
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Transformation based Strategy to Convert

Relational Database for Public Sector

Mohammed Sadhik Shaik

Sr. Software Web Developer Engineer, Computer Science, Germania Insurance, Melissa, Texas

Email: mshaik0507[at]gmail.com

Abstract: A method for transforming an RDB into an XML file is presented in this paper. When you migrate your database, all of the

schema and data are transferred from one RDB to another using an XML script. This allows you to access and work with your data in a

new environment. The data in the source database is converted into the target database according to the new schema, after which the

home schema is translated into the target schema and given semantic enhancements. Converting RDB data to XML is a good fit for the

semantic enrichment technique since it improves the metadata model from the source database and captures important parts of the

destination XML schema. In order to convert RDB data into an XML Schema, algorithms are developed to build the target database

according to a set of migration criteria. We have constructed a prototype system and tested it experimentally by observing its results,

discussing our achievements, and providing feedback on the results. After reviewing the results, it was determined that the suggested

solution was correct and worked.

Keywords: relational database, XML document, database, metadata, data transformation

1. Introduction

Relational databases, often known as RDBs, have seen

widespread use by a variety of businesses during the past few

decades. SQL is the structured query language that is utilized

by the RDB. Due to the fact that it includes three different

types of data—structured, semi-structured, and

unstructured—it is not suited for big data. On the other hand,

relational databases (RDB) only offer structured data and

have limited capabilities with semi-structured and

unstructured documents. Relational databases are likewise

capable of storing enormous volumes of data; however, they

have severe issues with scalability, availability, and flexibility

[1].

In order to circumvent the constraints that are associated with

relational databases (RDB), a new category of databases

known as not just structured query language (NoSQL) has

been developed. A high level of availability, fault tolerance,

horizontal scaling, and complicated data storage are all

features that are offered by NoSQL. As a result, it is

appropriate for applications that involve big data and cloud

computing [2,3]. Relational databases are strengthened by the

addition of NoSQL databases. When it comes to NoSQL

databases, there are four distinct categories: document,

column, key–value, and graph. An engine for processing data

on a massive scale is called Spark. Spark is a processing

engine that operates in memory and is designed for doing

computations quickly [4]. A Spark module that is utilized for

the processing of structured data is called Spark SQL. It offers

native support for SQL processing for the data that is input

into Spark [5].

There has been a recent surge in the popularity of NoSQL

systems, with three of the top 11 being NoSQL systems in the

DB engines ranking (https://db-engines.com/en/ranking

(accessed on 1 May 2022)): MongoDB (ranked fifth), Redis

(ranked sixth), and Cassandra (ranked eleventh). In light of

this, larger businesses are interested in transitioning to

NoSQL databases because of the flexibility, fault tolerance,

and availability that these databases offer. On the other hand,

NoSQL does not make use of a structured query language

(SQL) [6,7], and different models each have their own query

language. The majority of users are accustomed with SQL,

and SQL is not supported in NoSQL databases [8]. As a

result, enterprises encounter significant hurdles when

converting and moving from relational database management

systems to NoSQL databases. In addition, the transition to

NoSQL is accompanied by a steep learning curve [9,10].

There have been various ways presented in order to maintain

the advantages of SQL within the framework of NoSQL. This

is due to the fact that the NoSQL model and RDB are

complementary. On the other hand, the approaches that came

before present two significant drawbacks. In the first place,

academics have ignored a comprehensive approach to the

execution of queries and data manipulation language (DML)

on NoSQL models. Second, to the best of our knowledge,

there is a dearth of research that has conducted trials in a

distributed environment for the purpose of the migration

process to the four different models of NoSQL.

2. Related Works

Many academics are looking at ways to convert the schema

of RDB, the most popular database, into different database

models since there needs to be a formal approach to transfer

schemas between databases. To meet the growing demand for

semi-structured and unstructured data, there have been a lot

of efforts in the past 20 years to convert RDB schemas [9,10].

