduling issue, Abdullah Alzaqebah et al. [12] used the 
Grey Wolf Optimization (GWO) method with alterations 
to the fitness value to manage multiple objectives in a 
unique fitness; the duration and expense seem to be the 
criteria considered in the fitness. As a result, Raja 
Masadeh et al. [13] proposed the vocalisation of humpback 
whale optimization algorithm (VWOA), a novel 
metaheuristic optimization technique. Thus, SaharSaeedi 
et al. [14] have suggested a method to resolve the 
workflow scheduling issue using the Improved 
MaO Particle Swarm Optimization (I_MaOPSO) 
technique, which takes into account four competing goals, 
including reliability maximisation and expense, time, and 
energy usage reductions. 

As a result, Sarah E. Shukri et al. [15] suggest an enhanced 
variant of the Multi-Verse Optimizer (EMVO) as a better 
job scheduler in this domain.  Lei Shi et al. [16] have thus 
researched the issue of multi-job-linked job scheduling to 
reduce the jobs' completion time. As a result, S. Velliangiri 
et al. [17] have presented Hybrid Electro Search with a 
Genetic Algorithm (HESGA) to enhance task scheduling 
behaviour by taking into account factors like load 
balancing, and resource consumption, makespan, and 
multi-cloud expense. The proliferation and growth of 
technological devices (smartphones, laptops, and tablets), 
along with rapid internet connectivity, have made the 
cloud computing concept reasonable and reduced IT 
complexity [18]. It's crucial to ensure the security and 
dependability of these systems for safety-critical tasks. 
Qing-Hua Zhu et al. [19] suggest an innovative scheduling 
technique called matching and multi-round allocation 
(MMA) to maximise the total cost and makespan for all 
contributed tasks responsive to security and performance 
requirements to overcome trust restrictions in a diverse 
multi-cloud environment. 
 

3. 3. Multi-Objective Optimization Problems (MOPs) 
 
Multi-objective optimization involves competing goals 
(MOPs). Because the purposes often compete, a collection 
of tradeoff options, referred to as non-dominated 
alternatives for MOPs, may be obtained. 
 
3.3.1 Cloud Model 
 
This research focuses on job scheduling applications; 
moreover, this research presumes that VMs had enough 
memory to carry out the job scheduling based on the 
profiling findings for memory usage they acquired in their 
task as well as the VM kinds provided by Amazon EC2. 
Presumed that the processing power in regards to floating 
point operations per second (FLOPS) for each type of 
VM is either known or can be guessed. This system uses 
this data to determine how long a task will take to 
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complete on a specific VM. Thus, the execution time 
duration is computed by Eqn. (1). 

E��

��� =
S��

P���
× �1 − PD���

�
�                 (1)                                      

Where, E��

���  indicates the execution time duration, S��
 

represents the task size in flop unit and PD���
 indicates 

VM’s performance degradation percentage.In addition, the 
time taken for the information to be transmitted from the 
parent task t�to the child task t�is computed by Eqn. (2). 

TT���
=

DS��

���

γ�                                (2) 

Where TT���
 represents the transmission time from t�to t�, 

DS��

��� indicates the output data size, and γ is bandwidth. 

This study assumes that a data center handles the complete 
job scheduling procedure. Therefore, the bandwidth on 
VMs was the same, and there is no transmission time 
between the two job scheduling processes running on the 
same VM. Eqn. (3) computed the total processing time. 

Pt��

��� = E��

��� + �∑ TT���
× S�

�
� �                (3) 

Where, Pt��

���  indicates total processing time, j represents 

the task’s number of edges, and S�  task size with the 

number of edges. 
 
3.1. Multi-job Scheduling 
 
The fitness variables are a key component of the job 
scheduling approach. In this study, the fitness function was 
dependent on four factors: round trip latency, task 
weight, energy use, and resource usage. Moreover, the 
fitness function at greater value is expressed in Eqn. (4). 
 

F = 0.25[T� + R� + (1 − E�) + (1 − T�)]         (4)                               

Certain tasks in a CC system call for a lot of CPU 
resources, while others call for fewer CPU assets and 
higher storage.R�comprises two variables: Memory Cost 
(MCost), and CPU Cost (Ccost), which are described as 
Eqn. (5). 
 

