Neighbour degree connectivity indices of graphs and its applications to the octane isomers

Ashwini Yalaniak ${ }^{1}$, Supriya Butte ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Davangere University, Davangere-577007, India
Emails: ${ }^{1}$ ashwiniynaik@gmail.com, ${ }^{2}$ supriya.h.butte@gmail.com

Abstract

The sum of neighbour degrees $\delta_{G}(u)$ of a vertex u is defined as the sum of the degrees of all neighbour vertices of u of a graph G. In this paper, we obtained neighouhourhood version of Zagreb indices of line graph of the subdivision graph of 2D-lattice of $T U C_{4} C_{8}[p, q]$ and graphene sheet.

Mathematics Subject Classification: 05C76, 05C07, 05C12, 05C90
Keywords: Neighbour, degree, neighbour degree connectivity indices, graphene sheet.

1 Introduction

Let G be a simple, undirected, connected graph of order n and size m. Let $V(G)$ be the vertex set and $E(G)$ be the edge set of G. The edge joining the vertices u and v is denoted by $u v$. The degree of a vertex u is the number of edges incident to it and is denoted by $d_{G}(u)$. The nighbour of a vertex $u \in V(G)$ is defined as the number of adjacent vertices of vertex u of graph G. The sum of neighbour degrees $\delta_{G}(u)$ of a vertex u is defined as the sum of the degrees of all neighbour vertices of u of a graph G, that is

$$
\delta_{G}(u)=\sum_{u \in N_{G}(u)} d_{G}(u)
$$

For a graph theoretic terminology, we refer the books $[1,6]$.
The first and second Zagreb indices of a graph G are defined as [5]

$$
M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right] \quad \text { and } \quad M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)
$$

The Zagreb indices were used in the structure property model. Recent results on the Zagreb indices can be found in $[2,3,4,7,10,11,12]$. Sourav Monadl et. al, introduced neighbourhood versions of some topological indices, among those the first and second neighbourhood Zagreb indices defined as follows [8],

$$
\begin{equation*}
M_{1}^{*}(G)=\sum_{u v \in E(G)}\left[\delta(u)+\delta(v)=2 M_{2}(G)\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}^{*}(G)=\sum_{u v \in E(G)} \delta(u) \delta(v) . \tag{2}
\end{equation*}
$$

Figure 1
For a graph given in Fig. $1, \delta\left(v_{1}\right)=3, \delta\left(v_{2}\right)=5, \delta\left(v_{3}\right)=5, \delta\left(v_{4}\right)=5$. Therefore $M_{1}^{*}(G)=38$ and $M_{2}^{*}(G)=90$.

Volume 12 Issue 4, April 2023

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2 Computation of First and second neighbourhood version of Zagreb indices of some class of graphs

Lemma 2.1. Let G be r-regular graph. Then

$$
\begin{aligned}
M_{1}^{*}(G) & =2 m r^{2} \\
M_{2}^{*}(G) & =m r^{4}
\end{aligned}
$$

Lemma 2.2. For $n>4$, let P_{n} be a path with n-vertices. Then

$$
\begin{aligned}
M_{1}^{*}(G) & =8(n-2) \\
M_{2}^{*}(G) & =16 n-44
\end{aligned}
$$

Lemma 2.3. Let S_{n} be a star with n-vertices. Then

$$
\begin{aligned}
M_{1}^{*}(G) & =2(n-1)^{2} \\
M_{2}^{*}(G) & =(n-1)^{3}
\end{aligned}
$$

3 First and second neighbourhood version of Zagreb indices of line graph of the subdivision graph of 2D-lattice of $T U C_{4} C_{8}[p, q]$

Nadeem et al.,computed genralized Randic, general Zagreb and sum connevtivity indices, atom-bond connectivity index $A B C(G)$ with $A B C_{4}(G)$ and geometric arithmatic index $G A(G)$ with $G A_{5}(G)$ indices of the line graphs of subdivision graph of $2 D$-lattice, nanotube and nanotorus $T U C_{4} C_{8}[p, q]$. Here number of sqares in row denoted by p, number of rows of squares by q in $2 D$-lattice and nanotube. For structure and more information one can refer [9]

Theorem 3.1. Let G be the line graph of the subdivision graph of $2 D$-lattice of TUC4C8[p,q]. Then

$$
\begin{aligned}
& M_{1}^{*}(G)= \begin{cases}324 p q-134 p-134 q+8 & \text { if } p>1, q>1 \\
190 p-126 & \text { if } p>1, q=1\end{cases} \\
& M_{2}^{*}(G)= \begin{cases}145 p q-753 p-753 q+172 & \text { if } p>1, q>1 \\
707 p-581 & \text { if } p>1, q=1\end{cases}
\end{aligned}
$$

Proof. $|V(G)|=2[6 p q-p-q]$ and $|E(G)|=18 p q-5 p-5 q$. Partition the edge set of G is given in the Table 1 and Table 2:

Table 1: Edge partition of line graph of the subdivision graph of 2D-lattice of TUC4C8[$p, q]$ when $p>1$ and $q>1$

