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Abstract: This paper introduces the notion of property (Baw1), which is an extension of the property (Baw) defined and studied in [14].  

We establish for a bounded linear operator defined on a Banach space the necessary and sufficient conditions for which the property 

(Baw1) holds. We discuss the property (Baw1) for operators satisfying the single valued extension property (SVEP).Certain conditions 

are explored on Hilbert space operators  𝑻 and 𝑺 so   that 𝑻⊕S obeys the property (Baw1).We also study the preservation of the property 

(Baw) under perturbations by finite rank and nilpotent operators.  
 

Keywords: Weyl’s theorem; Generalized Weyl’s theorem; Generalized Browder’s theorem; SVEP; Property (Baw1); Property (Baw); 

Finitely polaroid operators. 

 
AMS Subject Classification: 47A10; 47A11; 47A53. 

 

1. Introduction and Preliminaries 
 

Let 𝐵 𝑋  denote the Banach algebra of all bounded linear 

operators on an infinite-dimensional complex Banach 

space 𝑋.   For an operator  𝑇 ∈ 𝐵 𝑋 , let 𝑇∗ , 𝑁 𝑇 , 

𝑅 𝑇 , 𝜍 𝑇  𝑎𝑛𝑑  𝜍𝑎 𝑇 denote respectively the adjoint, the 

null space, the range space, the spectrum  and the 

approximate spectrum of 𝑇. Let ∝  𝑇   𝑎𝑛𝑑  𝛽 𝑇 be the 

nullity and deficiency of T defined by∝  𝑇 = 𝑑𝑖𝑚𝑁 𝑇 and 

𝛽 𝑇  =codim 𝑅 𝑇 . If the range𝑅 𝑇  of  𝑇 is closed   and 

∝ (𝑇) < ∞(resp. 𝛽 𝑇 < ∞), 𝑡ℎ𝑒𝑛 𝑇 is said to be an upper 

(resp., a lower) semi-Fredholm operator. Let 𝑈𝑆𝐹(𝑋) denote 

the class of all upper semi-Fredholm operators.An operator 

𝑇 ∈ 𝐵 𝑋  is said to be semi-Fredholm if 𝑇 is either an upper 

or a lower semi- Fredholm and the index of T is defined by   

ind(𝑇) =∝  𝑇 − 𝛽(𝑇). 

 

If 𝑇 ∈ 𝐵 𝑋  is both upper and lower semi-Fredholm then T 

is said to be the Fredholm operator. An operator  𝑇 ∈ 𝐵(𝑋)  

is called a Weyl operator if it is a Fredholm operator of 

index zero. The Weyl Spectrum of T is defined by 𝜍𝑊 𝑇 =
 𝜆 ∈ ℂ ∶ 𝑇 −  𝜆𝐼 𝑖𝑠 𝑛𝑜𝑡 𝑊𝑒𝑦𝑙 . 
 

Denote by 𝑈𝑆𝐹−(𝑋) the class of all upper semi B-Fredholm 

operators with an index less than or equal to 0. Set 

𝜍𝑢𝑠𝑓−  𝑇 =  𝜆 ∈ ℂ ∶ 𝑇 −  𝜆𝐼  ∉ 𝑈𝑆𝐹−(𝑋) . 

 

Following Coburn [9],we say that Weyl’s theorem holds for 

𝑇 ∈ 𝐵(𝑋) if  𝜍 𝑇 ∖ 𝜍𝑊 𝑇 = 𝐸0 𝑇 , where  𝐸0 𝑇 =
 𝜆 ∈ 𝑖𝑠𝑜𝜍 𝑇 : 0 < 𝛼 𝑇 − 𝜆𝐼 < ∞ .Here and elsewhere 

for 𝐴 ⊂ ℂ, isoA denotes the set of all isolated points of A 

and accA denotes the set of all points of accumulation of 

A.According toRako𝑐 evi𝑐  [17] an operator 𝑇 ∈ 𝐵(𝑋)is said 

to satisfy a-Weyl’s theorem if,𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑓 − 𝑇 = 𝐸0
𝑎 𝑇 , 

where 𝐸0
𝑎 𝑇 =  𝜆 ∈ 𝑖𝑠𝑜 𝜍𝑎 𝑇 : 0 < 𝛼 𝑇 − 𝜆𝐼 < ∞ . 