R� = 0.5[CCost (i) + MCost(i)]                     (5) 

CCost (i) = C� × C� × t�� × C����                  (6) 

 
Here, when a resource has been used in its lowest 
utilization level to maintain the system running and ready 
to process inbound requests, the basic cost was represented 
by C���� , t�� represents the makespan in which the task i is 
performed in VMi , C�  represents the VMi  cost, and C� 
indicated the expense of CPU transfer to complete the 
necessary tasks. The cost and MCost are computed by 
Eqn. (6) and (7), correspondingly. 
 

MCost (i) = M� × M� × t�� × M����                 (7) 

 

Where M���� denotes the memory’s base cost, M� indicates 
memory costs, t�� indicates the task time duration running 
in VMi, and M� denotes the constant value, which indicates 
the cost related to memory transmission. The amount of 
time it takes to compute and how much energy it uses are 
related.As a result, Eqn (8) defines the amount of energy 
(ECost (i)) needed by Task time (Ti) inVMi. 
 

ECost (i) = C�� × P�
�                            (8) 

 
Where, C��  represents energy consumption time, and 
power is indicated as P�

� , which is used during 
implementation Ti . Moreover, VMi  overall consumed 
energy to complete all tasks (TC(i)) is computed by Eqn. 
(9). 
 

TC(i) = ∑ ECost (i)��
���              (9) 

 
Round trip time (RTT) denotes the entire step's latency 
(L), which includes the commencement of reception, 
transmission, and response-waiting time. Latency is 
computed by Eqn. (10). 
 

L = E�� + E�� + (2 × d)                    (10) 

 
Where E��  represents expected execution time, E�� 
represents expected transmission time, and d  indicates 
delay. The four essential components of E�� our task size, 
are CPU speed, RAM speed, and bandwidth. Moreover, 
E��  and E��  are computed by Eqn. (11) and (12), 
respectively. 
 

E�� =
T� + S��� + S���

Bandwidth�          (11) 

 
Where, T� indicates task size, S��� represents CPU speed, 
and S��� indicates RAM speed. 
 

E�� =
T�

B�
�                                 (12) 

 
Here, B�  indicates Bit rate.The final task weight ( T� ) 
seems to be a significant variable that is impacted by task 
prioritizing. Task weight and user type are the two major 
characteristics of this property. User types are a 
representation of the user privilege classes. Additionally, it 
includes a variety of categories (like class W, class X, 
class R, and class T). To employ the resources accessible, 
any task seems to have a priority weight which assigns it a 
medium, low, or high priority as shown in table 1. 
 

Table 1: Tasks weight 
Classes W X R T 
Weight 0.4 0.3 0.2 0.1 
Priority U  H M L 

 
In table.1, U indicates urgent, H represents high, M 
represents medium, and L indicates large. The suggested 
mathematical model uses precedence weight factors of 0.4, 
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0.3, 0.2, and 0.1. These numbers have been selected so that 
their total equals one. The final task weight ( �� ) is 
expressed in Eqn. (13). 
 

�� = �� × ��                               (13)                                                                    

 
Where ��  indicates user type, and ��  indicates task 
weight. 
 

4. Proposed Approach 
 
4.1. Grey Wolf Optimization (GWO) 
 
GWO seems to be a technique for bionic optimization. It 
imitates grey wolf hunting behaviour, with a definite 
division of work and mutual collaboration. Grey wolves 
usually live in packs of 5-12 individuals and have a strict 
dominating hierarchy predicated on wolf leadership 
abilities. For hunting, the enclosing of prey approach is 
used. For iteration �, the mathematical framework for this 
method is shown below Eqn. (14) and (15). 
 

�⃗ = ���⃗ × ��
����⃗ (�) − ��⃗ (�)�                          (14)    

                                              

��⃗ (� + 1) = ��
����⃗ (�) − ���⃗ . �⃗                         (15)                                               

 

Here, ���⃗  and ��⃗  are coefficient vectors, which is described 

as ���⃗ = 2�⃗. ������⃗ − �⃗  an  ����⃗ = 2. ������⃗ . Where, the random 

vectors ������⃗ , ������⃗  � (0,1)  and  ����⃗ = ���1 − �
����� � , linearly 

decrease from ��  to zero; ��  the value was set as 2 in 
actual GWO. Moreover, ����  represents a maximum 
number of iterations. The GWO’s hunting process has 
been headed by three finest solutions i.e., ∝, ��  wolves. 
Thus, these 3 leading solution positions have been saved in 
the pack and the remaining �  wolves update their 
positions predicated on them. This position updating 
technique’s mathematical model is represented in Eqn. 
(16). 
 