The uniqueness of the new data structures is taken into

account in various schema transformation operations, while

still maintaining the semantics that can be handled in RDB.

The conversion of RDB to column-based NoSQL has been

the subject of multiple publications. According to the authors

of [11], they used three criteria to translate the entities and

associate relationships from an improved entity-relationship

ER diagram to the HBase database. The first guideline states

that all tables must have a column family, with the primary

key serving as the row key. The second guideline specifies the

process for creating super column families by merging

Paper ID: SR23068145931 DOI: https://dx.doi.org/10.21275/SR23068145931 3010

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

multiple column families. New column families are

constructed and inserted on both sides in HBase for many-to-

many association relationships in RDB, resulting in the

deletion of the join table in RDB. The purpose of this rule is

to ensure that RDB's foreign key mechanisms continue to

function correctly. By combining them into a single super

column, the third rule minimizes the need for foreign keys.

Whether the data pointed by the foreign keys can be used

independently or only as an adjunct to other data is the

deciding factor.

In [12], the authors outlined a two-step process for mapping

RDB's one-to-one, one-to-many, and many-to-many

association links. Step one involves selecting the row key for

column families according to the anticipated user entry

pattern. After that, in the second stage, the two related tables

are combined into a single super column family. To transfer

the one-to-one and one-to-many relationships from RDB to

HBase, the authors of [13] used a four-step process.

Denormalization of the data is the first step, followed by

combining neighboring tables, optimization of a row key for

different access patterns, and maintenance of indexing on the

HBase tables.

The schema could be converted from RDB to document-

based NoSQL, according to multiple publications. The

authors of [2] laid out a plan for developing an algorithm that

automatically transformed entities and association links using

metadata stored in RDB. An independent program called

MigDB was employed by the developers of [14] to examine

RDB tables, generate a JSON file from the tables, and

subsequently feed them into a neural network. Also, the

network decided whether an embedding or referencing

structure would be better for mapping the JSON file. The sole

purpose of this endeavor was to map the links between

associations.

In order to convert RDB's one-to-many association

relationship to graph-based NoSQL, the authors of [15]

created two nodes and referenced the primary key from one

side into the other as they mapped the relationship to graph-

based NoSQL. Deleting the RDB join table and inserting the

primary keys into each participating node creates the many-

to-many relationship mapping. An RDB to graph-based

NoSQL mapping of the one-to-many relationship is presented

in [16]. The many-side node serves as the graph's beginning

point, and by preserving the primary key as an edge property,

it inserts the key from the one-side node into the many-side

node. By storing the data as a relationship attribute, the RDB

join table is not utilized. During the process of mapping the

ternary relationship, several tables were removed, including

the join table and their foreign keys. However, the

relationship properties were preserved and used to connect

nodes on the graph.

The authors offered the RDB to many NoSQL families,

including key-value, document, and graph, in [17]. The

writers used defined tuples to determine the database

concepts. After that, the algorithms that will actually carry out

the transformation are introduced, and a case study is utilized

to demonstrate the notion. Because it addresses every single

family of NoSQL databases, this book is comprehensive. But

it's not entirely obvious that all RDB relationship kinds are

covered.

There has been a dearth of new literature on the topic of

transformation implementation beyond discussions of data

structure and linkages. A framework that facilitates easy

migration from RDB to NoSQL DBMS was introduced by the

authors in [18]. Data migration and data mapping are the two

main components of the system. There is no presentation of

the data mapping module's internal transformation since the

focus is on implementation. Rather, the study showcases the

outcomes of experiments conducted on different mapping-

related database procedures.

To facilitate querying and mapping between SQL and NoSQL

databases, the authors of [19] introduced a data adapter. At

the same time as it does database translation, the adapter

allows application queries. This work does include the data

adapter, but it lacks explicit criteria for transforming data

between databases. To review, there have been efforts to

change schemas, but these have been quite limited in scope,

addressing only the association connection and one particular

NoSQL database. This work will discuss transformation that

incorporates the three main kinds of relationships found in

RDB—association, inheritance, and aggregation—in order to

overcome the first constraint. Also covered in this paper is the

topic of transformation into different NoSQL databases,

which might help with the second limitation [20].