 

For a bounded linear operator 𝑇 ∈ 𝐵(𝑋)    and a non-

negative integer n, we define 𝑇𝑛  to be the  restriction of  𝑇    

to 𝑅(𝑇𝑛)   viewed as a map from 𝑅(𝑇𝑛)   into itself (in 

particular  𝑇0 = 𝑇 .   If for some integer n, the range space 

𝑅 𝑇𝑛  is closed and   𝑇𝑛  is an upper (resp., a lower) semi-

Fredholm operator, then 𝑇 is called  an upper (resp., a lower) 

semi B - Fredholm operator.  A semi-B-Fredholm operator is 

an upper or a lower semi-B-Fredholm operator. From [8, 

Proposition 2.1] if 𝑇𝑛  is a semi- Fredholm operator then 𝑇𝑚   

is also a semi – Fredholm operator for each  𝑚 ≥ 𝑛  and 

𝑖𝑛𝑑 𝑇𝑚  = 𝑖𝑛𝑑(𝑇𝑛)  . Thus, the index of a semi-B-Fredholm 

operator T is defined as the index of the semi- Fredholm 

operator  𝑇𝑛 .  (see [7,8]). An operator 𝑇 ∈ 𝐵 𝑋  is called a 

B-weyl operator if it is a B- Fredholm operator of index 0. 

The B- Weyl spectrum 𝜍𝐵𝑊 𝑇  of T is defined as 𝜍𝐵𝑊 𝑇 =
 𝜆 ∈ ℂ ∶ 𝑇 −  𝜆𝐼 𝑖𝑠 𝑛𝑜𝑡 𝐵 − 𝑊𝑒𝑦𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 . Let 

𝑈𝑆𝐵𝐹−(𝑋) be the class of all upper semi-B-Fredholm 

operators with an index less than or equal to 0. The upper B-

Weyl spectrum of T is defined by  𝜍𝑢𝑠𝑏𝑓 − 𝑇 =
 𝜆 ∈ ℂ: 𝑇 − 𝜆𝐼 ∉  𝑈𝑆𝐵𝐹−(𝑋) . 
 

Let 𝑝 𝑇 : = asc( 𝑇 ) be the ascent of an operator 𝑇 i.e., the 

smallest nonnegative integer n such that  𝑁 𝑇𝑛 =
𝑁 𝑇𝑛+1 . If such an integer does not exist we put 

asc(T)= ∞. Analogously, let 𝑞 𝑇  ∶= dsc(T) be the descent 

of an operator𝑇i.e. the smallest non-negative integer such 

that   𝑅 𝑇𝑛 = 𝑅 𝑇𝑛+1 and if such an integer does not exist 

we put dsc(T) = ∞. It is well known that if 𝑝 𝑇  and 𝑞 𝑇   

are both finite then 𝑝 𝑇  = 𝑞 𝑇  .An operator T is called 

Drazin invertible if it has finite ascent and descent. The 

Drazin spectrum of T is defined by 𝜍𝐷 𝑇 =  𝜆 ∈ ℂ ∶      𝑇 −
 𝜆𝐼 𝑖𝑠 𝑛𝑜𝑡 𝐷𝑟𝑎𝑧𝑖𝑛 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒. We observe 𝜍𝐷𝑇=𝜍(𝑇) 

\𝜋 𝑇 ,where 𝜋 𝑇 is the set of poles of T. 