��⃗ (� + 1) =
���

����⃗ + ��
����⃗ + ��

����⃗ �
3

�                    (16)                                          

Where, ��
����⃗ , ��

����⃗ , ��� ��
����⃗   are computed by Eqn. (17) 

��
����⃗ = �∝

�����⃗ (�) − ��
����⃗ . �∝

���⃗

��
����⃗ = ��

�����⃗ (�) − ��
����⃗ . ��

����⃗

��
����⃗ = ��

����⃗ (�) − ��
����⃗ . ��

���⃗

                       (17) 

Where, �∝
���⃗ , ��

����⃗ , and ��
���⃗  are computed by Eqn. (18) 

�∝
���⃗ = ���

���⃗ × �∝
�����⃗ (�) − ��⃗ �

��
����⃗ = ���

���⃗ × ��
�����⃗ (�) − ��⃗ �

��
���⃗ = ���

���⃗ × ��
����⃗ (�) − ��⃗ �

                      (18)                                                 

 
 

4.2. Hybrid GWO-Artificial Bee Colony (ABC) 
Optimization  
 
The artificial bee colony (ABC) seems to be probably of 
the newest algorithms, inspired by honey bees' clever 
foraging behavior. In ABC technique, the colony of 
artificial bee is made up of three types of bees: bystanders, 
employed bees, and scouts.  The search technique for both 
engaged and an observer bee in ABC is driven by 
upgrading a random component in the solutions vector 
with another solution vector as shown in Eqn. (19). 
 

��,� = ��⃗ (� + 1)�,� + ��,����⃗ (� + 1)�,� − ��,��     (19)                       

 
Where, ���  represents the new solution attained by 
mutating ���  the dimension parameter of two distinct 
solutions in a pack and ���  represents the random number, 
which varies between -1 and 1. 
 
Because GWO makes use of the finest solutions in the 
organizational hierarchy, combining it with ABC will 
result in a powerful algorithm that combines the benefits 
of both. The hybrid GWO-ABC technique’s abstraction is 
shown in algorithm.1 and figure 3. 

Algorithm.1: Abstraction of GWO-ABC 

1. Initialize grey wolf population ��⃗ � = (��, ��, … , ��) , 

where, (� ∈ �) 

2. Initialize �, ���⃗ , ��⃗ and � = 1. 
3. Compute each search agent’s fitness �(��) , where 
(� ∈ �) 

4. ��
�����⃗  = finest search agent 

5. ��
�����⃗  = 2nd finest search agent 

6. ��
����⃗  = 3rd finest search agent 

7. while (� <  ��� − i���������) do 
8. for every search agent do 
9. Upgrade present search agent’s position by Eqn. (3) 
10. end for 

11. Upgrade: �, ���⃗ , ��� ��⃗  
12. Compute: all search agent’s fitness 
13. Upgrade: ABC’s search technique 

14. Update: search agent’s fitness ��⃗ (� + 1) in Eqn. (6) 
15. end while 
16. else, return ��  
 
The following aspects demonstrate the unique hybrid 
optimization algorithm (GWO-ABC)'s ability to resolve 
optimization issues: 
 
1. Throughout iterations, GWO-ABC can keep the finest 

solutions because of the social structure. 
2. The proposed hunting method makes use of the potential 

answers to determine where the prey is located. 
3. The h and F parameters values are used to aid GWO-

ABC in transitioning between exploitation and 
exploration without any problems. 

4. Iterations are split equally between the exploitation and 
exploration phases. 

5. m and q are the two key GWO-ABC variables that need 
to be changed. 
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4.3. GWO-ABC Based Job Scheduling 
 
These limits encourage algorithmic exploration. GWO-
ABC assigned tasks to VMs. The iteration technique was 
continued based on the present solution using GWO-ABC, 
which starts with the solution's random population and 
deems the present solution the finest alternative. GWO-
stages ABC were: 
 
 Initialization Phase: The search agent’s population 

��⃗ � = (��, ��, … , ��)  was generated randomly in this 

phase. 
 Fitness Computation Phase: The fitness function has 

been computed using a function (4). Predicated on 

assessment, the finest search agent � ∗�
��������⃗ has been picked. 