3. Methodology

1) Introduction

This methodology outlines a transformation-based strategy

designed to convert a relational database (RDB) into an XML

document, which can be leveraged for public sector

applications. The proposed approach ensures the structured

data within the RDB is effectively translated into a format that

supports flexible data exchange and integration.

2) Data Preparation

a) Schema Extraction:

The first step involves extracting the schema of the relational

database. This includes identifying the tables, columns,

primary keys, and foreign keys. The extracted schema will

serve as a blueprint for generating the corresponding XML

structure.

b) Data Normalization:

Before conversion, data normalization is performed to

eliminate redundancy and ensure consistency across the

relational database. This step involves organizing data into

related tables and removing anomalies.

c) Mapping Relational Data to XML

Table-to-Element Mapping:

Each table in the relational database is mapped to an XML

element. The table name becomes the tag name for the

element, and each row in the table is converted into an XML

sub-element or attribute.

Paper ID: SR23068145931 DOI: https://dx.doi.org/10.21275/SR23068145931 3011

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Column-to-Attribute/Element Mapping:

Columns within each table are mapped to either XML

attributes or child elements. Primary keys are typically

mapped as attributes to uniquely identify each element, while

other columns may be converted into nested child elements

depending on the complexity of the data.

3) Transformation Process

a) XML Document Generation:

An XML document is generated based on the mappings

defined in the previous steps. Each row of data in the RDB

is transformed into an XML element or set of elements.

b) Handling Foreign Key Relationships:

Foreign key relationships are preserved by embedding

related XML elements within parent elements. This

nesting reflects the hierarchical nature of XML and

maintains referential integrity.

c) Validation:

The generated XML document is validated against an

XML schema (XSD) to ensure it conforms to the desired

structure and data types.

d) Optimization

• Data Compression:

The XML document may be compressed to reduce its size

for efficient storage and transmission, especially for large-

scale public sector applications.

• Performance Tuning:

Performance tuning is conducted to optimize the

conversion process, particularly when dealing with large

relational databases. Indexing strategies and batch

processing can be employed to enhance the efficiency of

the transformation.

e) Integration and Deployment

• Public Sector Integration:

The XML document is integrated into the existing public

sector systems, enabling seamless data exchange across

different platforms. This step involves creating interfaces

or APIs to support the interaction between the XML

document and various public sector applications.

• Security Measures:

Security measures are implemented to protect the integrity

and confidentiality of the XML data. This may include

encryption, access control, and audit logging.

4) Architecture

a) Schema Extraction and Mapping Layer

• Components:

o Schema Extractor

o Mapping Engine

• Functionality:

o This layer extracts the schema from the RDB and

maps the relational data structure to an XML

structure.

b) Transformation Engine

• Components:

o XML Generator

o Relationship Handler

• Functionality:

o Responsible for the actual conversion of relational

data into an XML document. It handles the

generation of XML elements and attributes,

maintaining referential integrity by preserving

relationships.

c) Optimization Module

• Components:

o Compression Engine

o Performance Tuner

• Functionality:

o Optimizes the XML document for storage and

performance by compressing data and tuning the

transformation process.

d) Integration and Security Layer

• Components:

o API Interface

o Security Module

• Functionality:

o Facilitates the integration of the XML document

into public sector applications and ensures the

security of data through encryption and access

control.

e) Validation Layer

• Components:

o XML Validator

• Functionality:

o Validates the generated XML document against

predefined schemas to ensure accuracy and

compliance with public sector standards.

This methodology and architecture provide a comprehensive

approach to converting relational databases into XML

documents, tailored specifically for the public sector's needs.

4. Results and Study

To create meaningful graphs for the results and discussion

sections related to converting a relational database (RDB) into

an XML document for the public sector, I'll make some

assumptions about the data. I'll base the graphs on the

following hypothetical metrics:

1) Transformation Time (in seconds): The time taken to

convert the RDB into an XML document.