$(\delta(u), \delta(v)) u v \in E(G)$	$(4,4)$	$(4,5)$	$(5,5)$	$(5,8)$	$(8,9)$	$(9,9)$
Number edges	4	8	$2(\mathrm{p}+\mathrm{q}-4)$	$4(\mathrm{p}+\mathrm{q}-2)$	$8(\mathrm{p}+\mathrm{q}-2)$	$2(9 \mathrm{pq}+10)-19(\mathrm{p}+\mathrm{q}))$

Table 2: Edge partition of line graph of the subdivision graph of 2D-lattice of TUC4C8[$p, q]$ when $p>1$ and $q=1$

$(\delta(u), \delta(v)) u v \in E(G)$	$(4,4)$	$(4,5)$	$(5,5)$	$(5,8)$	$(8,8)$	$(8,9)$	$(9,9)$
Number edges	6	4	$2(\mathrm{p}-2)$	$4(\mathrm{p}-1)$	$2(\mathrm{p}-1)$	$4(\mathrm{p}-1)$	$\mathrm{p}-1$

Volume 12 Issue 4, April 2023

International Journal of Science and Research (IJSR)
 ISSN: 2319-7064
 SJIF (2022): 7.942

Case 1: when $p>1$ and $q>1$,

$$
\begin{aligned}
M_{1}^{*}(G)= & \sum_{u v \in E(G)}[\delta(u)+\delta(v)] \\
= & 4(4+4)+8(4+5)+2(p+q-4)(5+5)+4(p+q-2)(5+8) \\
& +8(p+q-2)(8+9)+(2(9 p q+10)-19(p+q))(9+9) \\
= & 324 p q-134 p-134 q+8 . \\
& \\
M_{2}^{*}(G)= & \sum_{u v \in E(G)} \delta(u) \delta(v) \\
= & 4(4 \times 4)+8(4 \times 5)+2(p+q-4)(5 \times 5)+4(p+q-2)(5 \times 8) \\
& +8(p+q-2)(8 \times 9)+(2(9 p q+10)-19(p+q))(9 \times 9) \\
= & 145 p q-753 p-753 q+172 .
\end{aligned}
$$

Case 2: when $p>1$ and $q=1$,

$$
\begin{aligned}
M_{1}^{*}(G)= & \sum_{u v \in E(G)}[\delta(u)+\delta(v)] \\
= & 6(4+4)+4(4+5)+2(p-2)(5+5)+4(p-1)(5+8)+2(p-1)(8+8) \\
& +4(p-1)(8+9)+(p-1)(9+9) \\
= & 190 p-126 . \\
M_{2}^{*}(G)= & \sum_{u v \in E(G)} \delta(u) \delta(v) \\
= & 6(4 \times 4)+4(4 \times 5)+2(p-2)(5 \times 5)+4(p-1)(5 \times 8)+2(p-1)(8 \times 8) \\
& +4(p-1)(8 \times 9)+(p-1)(9 \times 9) \\
= & 707 p-581 .
\end{aligned}
$$

4 First and second neighbourhood version of Zagreb indices of line graph of the subdivision graph of $T U C_{4} C_{8}[p, q]$ nanotube

Theorem 4.1. Let H be the line graph of the subdivision graph of $2 D$-lattice of $T U C_{4} C_{8}[p, q]$ nanotube. Then

$$
\begin{aligned}
& M_{1}^{*}(H)= \begin{cases}324 p q-134 p & \text { if } p>1, q>1 \\
190 p & \text { if } p>1, q=1 .\end{cases} \\
& M_{2}^{*}(H)= \begin{cases}1458 p q-753 p & \text { if } p>1, q>1 \\
707 p & \text { if } p>1, q=1 .\end{cases}
\end{aligned}
$$

Proof. $|V(H)|=12 p q-2 p$ and $|E(G)|=18 p q-5 p$. Partition the edge set of G is given in the Table 3 and Table 4:

Case 1: when $p>1$ and $q>1$,

$$
\begin{aligned}
M_{1}^{*}(H) & =\sum_{u v \in E(G)}[\delta(u)+\delta(v)] \\
& =2 p(5+5)+4 p(5+8)+8 p(8+9)+(18 p q-19 p)(9+9) \\
& =324 p q-134 p .
\end{aligned}
$$

Volume 12 Issue 4, April 2023
 www.ijsr.net

International Journal of Science and Research (IJSR)
 ISSN: 2319-7064
 SJIF (2022): 7.942

Table 3: Edge partition of line graph of the subdivision graph of 2D-lattice of $T U C_{4} C_{8}[p, q]$ nanotube when $p>1$ and $q>1$

$(\delta(u), \delta(v)) u v \in E(H)$	$(5,5)$	$(5,8)$	$(8,9)$	$(9,9)$
Number edges	$2 p$	$4 p$	$8 p$	$18 p q-19 p$

Table 4: Edge partition of line graph of the subdivision graph of 2D-lattice of $T U C_{4} C_{8}[p, q]$ nanotube when $p>1$ and $q=1$