 

An operator  𝑇 ∈ 𝐵 𝑋  is called an upper semi-Browder if it 

is an upper semi-Fredholm of finite ascent, and is called 

Browder if it is a Fredholm of finite ascent and descent. The 

Browder spectrum of T is defined by  𝜍𝑏 𝑇 =
 λ ∈ ℂ ∶ T −  λI is not Browder .Define the set LD(X)as 

follows:  

𝐿𝐷 𝑋 =  𝑇 ∈ 𝐵 𝑋 : ∝  𝑇 

< ∞ 𝑎𝑛𝑑 𝑖𝑠 𝑅(𝑇∝ 𝑇 +1 𝑐𝑙𝑜𝑠𝑒𝑑  

and 𝜍𝐿𝐷 𝑇 =  𝜆 ∈ ℂ ∶ 𝑇 −  𝜆𝐼  ∉ 𝐿𝐷 𝑋  .An operator 

𝑇 ∈ 𝐵 𝑋    is said to be left Drazin invertible if  𝑇 ∈ 𝐿𝐷 𝑋 . 

We say that𝜆 ∈ 𝜍𝑎 𝑇  is a left pole of T if  𝑇 −  𝜆𝐼 ∈
𝐿𝐷 𝑋 and that𝜆 ∈ 𝜍𝑎 𝑇  is a left pole of T of finite rank if 𝜆  

is a left pole of T and 𝛼 𝑇 − 𝜆𝐼 < ∞. Let 𝜋𝑎 𝑇  denote the 

set of all left poles of T and 𝜋0
𝑎 𝑇  denotes the set of all left 

poles of T of finite rank.Following [7] , we say that 

generalized a-Browder’s theorem holds for T if 𝜍𝑎 𝑇 ∖
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𝜍𝑢𝑠𝑏𝑓 − 𝑇 =  𝜋𝑎 𝑇  and that a-Browder’s theorem holds for 

T if𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑓 − 𝑇 = 𝜋0
𝑎 𝑇 . It is proved in [3,Theorem 

2.2] that generalized a-Browder’s theorem is equivalent to a-

Browder’s theorem.  

 

Given 𝑇 ∈ 𝐵(𝑋)  , we say that generalized Browder’s 

theorem holds for 𝑇 if  𝜍 𝑇 ∖ 𝜍𝐵𝑊 𝑇 = 𝜋(𝑇), and that 

Browder’s theorem holds for T if 𝜍 𝑇 ∖ 𝜍𝑊 𝑇 = 𝜋0 𝑇 , 

where  𝜋0 𝑇 is  the set of  all poles of T of finite rank.  It is 

proved in [ 3, Theorem 2.1] that generalized Browder’s 

theorem is equivalent to Browder’s theorem. 

 

We say that T obeys generalized a-Weyl theorem if  𝜍𝑎 𝑇 ∖
𝜍𝑢𝑠𝑏𝑓 − 𝑇 =  𝐸𝑎 𝑇 , Where 𝐸𝑎 𝑇  is the set of all 

eigenvalues of T which are isolated in 𝜍𝑎 𝑇 and that 

generalized Weyl’s theorem holds for T if     𝜍 𝑇 ∖
𝜍𝐵𝑊 𝑇 = 𝐸 𝑇 , Where 𝐸(𝑇)  is the set of isolated 

eigenvaluesof 𝑇  [7, Definition2.13]. Generalized a-Weyl’s 

theorem has been studied in [3]. In [7, Theorem 3.11], it is 

shown that an operator satisfying generalized a-Weyl’s 

theorem satisfies a-Weyl’s theorem.Generalized Weyl’s 

theorem has been studied in [2,4-8] and the references 

therein. Berkani and Koliha [7] proved that generalized 

Weyl’s theorem ⇒  Weyl’s theorem. 

 

The single valued extension property was introduced by 

Dunford ([11],[12]) and it plays an important role in local 

spectral theory and Fredholm theory ([1],[15]). 

