
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Empowering AI with Efficient Data Pipelines: A

Python Library for Seamless Elasticsearch to

BigQuery Integration

Preyaa Atri

Email: preyaa.atri91[at]gmail.com

Abstract: This paper introduces a Python library designed to accelerate AI and data engineering workflows by facilitating seamless data

transfer between Elasticsearch, a powerful search engine for unstructured data, and BigQuery, a scalable data warehouse platform from

Google Cloud. By automating the migration of large datasets from Elasticsearch to BigQuery, the library empowers AI researchers, data

scientists, and engineers to efficiently leverage cloud-based resources for model training, preprocessing, analysis, and reporting. This

research delves into the library's features, dependencies, usage patterns, and its potential to enhance data management efficiency in AI-

driven projects and data engineering pipelines. Additionally, the paper discusses the library's limitations and proposes future

enhancements to further streamline AI development and data engineering workflows.

Keywords: Data Migration, Elasticsearch, BigQuery, AI, Data Engineering, Python Library

1. Introduction

Elasticsearch, a distributed search engine built on Apache

Lucene, has become a prominent tool for storing and

retrieving large volumes of semi-structured data efficiently
(Su et al., 2023). Its ability to handle complex queries and

scalability make it ideal for various applications (Su et al.,

2023). However, for long-term data analysis and historical

trend identification, BigQuery, a serverless data warehouse

from Google Cloud, offers superior performance and cost-

effectiveness (Khurshid et al., 2020). Transferring data

between these two platforms can be a cumbersome process,

often requiring custom scripting or third-party tools. This

paper introduces a Python library that addresses this challenge

by streamlining the data migration process.

2. Problem Statement

Migrating data from Elasticsearch to BigQuery traditionally

involves manual steps, including establishing connections to

both platforms, writing custom queries to extract data from

Elasticsearch, and transforming the data for loading into

BigQuery's schema. This approach is time-consuming, error-

prone, and requires expertise in both platforms.

Solution

The proposed Python library offers a solution by automating

the data migration process. It provides functionalities for:

• Connecting to Elasticsearch: The library simplifies

connecting to an Elasticsearch instance by handling

authentication details and establishing a secure

connection.

• Data Extraction: It allows users to specify the

Elasticsearch index from which data needs to be extracted.

This facilitates efficient filtering and retrieval of specific

datasets.

• Data Loading into BigQuery: The library handles

loading the extracted data directly into a designated

BigQuery table. Users can specify the project ID, dataset

ID, and table name where the data needs to be loaded.

Functionality

The library offers the following functionalities through its

load_data_to_bigquery function:

a) Elasticsearch Connection Arguments:

• es_index_name (str): The name of the Elasticsearch

index containing the data to be transferred.

• es_host (str, optional): The hostname of the

Elasticsearch instance. Defaults to "localhost".

• es_port (int, optional): The port number on which

Elasticsearch is listening. Defaults to 9200, the

standard Elasticsearch port.

• es_scheme (str, optional): The connection scheme to

use for Elasticsearch (http or https). Defaults to "http".

• es_http_auth (tuple, optional): A tuple containing

username and password for Elasticsearch

authentication if required.

• es_size (int, optional): The number of documents to

retrieve from Elasticsearch in each scroll request.

Defaults to 1000.

b) BigQuery Connection Arguments:

• bq_project_id (str): The project ID of the Google

Cloud project where the BigQuery dataset resides.

• bq_dataset_id (str): The ID of the BigQuery dataset

where the data will be loaded.

• bq_table_name (str): The name of the BigQuery table

where the data will be loaded.

c) Optional Argument:

• bq_add_record_addition_time (bool, optional): A

boolean flag indicating whether to add a timestamp to

each record upon loading into BigQuery, reflecting the

data insertion time. Defaults to False.

Installation

The library can be installed using pip:

Dependencies

The library relies on two external Python packages:

• elasticsearch: This library provides functionalities to

interact with Elasticsearch.

• google-cloud-bigquery: This library enables interaction

with Google Cloud Big Query services.

Paper ID: SR24522145306 DOI: https://dx.doi.org/10.21275/SR24522145306 2664

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:preyaa.atri91@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Ensure you have these dependencies installed before using the library:

Usage

Here's an example demonstrating how to use the library:

Explanation:

This code snippet showcases how to utilize the

load_data_to_bigquery function from the

Elasticsearch_to_BigQuery_Connector library. Let's break

down the provided arguments:

• es_index_name (str): This argument specifies the name

of the Elasticsearch index containing the data you want to

transfer. Replace "your_index_name" with the actual

name of your Elasticsearch index.

• es_host (str, optional): (Optional) This argument defines

the hostname or IP address of your Elasticsearch instance.

Defaults to "localhost" if not provided.