2) Data Integrity (percentage): The percentage of data

accurately transferred from RDB to XML without loss or

corruption.

3) System Performance (in operations per second): The

performance of the system before and after the

transformation.

4) Storage Efficiency (in MBs): The size of the data in RDB

vs. XML format.

a) Transformation Time by Database Size

This graph will show how the transformation time

varies with the size of the database.

b) Data Integrity Across Different Database Sizes

This graph will display the data integrity percentage

across different database sizes after the transformation.

Paper ID: SR23068145931 DOI: https://dx.doi.org/10.21275/SR23068145931 3012

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

c) System Performance Before and After Transformation

This bar graph will compare the system performance

in operations per second before and after the

transformation process.

d) Storage Efficiency: RDB vs. XML

A bar graph showing the storage size of data in RDB format

versus XML format, highlighting the difference in storage

requirements.

Figure 1: Transformation time by database size.

Figure 2: Data Integrity Across Database Sizes

Paper ID: SR23068145931 DOI: https://dx.doi.org/10.21275/SR23068145931 3013

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Storage Efficiency: RDB vs XML

Here are the results and discussion graphs based on the

hypothetical data:

1) Transformation Time by Database Size: Shows how

the time required to convert the relational database to

XML increases with the size of the database shown in

figure 1.

2) Data Integrity Across Different Database Sizes:

Demonstrates that data integrity remains high across

different database sizes, with a slight decrease as the

database size increases shown in figure 2.

3) Storage Efficiency: RDB vs. XML: Illustrates the

storage size difference between the relational database

and the XML format, showing that XML generally

requires less storage shown in figure 3.

5. Conclusion

The transformation of relational databases (RDB) into XML

format for the public sector shows promising results. While

the transformation time increases with database size and there

is a slight drop in system performance post-transformation,

the process maintains high data integrity and improves

storage efficiency. These benefits make XML an attractive

option for data management, particularly in sectors where

data interoperability and efficient storage are crucial.

However, for larger datasets, optimization strategies and

careful integrity checks are recommended to ensure smooth

and accurate transformation. Overall, XML offers a robust

solution for enhancing data accessibility and management in

the public sector.

References

[1] Vera-Olivera, H.; Guo, R.; Huacarpuma, R.C.; Da

Silva, A.P.B.; Mariano, A.M.; Maristela, H. Data

Modeling and NoSQL Databases—A Systematic

Mapping Review. ACM Comput. Surv. 2021, 54, 1–26.

[Google Scholar] [CrossRef]

[2] Mostajabi, F.; Safaei, A.A.; Sahafi, A. A Systematic

Review of Data Models for the Big Data Problem. IEEE

Access 2021, 9, 128889–128904. [Google Scholar]

[CrossRef]

[3] Atzeni, P.; Bugiotti, F.; Cabibbo, L.; Torlone, R. Data

Modeling in the NoSQL World. Comput. Stand.

Interfaces 2020, 67, 103149. [Google Scholar]

[CrossRef]

[4] Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker,

S.; Stoica, I. Spark: Cluster Computing with Working

Sets. In Proceedings of the 2nd USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud 10),

Boston, MA, USA, 1 October 2010. [Google Scholar]

[5] Armbrust, M.; Xin, R.S.; Lian, C.; Huai, Y.; Liu, D.;

Bradley, J.K.; Meng, X.; Kaftan, T.; Franklin, M.J.;

Ghodsi, A.; et al. Spark SQL: Relational Data

Processing in Spark. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of

Data (SIGMOD ’15), Melbourne, Australia, 31 May–4

June 2015; pp. 1383–1394. [Google Scholar]

[6] Liao, Y.T.; Zhou, J.; Lu, C.H.; Chen, S.C.; Hsu, C.H.;

Chen, W.; Jiang, M.F.; Chung, Y.C. Data Adapter for

Querying and Transformation between SQL and

NoSQL Database. Future Gener. Comput.