 

The operator 𝑇 ∈ 𝐵(𝑋) is said to have the single valued 

extension property at 𝜆0 ∈ ℂ(abbreviated SVEP at 𝜆0 ∈ ℂ)if 

for every open disc 𝑈 of  𝜆0 the only analytic function 

𝑓: 𝑈 → 𝑋 which satisfies the equation (𝑇 − 𝜆𝐼)𝑓(𝜆)=0 for all 

𝜆 ∈ 𝑈, is the function𝑓 ≡ 0.  

 

An operator 𝑇 ∈ 𝐵(𝑋) is said to have SVEP if 𝑇 has SVEP 

at every point 𝜆 ∈ ℂ. An operator 𝑇 ∈ 𝐵(𝑋) has SVEP at 

every point of the resolvent 𝜌(𝑇)= ℂ\𝜍(𝑇). Every operator 

 𝑇has SVEP at an isolated point of the spectrum. Duggal 

[10] gave the following important result: 

 

Theorem1.1 ([10, Proposition 3.10]). The following 

statements are equivalent. 

(i) 𝑇 satisfies generalized a-Browder’s theorem 

(ii) 𝑇 has SVEP at points  𝜆 ∉ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 . 

 

2. Property (Baw1) 
 

Property (Baw) has been defined in [14] as 

 

Definition 2.1([14, Definition 2.1]).A bounded linear 

operator 𝑇 ∈ 𝐵(𝑋)is said to satisfy property (Baw) if 

𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 = 𝐸0
𝑎 𝑇 . 

 

We now a define property (Baw1) for a bounded linear 

operators T as an extension of generalized Weyl’s theorem. 

We establish the necessary and sufficient conditions for 

which this propertyholds. We prove that T satisfies property 

(Baw1) if and only if generalized a-Browder’s theorem 

holds for T and 𝜋𝑎(𝑇) ⊆ 𝐸0
𝑎(𝑇). 

 

Definition2.2. A bounded linear operator 𝑇 ∈ 𝐵(𝑋)is said to 

satisfy property (Baw1) if 𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 ⊆ 𝐸0
𝑎 𝑇 . 

 

The following example shows that property (Baw1) does not 

imply property (Baw) in general. 

 

Example 2.1.  Let 𝑅 ∈ 𝐵(𝑙2 𝑁 ) be the right shift and let L 

be the weighted unilateral shift  defined by  

𝐿(𝑥1 , 𝑥2 , 𝑥3 . . . . . . ) = (
1

2
𝑥2 ,

1

3
𝑥3, . . . ) for all (𝑥1 , 𝑥2 , …… ) ∈

𝑙2 (N). 

 

Consider the operator𝑇 defined on 𝑙2 𝑁 ⊕ 𝑙2 𝑁 by  

by𝑇 = 𝑅 ⊕ 𝐿, 𝜍 𝑇 = 𝐷(0,1) is the closed unit disc in ℂ. 

On the other hand𝜍𝑎 𝑇 = 𝜍𝑢𝑠𝑏𝑓 − 𝑇 = 𝐶(0,1) ∪ {0}. 

However,𝐸0
𝑎 𝑇 = {0}. Thus 𝑇  satisfies property (Baw1) 

but the property(Baw) is not satisfied. 

 

Theorem 2.1.Property (Baw) holds for T if and only if T 

satisfies property (Baw1) and𝜍𝑢𝑠𝑏𝑓 − 𝑇 ∩ 𝐸0
𝑎 𝑇 = ∅. 

 

Proof: Suppose that  T satisfies property (Baw), then 

property(Baw1) holds for T and𝜍𝑢𝑠𝑏𝑓 − 𝑇 ∩ 𝐸0
𝑎 𝑇 = ∅.For 

the converse, if 𝜆 ∈ 𝐸0
𝑎 𝑇 , 𝜆 ∉ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 since𝜍𝑢𝑠𝑏𝑓 − 𝑇 ∩

𝐸0
𝑎 𝑇 = ∅.  Thus 𝜆 ∈ 𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑏𝑓 − 𝑇  . Hence 𝐸0

𝑎 𝑇 ⊆

 𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 . 