 GWO Phase: Following the generation of the original 
population, the methodology moves forward according 
to the standard GWO and upgrades its variables as well 
as the search agent's locations. 

 Encircling Prey Phase: The prey's position is presumed 
to be fixed throughout this period. Depending on the 
most recent best agent, which was depicted as in Eqn. 
(20), other wolves (search agents) change their 
positions.  

�⃗ = ���⃗ × � ∗�
��������⃗ (�) − ��⃗ (�)�                                               

(20) 

 ABC Phase: As was previously mentioned, in ABC, 
bees (both active and passive observers) disseminate 
data among the possible solutions inside the pack as well 
as alter existing solutions.  

 By picking random adjacent solutions as well as a place 
for information sharing, improves exploration 
opportunities. 

 Exploitation Phase: The algorithm determines a search 
agent's new position during this phase.  The spiral 
technique using Eqn (21) updates the agent's position by 
the use of the spiral updating position technique. 

��⃗ (� + 1) = ���
����⃗ (�) − ��⃗ (�)� × ���(2��) × ��� + ��

����⃗ (�)         

(21) 

 
Where �  is constant for evaluating logarithmic spiral’s 
shape, and � the value is (-1,1) 
 
 Exploration Phase: Utilizing Eqn (22) and (23) an 

arbitrarily chosen search agent, the search agent's 
position will be upgraded. 

�⃗ = ���⃗ × �����
�����������⃗ − ��⃗ �   (22) 

Where �����
�����������⃗  indicates the random position vector. 

��⃗ (� + 1) = �����
�����������⃗ − ���⃗ . �⃗                                                                    

(23) 

4.4. Experimental  and Evaluation  
 
The effectiveness of the proposed GWO-ABC for 
scheduling separate tasks is empirically assessed. A 
computer system with an Intel Core i-7 
processor, Windows 10 OS, and 16 GB of RAM has been 

used for the experimentation. Regarding energy 
consumption, degree of imbalance, makespan, cost, 
and resource usage, the GWO-ABC outcomes are 
contrasted with other existing methods like WOA, 
VWOA, and RR [13] to determine the presented model's 
effectiveness. 
 
These metrics were employed for evaluating the presented 
GWO-ABC model performance in job scheduling. 
 
1. Energy usage: It seems to be the term for how a process 

uses resources as well as the CPU to determine how 
much power was consumed.  

2. Makespan: It displays the overall execution time 
needed to complete all separate tasks. 

3. Resource usage: The consumption of resources should 
be increased because it benefits cloud computing service 
providers.   

4. Cost: Cost is an indicator of the expense incurred during 
task execution on particular VMs.   

5. Degree of imbalance (DI): Utilizing Eqn (24), DI 
calculates the imbalance between the VMs.  

 

�� =
(���� − ����)

����
�                     (24)                                                    

Where ����  represents the maximum execution time, ���� 
denotes the minimum execution time, and ����  indicates 

the average execution time. 
 
4.5. Results 
 
In this research, the GWO-ABC scheduling 
method's performance is compared to that of the 
conventional WOA, VWOA, and RR scheduling 
techniques over a range of independent jobs (100–500) 
with varied numbers of chosen VMs (8, and 16). The 
configuration consists of two hosts, two data centres, 16 
VMs, and various job counts (100, 200, 300, 400, and 
500). Every case is run 30 times. Each instance's mean is 
calculated. Meta-heuristic optimization methods include 
VWOA and WOA. Thus, the GWO-ABC percentage 
improvement over other approaches for 16VMs was 
computed using Eqn. (25). The exploration stage refers to 
the process of searching as widely as possible for the 
search space's potential areas. 