$(\delta(u), \delta(v)) u v \in E(H)$	$(5,5)$	$(5,8)$	$(8,8)$	$(8,9)$	$(9,9)$
Number edges	$2 p$	$4 p$	$2 p$	$4 p$	p

$$
\begin{aligned}
M_{2}^{*}(H) & =\sum_{u v \in E(G)} \delta(u) \delta(v) \\
& =2 p(5 \times 5)+4 p(5 \times 8)+8 p(8 \times 9)+(18 p q-19 p)(9 \times 9) \\
& =1458 p q-753 p .
\end{aligned}
$$

Case 2: when $p>1$ and $q=1$,

$$
\begin{aligned}
M_{1}^{*}(H) & =\sum_{u v \in E(G)}[\delta(u)+\delta(v)] \\
& =2 p(5+5)+4 p(5+8)+2 p(8+8)+4 p(8+9)+p(9+9) \\
& =190 p . \\
M_{2}^{*}(H) & =\sum_{u v \in E(G)} \delta(u) \delta(v) \\
& =2 p(5 \times 5)+4 p(5 \times 8)+2 p(8 \times 8)+4 p(8 \times 9)+p(9 \times 9) \\
& =707 p .
\end{aligned}
$$

5 First and second neighbourhood version of Zagreb indices of graphene sheet

Graphene is a planar sheet of carbon atoms that is densely placed in a honeycomb crystal lattice. It is the main element of certain carbon allotropes. The structure of graphene $G(p, q)$ with p rows and q columns. It has $p q$ hexogons.
Theorem 5.1. Let $G(m, n)$ be graphene sheet, with $p, q>1$, then

$$
\begin{aligned}
M_{1}^{*}(G(p, q)) & =14 p+12 q+54 p q-34 \\
M_{2}^{*}(G(p, q)) & =-11 p-30 q+243 p q-147
\end{aligned}
$$

$$
\begin{aligned}
M_{1}^{*}(G(p, q))= & \sum_{u v \in E(G)}[\delta(u)+\delta(v)] \\
= & 4(4+5)+p(5+5)+8(5+7)+(2 p-4)(5+8)+(4 q-8)(6+7)+2 q(7+9)+(p-2)(8+8) \\
& +(2 p-4)(8+9)+(3 p q-4 q-4 p+5)(9+9) \\
= & 14 n+12 m+54 m n-34
\end{aligned}
$$

Volume 12 Issue 4, April 2023

International Journal of Science and Research (IJSR)
 ISSN: 2319-7064
 SJIF (2022): 7.942

Table 5: Edge partition of graphene sheet $G(p, q)$ and $p, q>1$

$(\delta(u), \delta(v)) u v \in G(p, q)$	$(4,5)$	$(5,5)$	$(5,7)$	$(5,8)$	$(6,7)$	$(7,9)$	$(8,8)$	$(8,9)$	$(9,9)$
Number edges	4	p	8	$2 p-4$	$4 q-8$	$2 q$	$p-2$	$2 p-4$	$3 p q-4 p-4 q+5$

$$
\begin{aligned}
M_{2}(G(p, q))= & \sum_{u v \in E(G)} \delta(u) \delta(v) \\
= & 4(4 \times 5)+p(5 \times 5)+8(5 \times 7)+(2 p-4)(5 \times 8)+(4 q-8)(6 \times 7)+2 q(7 \times 9)+(p-2)(8 \times 8) \\
& +(2 p-4)(8 \times 9)+(3 p q-4 q-4 p+5)(9 \times 9) \\
= & -11 p-30 q+243 p q-147
\end{aligned}
$$

References

[1] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, California, 1990.
[2] K. C. Das, K. Xu, J. Nam, Zagreb indices of graphs, Front. Math. China, 10 (2015), 567-582.
[3] K. C. Das, D. Lee, A. Graovac, Some properties of the Zagreb eccentricity indices, Ars Math. Contem. 6 (2013), 117-125.
[4] I. Gutman, B. Furtula, Z. Kovijanic Vukicevic, G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem., 74 (2015), 5-16.
[5] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538.
[6] F. Harary, Graph Theory, Narosa Publishing House, New Delhi,1999.
[7] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157 (2009), 804-811.
[8] S. Mondal,N. De, A. Pal, On some new neighbourhood degree based indices, Acta. Chemica Iasi.,27, (2019), 31-46.
[9] M. F. Nadeem, S. Zafar, Z. Zahid, On topological properties of line graphs of subdivision graphs of certain nanostructures, Appl. Math. Comput.,273 (2016), 125-130
[10] H. S. Ramane, R. B. Jummannaver, Note on the forgotten topological index of chemical strcture in drugs. Appl. Math. Nonlin. Sci.,1(2) (2016) 369-374
[11] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
[12] D. Vukičević, A. Graovac, Note on the comparison of the first and second normalized Zagreb eccentricity indices, Acta Chim. Slov., 57 (2010), 524-528.
[13] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17-20.

Volume 12 Issue 4, April 2023
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