 

Theorem2.2.If 𝑇 ∈ 𝐵(𝑋) satisfies property (Baw1). 

Thengeneralized a-Browder’s theorem holds for 𝑇and 

𝜍𝑎 𝑇 = 𝜍𝑢𝑠𝑏𝑓 − 𝑇 ∪ 𝐸0
𝑎 𝑇 . 

 

Proof.By Theorem 1.1, it is sufficient to prove that 𝑇 has 

SVEP at every 𝜆 ∉ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 . Let us assume that  𝜆 ∉

𝜍𝑢𝑠𝑏𝑓 − 𝑇 . 

Case (i):  If 𝜆 ∉ 𝜍𝑎 𝑇 then 𝑇 has SVEP at 𝜆. 

Case (ii): If  𝜆 ∈ 𝜍𝑎 𝑇 and suppose that 𝑇 satisfies property 

(Baw1) then   

 

𝜆 ∈ 𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 ⊆ 𝐸0
𝑎 𝑇 . 

 

Hence, 𝜆 ∈ 𝜍𝑎
𝑖𝑠𝑜 (𝑇), so, also, in this case, 𝑇 has SVEP at 𝜆. 

To prove𝜍𝑎 𝑇 = 𝜍𝑢𝑠𝑏𝑓 − 𝑇 ∪ 𝐸0
𝑎 𝑇 , we observe 

that𝜍𝑢𝑠𝑏𝑓 − 𝑇 ∪ 𝐸0
𝑎 𝑇 ⊆ 𝜍𝑎 𝑇 for every 𝑇 ∈ 𝐵(𝑋). For the 

reverse inclusion, consider𝜆 ∈ 𝜍𝑎 𝑇 . If 𝜆 ∉ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 then  

𝜆 ∈ 𝜍𝑎 𝑇 ∖ 𝜍𝑢𝑠𝑏𝑓 − 𝑇 . As 𝑇 satisfies property (Baw1), 

therefore 𝜆 ∈ 𝐸0
𝑎 𝑇 .  Thus 𝜍𝑎 𝑇 = 𝜍𝑢𝑠𝑏𝑓 − 𝑇 ∪ 𝐸0

𝑎 𝑇 .   

 

Now we give a characterization of property (Baw1): 

 

Theorem2.3.If𝑇 ∈ 𝐵(𝑋), then the following statements are 

equivalent: 

(i) 𝑇 satisfies property (Baw1), 

(ii) generalized a-Browder’s theorem holds for 

𝑇and𝜋𝑎(𝑇) ⊆ 𝐸0
𝑎 𝑇 . 

 

Proof. (i)⇒ (ii) Assume that 𝑇 satisfies property (Baw1). By 

Theorem (2.2) it is sufficient to prove that 𝜋𝑎(𝑇) ⊆
𝐸0

𝑎 𝑇 .Let 𝜆 ∈ 𝜋𝑎 𝑇 =𝜍𝑎 𝑇 \𝜍𝑢𝑠𝑏𝑓 − 𝑇 ⊆ 𝐸0
𝑎 𝑇 . (ii) ⇒ 

(i). If 𝜆 ∈ 𝜍𝑎 𝑇 \𝜍𝑢𝑠𝑏𝑓 − 𝑇 .Then generalized a-Browder’s 

theorem implies that 𝜆 ∈ 𝜋𝑎(𝑇) ⊆ 𝐸0
𝑎 𝑇 . Thus 𝜍𝑎 𝑇 \

𝜍𝑢𝑠𝑏𝑓 − 𝑇 ⊆ 𝐸0
𝑎 𝑇 .    
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Theorem 2.4: Let  𝑇 ∈ 𝐵 𝑋 . If 𝑇 has SVEPat points in 

𝜍𝑎 𝑇 \𝜍𝑢𝑠𝑏𝑓 − 𝑇 , 𝑡ℎ𝑒𝑛  𝑇  Satisfies property (Baw1)if and 

only if 𝜋𝑎(𝑇) ⊆ 𝐸0
𝑎 𝑇 .  