����������� = �1 −
∑ ���������������

∑ ������������� �������
� � × 100                     

(25) 

The capacity to conduct local searches around the potential 
places found during the exploratory phase was what the 
exploitation stage denotes. Because of the helpers who 
expand the search areas and force wolves to join their 
groups, GWO-ABC possesses great exploitation and 
exploration abilities. Additionally, it features stochastic 
operations that enable it to scan the search spaces broadly 
and arbitrarily. 
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Figure 4

Figure 4 and figure5 display the simulation findings. These 
numbers demonstrate that the GWO-ABC performs better 
than standard WOA, VWOA, and RR in regards of 
makespan because of its capacity for exploitation and 
exploration. The exploration stage depends on the limitless 
amount of wolves and bees present in each cluster. GWO
ABC can give good exploitation, exploration,
 

Figure 5.

Figure 6 shows the degree of imbalance (DI) for the 4 
approaches and 100–500 workloads on 16 VMs. GWO
ABC has less overall imbalance than WOA, RR, and 
VWOA. The technique assigns workload
weights to available and efficient VMs based on task 
duration, priority, and VM capability. Every VM's 
execution time would decrease. GWO-ABC utilizes less 
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Figure 4: Tasks vs makespan comparison on 8 VMs. 
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localized optimal aversion with the use of the variable
While the RR method performs worst due to its reliance on 
temporal quantum size and lack of consideration for 
resource and task data. If the time quantum was large, this 
results in a long waiting period. This results in a long 
makespan. 

Figure 5.Tasks vsmakespan comparison on 16 VMs. 

Figure 6: Mean DI on 16 VMs. 

Figure 6 shows the degree of imbalance (DI) for the 4 
500 workloads on 16 VMs. GWO-

ABC has less overall imbalance than WOA, RR, and 
VWOA. The technique assigns workloads with larger 
weights to available and efficient VMs based on task 
duration, priority, and VM capability. Every VM's 

ABC utilizes less 

energy than WOA, RR, and VWOA. GWO
28, 31, and 84% less energy than WOA, 
Energy use depends on execution time. GWO
utilized less energy due to its short lifespan. RR's long 
makespan required more energy.
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Figure 7: Outcome of energy on 16 VMs. 

Table 2 shows 100-500 tasks on 8 and 16 VMs and their 
scheduling costs. Multiple tasks affect efficiency and 
resources. It gets harder to find a global optimum solution 
when the number of tasks is huge. In contrast, when there 
are numerous resources, it is easy to discover a global 
optimum solution since there are many tasks and few 
resources, which raises scheduling costs, waiting time and 
makespan. GWO-work ABC's scheduling execution costs 
are 20%, 22%, and 27% lower than WOA, VWOA, and 
RR. 

Table 2: Resource utilization on 16 VMs. 
No. of 
tasks 

Resource usage (%) 
GWO-
ABC 

VWOA WOA RR 

100 76 72 70 55 
200 81 78 71 52 
300 85 82 73 45 
400 90 88 77 42 
500 93 90 79 39 

When contrasted to WOA, VWOA, and RR methods, the 
average resource usage of GWO-ABC was raised by 8%, 
23%, and 35%, correspondingly. Because of its high levels 
of exploitation and exploration, GWO-ABC used more 
resources. In comparison to the RR method, which lacks 
data about resources and tasks, it also has current data 
about all resources and tasks. The RR method sends tasks 
to VMs in a loop and does not take into account selecting 
the best VM for the task. 
 

5. Conclusion 
 
Job scheduling for cloud computing has benefited from the 
use of numerous meta-heuristic and heuristic methods. The 
hunting and grouping behaviours of wolves and ants are 
imitated in this work by the novel hybrid optimization 
method GWO-ABC. According to this approach, each 
cluster should have three of the best solutions. Therefore, 
there have been three localized optimal solution solutions 
that are the finest. As a result, the first existing solution 
was regarded as the finest one, and the searching agent has 
been used to identify the overall ideal solution. The 
adoption of the multi-objective numerical model enhances 
the scheduling of various jobs in a cloud computing 
system. The main goals of GWO-ABC are to reduce costs, 
manufacturing time, and energy use, and to increase 
resource utilisation. The algorithm has been assessed using 
the CloudSim tool. According to simulation outcomes, the 

proposed GWO-ABC method outperforms the current 
WOA, VWOA, and RR methods regarding makespan, DI, 
cost, energy usage, and resource usage. Additionally, 
every cluster's 3 top solutions can optimally schedule new 
solutions to be produced. This research project will be 
expanded for dependent activities in the future. 
Additionally, the suggested GWO-ABC could be modified 
to address different optimization issues. 
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