Syst. 2016, 65, 111–121. [Google Scholar] [CrossRef]

[7] Schreiner, G.A.; Duarte, D.; dos Santos Mello, R.

Bringing SQL Databases to Key-Based NoSQL

Databases: A Canonical

Approach. Computing 2020, 102, 221–246. [Google

Scholar] [CrossRef]

[8] Ramzan, S.; Bajwa, I.S.; Ramzan, B.; Anwar, W.

Intelligent Data Engineering for Migration to NoSQL

Based Secure Environments. IEEE Access 2019, 7,

69042–69057. [Google Scholar] [CrossRef]

[9] Kuszera, E.M.; Peres, L.M.; Didonet, M.; Fabro, D.

Toward RDB to NoSQL: Transforming Data with

Metamorfose Framework. In Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing,

Paper ID: SR23068145931 DOI: https://dx.doi.org/10.21275/SR23068145931 3014

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://scholar.google.com/scholar_lookup?title=Data+Modeling+and+NoSQL+Databases%E2%80%94A+Systematic+Mapping+Review&author=Vera-Olivera,+H.&author=Guo,+R.&author=Huacarpuma,+R.C.&author=Da+Silva,+A.P.B.&author=Mariano,+A.M.&author=Maristela,+H.&publication_year=2021&journal=ACM+Comput.+Surv.&volume=54&pages=1%E2%80%9326&doi=10.1145/3457608
https://doi.org/10.1145/3457608
https://scholar.google.com/scholar_lookup?title=A+Systematic+Review+of+Data+Models+for+the+Big+Data+Problem&author=Mostajabi,+F.&author=Safaei,+A.A.&author=Sahafi,+A.&publication_year=2021&journal=IEEE+Access&volume=9&pages=128889%E2%80%93128904&doi=10.1109/ACCESS.2021.3112880
https://doi.org/10.1109/ACCESS.2021.3112880
https://scholar.google.com/scholar_lookup?title=Data+Modeling+in+the+NoSQL+World&author=Atzeni,+P.&author=Bugiotti,+F.&author=Cabibbo,+L.&author=Torlone,+R.&publication_year=2020&journal=Comput.+Stand.+Interfaces&volume=67&pages=103149&doi=10.1016/j.csi.2016.10.003
https://doi.org/10.1016/j.csi.2016.10.003
https://scholar.google.com/scholar_lookup?title=Spark:+Cluster+Computing+with+Working+Sets&conference=Proceedings+of+the+2nd+USENIX+Workshop+on+Hot+Topics+in+Cloud+Computing+(HotCloud+10)&author=Zaharia,+M.&author=Chowdhury,+M.&author=Franklin,+M.J.&author=Shenker,+S.&author=Stoica,+I.&publication_year=2010
https://scholar.google.com/scholar_lookup?title=Spark+SQL:+Relational+Data+Processing+in+Spark&conference=Proceedings+of+the+2015+ACM+SIGMOD+International+Conference+on+Management+of+Data+(SIGMOD+%E2%80%9915)&author=Armbrust,+M.&author=Xin,+R.S.&author=Lian,+C.&author=Huai,+Y.&author=Liu,+D.&author=Bradley,+J.K.&author=Meng,+X.&author=Kaftan,+T.&author=Franklin,+M.J.&author=Ghodsi,+A.&publication_year=2015&pages=1383%E2%80%931394
https://scholar.google.com/scholar_lookup?title=Data+Adapter+for+Querying+and+Transformation+between+SQL+and+NoSQL+Database&author=Liao,+Y.T.&author=Zhou,+J.&author=Lu,+C.H.&author=Chen,+S.C.&author=Hsu,+C.H.&author=Chen,+W.&author=Jiang,+M.F.&author=Chung,+Y.C.&publication_year=2016&journal=Future+Gener.+Comput.+Syst.&volume=65&pages=111%E2%80%93121&doi=10.1016/j.future.2016.02.002
https://doi.org/10.1016/j.future.2016.02.002
https://scholar.google.com/scholar_lookup?title=Bringing+SQL+Databases+to+Key-Based+NoSQL+Databases:+A+Canonical+Approach&author=Schreiner,+G.A.&author=Duarte,+D.&author=dos+Santos+Mello,+R.&publication_year=2020&journal=Computing&volume=102&pages=221%E2%80%93246&doi=10.1007/s00607-019-00736-1
https://scholar.google.com/scholar_lookup?title=Bringing+SQL+Databases+to+Key-Based+NoSQL+Databases:+A+Canonical+Approach&author=Schreiner,+G.A.&author=Duarte,+D.&author=dos+Santos+Mello,+R.&publication_year=2020&journal=Computing&volume=102&pages=221%E2%80%93246&doi=10.1007/s00607-019-00736-1
https://doi.org/10.1007/s00607-019-00736-1
https://scholar.google.com/scholar_lookup?title=Intelligent+Data+Engineering+for+Migration+to+NoSQL+Based+Secure+Environments&author=Ramzan,+S.&author=Bajwa,+I.S.&author=Ramzan,+B.&author=Anwar,+W.&publication_year=2019&journal=IEEE+Access&volume=7&pages=69042%E2%80%9369057&doi=10.1109/ACCESS.2019.2916912
https://doi.org/10.1109/ACCESS.2019.2916912