 

Proof: The hypothesis that 𝑇 has SVEP at 𝜍𝑎 𝑇 \
𝜍𝑢𝑠𝑏𝑓 − 𝑇   𝑖mplies that 𝑇 satisfies generalized a- Browder’s 

theorem (see Theorem 1.1) 

 

Hence if 𝜋𝑎(𝑇) ⊆ 𝐸0
𝑎 𝑇  then 𝜍𝑎 𝑇 \𝜍𝑢𝑠𝑏𝑓 − 𝑇 = 𝜋𝑎(𝑇) ⊆

𝐸0
𝑎 𝑇 . 

 

Definition 2.3: Operators𝑆, 𝑇 ∈ 𝐵(𝑋)are said to be 

injectively interwined, denoted,𝑆 ≺𝑖 𝑇 , if there exists an 

injection𝑈 ∈ 𝐵(𝑋)such that 𝑇𝑈 = 𝑈𝑆. 

 

If 𝑆 ≺𝑖 𝑇 , then T has SVEP at a point 𝜆 implies S has SVEP 

at 𝜆. 

 

To see this, let T have SVEP at  𝜆 and let U be an open 

neighbourhood of 𝜆 and let 𝑓: 𝑈 → 𝑋  be an analytic 

function such that  𝑆 − 𝜇 𝑓 𝜇 = 0  for every 𝜇 ∈ 𝑈.Then 

𝑈 𝑆 − 𝜇 𝑓 𝜇 =  𝑇 − 𝜇 𝑈𝑓 𝜇 = 0 ⇒ 𝑈𝑓 𝜇 = 0.  Since 

𝑈 is injective,𝑓 𝜇 = 0, i.e.,𝑆 has SVEP at 𝜆. 
 

Theorem 2.5: Let   𝑆, 𝑇 ∈ 𝐵(𝑋).If 𝑇 has SVEP and 𝑆 ≺𝑖 𝑇 

,then property (Baw1) holds for 𝑆 if and only if 𝜋𝑎(𝑆) ⊆
𝐸0

𝑎 𝑆 .  

 

Proof. Suppose that 𝑇 has SVEP.Since𝑆 ≺𝑖 𝑇 ,therefore𝑆 

has SVEP.Hence the result follows from Theorem2.4.   □ 

 

Definition 2.4: An operator 𝑇 ∈ 𝐵(𝑋) is said to be left 

polaroid if all the isolated points of its approximate spectrum 

are left poles𝜍𝑎
𝑖𝑠𝑜 (𝑇) ⊆ 𝜋𝑎(𝑇). 

 

Theorem 2.6: Let 𝑇 ∈ 𝐵(𝑋)be left polaroid and satisfy 

property (Baw1), then generalized a-Weyl’s theorem holds 

for 𝑇. 

 

Proof: 𝑇 is a polaroid and satisfies property (Baw1) if and 

only if  

𝜍𝑎 𝑇 \𝜍𝑢𝑠𝑏𝑓 − 𝑇 ⊆ 𝐸0
𝑎 𝑇 ⊆ 𝐸𝑎 𝑇 = 𝜋𝑎(𝑇)

= 𝜍𝑎 𝑇 \𝜍𝑢𝑠𝑏𝑓 − 𝑇  

(Since𝑇 satisfies generalized a-Browder's theorem by 

Theorem 2.3.  

 

3. Property (Baw1) for direct sums 
 

Let 𝐻 and  𝐾 be infinite-dimensional Hilbert spaces. In this 

section, we show that if 𝑇 and 𝑆 are two operators on  𝐻 and  

𝐾 respectively and at least one of them satisfies property 

(Baw1), then their direct sum 𝑇 ⊕ 𝑆 obeys property (Baw1). 