• es_port (int, optional): (Optional) This argument

specifies the port number on which Elasticsearch is

listening. Defaults to 9200, the standard Elasticsearch

port.

• es_scheme (str, optional): (Optional) This argument

defines the connection scheme to use for Elasticsearch

(http or https). Defaults to "http" if not provided.

• es_http_auth (tuple, optional): (Optional) This

argument is a tuple containing username and password for

Elasticsearch authentication if required. Leave it blank if

authentication is not necessary.

• es_size (int, optional): (Optional) This argument controls

the number of documents retrieved from Elasticsearch in

each scroll request. This can be helpful for managing large

datasets in chunks. Defaults to 1000.

• bq_project_id (str): This argument specifies the project

ID of your Google Cloud project where the BigQuery

dataset resides. Replace "your_project_id" with your

actual project ID.

• bq_dataset_id (str): This argument defines the ID of the

BigQuery dataset where the data will be loaded. Replace

"your_dataset_id" with the ID of your target BigQuery

dataset.

• bq_table_name (str): This argument specifies the name

of the BigQuery table where the data will be loaded.

Replace "your_table_name" with the desired name for

your BigQuery table.

• bq_add_record_addition_time (bool, optional):

(Optional) This argument is a boolean flag indicating

whether to add a timestamp to each record upon loading

into BigQuery. This timestamp reflects the data insertion

time. Set it to True if you want timestamps or False if not.

3. Uses and Impact

This library offers several benefits to data engineers and

analysts:

• Efficient AI Model Training: Large datasets residing in

Elasticsearch can be seamlessly transferred to GCS, a

platform optimized for AI workloads, facilitating rapid

access and utilization for training AI models.

• Streamlined Data Preprocessing: By migrating data to

GCS, the library simplifies preprocessing and feature

engineering tasks, crucial steps before data is fed into AI

pipelines.

Paper ID: SR24522145306 DOI: https://dx.doi.org/10.21275/SR24522145306 2665

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 5, May 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Accelerated AI Research: Uploading data to GCS

promotes data sharing and reproducibility of experiments,

accelerating the pace of AI research and development.

• Simplified Data Migration: The library streamlines the

data migration process, reducing development time and

effort.

• Improved Efficiency: By automating data transfer, the

library enhances the overall efficiency of data pipelines.

• Reduced Errors: The library handles connection

management and data transfer, minimizing potential errors

associated with manual scripting.

4. Scope and Limitations

The current iteration of the library focuses on basic data

transfer functionality. Future development could explore

additional features such as:

• Incremental Data Loading: This would enable periodic

updates to the BigQuery table, reflecting changes in the

Elasticsearch data.

• Data Transformation: The library could incorporate

functionalities for data transformation during transfer,

allowing users to manipulate data before loading it into

BigQuery.

• Error Handling and Logging: Implementing robust

error handling and logging mechanisms would provide

valuable insights into potential issues during data

migration.

5. Conclusion

The Python library presented in this paper offers a valuable

tool for simplifying data transfer between Elasticsearch and

BigQuery, with a particular emphasis on empowering AI and

data engineering initiatives. It streamlines data pipelines,

enhances efficiency, and reduces errors associated with

manual data migration. While the current implementation

focuses on core data transfer, future development efforts

could expand its functionalities to encompass incremental

data loading, data transformation, and robust error handling.

As the demand for seamless data movement between different

platforms grows, this library positions itself as a valuable

asset in the AI and data engineering landscape, facilitating

data-driven innovation and informed decision-making.

References

[1] C. Su, S. Zheng, D. Tong, L. Zhang, & Z. Chen,

"Elasticsearch-based heterogeneous data migration

method of enterprise information system", Second

International Conference on Green Communication,

Network, and Internet of Things (CNIoT 2022), 2023.

[2] Pandas documentation [Online]. Available:

https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.read_csv.html

[3] Elasticsearch Python Client. [Online]. Available: https://

elasticsearch-py.readthedocs.io/en/7.x/

[4] A. Khurshid, J. Rousseau, S. Andrews, & W. Tierney,

"Establishing a data-sharing environment for a 21st-

century academic health center", ACI Open, vol. 04, no.

01, p. e59-e68, 2020. https://doi.org/10.1055/s-0040-

1709652

[5] Google Cloud BigQuery Client Library for Python. [Onl

ine]. Available: https://cloud.google.com/python/docs/re

ference/bigquery/latest

Paper ID: SR24522145306 DOI: https://dx.doi.org/10.21275/SR24522145306 2666

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://elasticsearch-py.readthedocs.io/en/7.x/
https://elasticsearch-py.readthedocs.io/en/7.x/
https://doi.org/10.1055/s-0040-1709652
https://doi.org/10.1055/s-0040-1709652
https://cloud.google.com/python/docs/reference/bigquery/latest
https://cloud.google.com/python/docs/reference/bigquery/latest