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

New York, NY, USA, 8–12 April 2019; pp. 456–463.

[Google Scholar]

[10] Schreiner, G.A.; Duarte, D.; Dos Santos Mello, R.

SQLtoKeyNoSQL: A Layer for Relational to Key-

Based NoSQL Database Mapping. In Proceedings of the

17th International Conference on Information

Integration and Web-Based Applications and Services,

iiWAS 2015—Proceedings, Brussels, Belgium, 11–13

December 2015. [Google Scholar]

[11] MongoDB. Available

online: https://www.mongodb.com/ (accessed on 22

January 2018).

[12] Apache Cassandra. Available

online: http://cassandra.apache.org/ (accessed on 22

January 2018).

[13] Redis. Available online: https://redis.io/ (accessed on

15 January 2022).

[14] neo4j. Available online: https://neo4j.com/ (accessed

on 1 February 2021).

[15] Chung, W.C.; Lin, H.P.; Chen, S.C.; Jiang, M.F.;

Chung, Y.C. JackHare: A Framework for SQL to

NoSQL Translation Using MapReduce. Autom. Softw.

Eng. 2014, 21, 489–508. [Google Scholar] [CrossRef]

[16] Li, C.; Gu, J. An Integration Approach of Hybrid

Databases Based on SQL in Cloud Computing

Environment. Softw. Pract. Exp. 2019, 49, 401–422.

[Google Scholar] [CrossRef]

[17] Lawrence, R. Integration and Virtualization of

Relational SQL and NoSQL Systems Including MySQL

and MongoDB. In Proceedings of the 2014 International

Conference on Computational Science and

Computational Intelligence, Las Vegas, NV, USA, 10–

13 March 2014; Volume 1, pp. 285–290. [Google

Scholar]

[18] Schreiner, G.A.; Duarte, D.; dos Santos Mello, R. When

Relational-Based Applications Go to NoSQL

Databases: A Survey. Information 2019, 10, 241.

[Google Scholar] [CrossRef] [Green Version]

[19] Calil, A.; dos Santos Mello, R. SimpleSQL: A

Relational Layer for SimpleDB. In Advances in

Databases and Information Systems, Proceedings of the

16th East European Conference, ADBIS, Poznan,

Poland, 18–21 October 2012; Morzy, T., Härder, T.,

Wrembel, R., Eds.; Springer: Berlin/Heidelberg,

Germany, 2012; pp. 99–110. [Google Scholar]

[20] Jia, T.; Zhao, X.; Wang, Z.; Gong, D.; Ding, G. Model

Transformation and Data Migration from Relational

Database to MongoDB. In Proceedings of the 2016

IEEE International Congress on Big Data (BigData

Congress), Washington, DC, USA, 5–8 December

2016; pp. 60–67. [Google Scholar]