We have also explored various conditions on 𝑇 and 𝑆 so that 

𝑇 ⊕ 𝑆 satisfies the property (Baw1). 

 

Theorem 3.1.Suppose that property (Baw1) holds for 

𝑇 ∈ 𝐵(𝐻) and 𝑆 ∈ 𝐵(𝐾). If  𝑇 and 𝑆 are a-isoloid 

and𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆) = 𝜍𝑢𝑠𝑏𝑓 −(𝑇) ∪ 𝜍𝑢𝑠𝑏𝑓 −(𝑆), then property 

(Baw1) holds for 𝑇 ⊕ 𝑆. 

 

Proof. We know  𝜍𝑎(𝑇 ⊕ 𝑆) = 𝜍𝑎(𝑇) ∪ 𝜍𝑎(𝑆) for any pair 

of operators.  

 

If   𝑇 and 𝑆 are a-isoloid, then  

𝐸0
𝑎(𝑇 ⊕ 𝑆) = [𝐸0

𝑎(𝑇) ∩ 𝜌𝑎(𝑆)] ∪ [𝜌𝑎(𝑇) ∩ 𝐸0
𝑎(𝑆)]

∪ [𝐸0
𝑎(𝑇) ∩ 𝐸0

𝑎(𝑆)] 
where 𝜌𝑎(. ) = ℂ\𝜍𝑎(. ). 

 

If property(Baw1)holds for𝑇 and 𝑆, then 

[𝜍𝑎(𝑇) ∪ 𝜍𝑎(𝑆)]\[𝜍𝑢𝑠𝑏𝑓 −(𝑇) ∪ 𝜍𝑢𝑠𝑏𝑓 −(𝑆)] 

⊆ [𝐸0
𝑎(𝑇) ∩ 𝜌𝑎(𝑆)] ∪ [𝜌𝑎(𝑇) ∩ 𝐸0

𝑎(𝑆)] ∪ [𝐸0
𝑎 𝑇 ∩ 𝐸0

𝑎(𝑆)]. 
Thus   𝜍𝑎(𝑇 ⊕ 𝑆)\𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆) ⊆ [𝐸0

𝑎(𝑇 ⊕ 𝑆).Hence 

property(Baw1) holds for 𝑇 ⊕ 𝑆.□ 

 

Theorem 3.2.Suppose 𝑇 ∈ 𝐵 𝐻 has no isolated point in its 

spectrum and 𝑆 ∈ 𝐵 𝐾  satisfies property (Baw1).  

If𝜍𝑢𝑠𝑏𝑓 − 𝑇 ⊕ 𝑆 = 𝜍𝑎 𝑇 ∪ 𝜍𝑢𝑠𝑏𝑓 − 𝑆 , then property 

(Baw1) holds for 𝑇 ⊕ 𝑆. 

 

Proof. As  𝜍𝑎(𝑇 ⊕ 𝑆) = 𝜍𝑎(𝑇) ∪ 𝜍𝑎(𝑆) for any pair of 

operators, we have  

𝜍𝑎(𝑇 ⊕ 𝑆)\𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆) = [𝜍𝑎(𝑇) ∪ 𝜍𝑎(𝑆)]\[𝜍𝑎(𝑇) ∪

𝜍𝑢𝑠𝑏𝑓 −(𝑆)] 

                                   =𝜍𝑎(𝑆)\[𝜍𝑎(𝑇) ∪ 𝜍𝑢𝑠𝑏𝑓 −(𝑆)] 

                                   =[𝜍𝑎(𝑆)\𝜍𝑢𝑠𝑏𝑓 −(𝑆)]\𝜍𝑎(𝑇) 

⊆ 𝐸0
𝑎(𝑆) ∩ 𝜌𝑎(𝑇) 

where𝜌𝑎(𝑇) = ℂ\𝜍𝑎(𝑇). 