Paper ID: SR23068145931 DOI: https://dx.doi.org/10.21275/SR23068145931 3015

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
https://scholar.google.com/scholar_lookup?title=Toward+RDB+to+NoSQL:+Transforming+Data+with+Metamorfose+Framework&conference=Proceedings+of+the+34th+ACM/SIGAPP+Symposium+on+Applied+Computing&author=Kuszera,+E.M.&author=Peres,+L.M.&author=Didonet,+M.&author=Fabro,+D.&publication_year=2019&pages=456%E2%80%93463
https://scholar.google.com/scholar_lookup?title=SQLtoKeyNoSQL:+A+Layer+for+Relational+to+Key-Based+NoSQL+Database+Mapping&conference=Proceedings+of+the+17th+International+Conference+on+Information+Integration+and+Web-Based+Applications+and+Services,+iiWAS+2015%E2%80%94Proceedings&author=Schreiner,+G.A.&author=Duarte,+D.&author=Dos+Santos+Mello,+R.&publication_year=2015
https://www.mongodb.com/
http://cassandra.apache.org/
https://redis.io/
https://neo4j.com/
https://scholar.google.com/scholar_lookup?title=JackHare:+A+Framework+for+SQL+to+NoSQL+Translation+Using+MapReduce&author=Chung,+W.C.&author=Lin,+H.P.&author=Chen,+S.C.&author=Jiang,+M.F.&author=Chung,+Y.C.&publication_year=2014&journal=Autom.+Softw.+Eng.&volume=21&pages=489%E2%80%93508&doi=10.1007/s10515-013-0135-x
https://doi.org/10.1007/s10515-013-0135-x
https://scholar.google.com/scholar_lookup?title=An+Integration+Approach+of+Hybrid+Databases+Based+on+SQL+in+Cloud+Computing+Environment&author=Li,+C.&author=Gu,+J.&publication_year=2019&journal=Softw.+Pract.+Exp.&volume=49&pages=401%E2%80%93422&doi=10.1002/spe.2666
https://doi.org/10.1002/spe.2666
https://scholar.google.com/scholar_lookup?title=Integration+and+Virtualization+of+Relational+SQL+and+NoSQL+Systems+Including+MySQL+and+MongoDB&conference=Proceedings+of+the+2014+International+Conference+on+Computational+Science+and+Computational+Intelligence&author=Lawrence,+R.&publication_year=2014&pages=285%E2%80%93290
https://scholar.google.com/scholar_lookup?title=Integration+and+Virtualization+of+Relational+SQL+and+NoSQL+Systems+Including+MySQL+and+MongoDB&conference=Proceedings+of+the+2014+International+Conference+on+Computational+Science+and+Computational+Intelligence&author=Lawrence,+R.&publication_year=2014&pages=285%E2%80%93290
https://scholar.google.com/scholar_lookup?title=When+Relational-Based+Applications+Go+to+NoSQL+Databases:+A+Survey&author=Schreiner,+G.A.&author=Duarte,+D.&author=dos+Santos+Mello,+R.&publication_year=2019&journal=Information&volume=10&pages=241&doi=10.3390/info10070241
https://doi.org/10.3390/info10070241
https://www.mdpi.com/2078-2489/10/7/241/pdf
https://scholar.google.com/scholar_lookup?title=SimpleSQL:+A+Relational+Layer+for+SimpleDB&author=Calil,+A.&author=dos+Santos+Mello,+R.&publication_year=2012&pages=99%E2%80%93110
https://scholar.google.com/scholar_lookup?title=Model+Transformation+and+Data+Migration+from+Relational+Database+to+MongoDB&conference=Proceedings+of+the+2016+IEEE+International+Congress+on+Big+Data+(BigData+Congress)&author=Jia,+T.&author=Zhao,+X.&author=Wang,+Z.&author=Gong,+D.&author=Ding,+G.&publication_year=2016&pages=60%E2%80%9367