 

Now𝜍𝑎
𝑖𝑠𝑜 (𝑇) be the set of isolated points of𝜍𝑎(𝑇) and 

𝜍𝑎
𝑖𝑠𝑜 (𝑇 ⊕ 𝑆)is  the set of isolated points of𝜍𝑎(𝑇 ⊕ 𝑆) =

𝜍𝑎(𝑇) ∪ 𝜍𝑎(𝑆). If 𝜍𝑖𝑠𝑜
𝑎  𝑇 = 𝜙 it implies that  𝜍(𝑇) =

𝜍𝑎𝑐𝑐 (𝑇), where  𝜍𝑎𝑐𝑐 (𝑇) = 𝜍𝑎(𝑇)\𝜍𝑎
𝑖𝑠𝑜 (𝑇) is the set of all 

accumulation points of 𝜍𝑎(𝑇).Thus we have   

 

𝜍𝑎
𝑖𝑠𝑜 (𝑇 ⊕ 𝑆) = [𝜍𝑎

𝑖𝑠𝑜 (𝑇) ∪ 𝜍𝑎
𝑖𝑠𝑜 (𝑆)]\[(𝜍𝑎

𝑖𝑠𝑜 (𝑇) ∩ 𝜍𝑎𝑐𝑐 (𝑆))
∪ (𝜍𝑎𝑐𝑐 (𝑇) ∩ 𝜍𝑎

𝑖𝑠𝑜 (𝑆))] 
=(𝜍𝑎

𝑖𝑠𝑜 (𝑇)\𝜍𝑎𝑐𝑐 (𝑆)) ∪ (𝜍𝑎
𝑖𝑠𝑜 (𝑆)\𝜍𝑎𝑐𝑐 (𝑇)) 

=𝜍𝑎
𝑖𝑠𝑜 (𝑆)\𝜍𝑎(𝑇) 

=𝜍𝑎
𝑖𝑠𝑜 (𝑆) ∩ 𝜌𝑎(𝑇). 

 

Let 𝜍𝑃 𝑇  denote the point spectrum of  𝑇  and 𝜍𝑃𝐹 𝑇  

denote the set of all eigen values of 𝑇 of finite multiplicity. 

 

We have that 𝜍𝑃(𝑇 ⊕ 𝑆) = 𝜍𝑃(𝑇) ∪ 𝜍𝑃(𝑆) and   

𝑑𝑖𝑚𝑁 (𝑇 ⊕ 𝑆) = 𝑑𝑖𝑚𝑁 (𝑇) + 𝑑𝑖𝑚𝑁 (𝑆)for every pair of 

operators, so that   

𝜍𝑃𝐹(𝑇 ⊕ 𝑆) = {𝜆 ∈ 𝜍𝑃𝐹(𝑇) ∪ 𝜍𝑃𝐹(𝑆): 𝑑𝑖𝑚𝑁(𝜆𝐼 − 𝑇) +
𝑑𝑖𝑚𝑁 (𝜆𝐼 − 𝑆)<∞} 

 

Therefore, 

𝐸0
𝑎(𝑇 ⊕ 𝑆) = 𝜍𝑎

𝑖𝑠𝑜 (𝑇 ⊕ 𝑆) ∩ 𝜍𝑃𝐹(𝑇 ⊕ 𝑆) 

=𝜍𝑎
𝑖𝑠𝑜 (𝑆) ∩ 𝜌𝑎(𝑇) ∩ 𝜍𝑃𝐹(𝑆) 

=  𝐸0
𝑎(𝑆) ∩ 𝜌𝑎(𝑇). 

 

Thus,𝜍𝑎(𝑇 ⊕ 𝑆)\𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆) ⊆ 𝐸0
𝑎(𝑇 ⊕ 𝑆). Hence, 

𝑇 ⊕ 𝑆 satisfies the property (Baw1). 

 

Let 𝜍1(𝑇) denote the compliment of 𝜍𝑢𝑠𝑏𝑓 −(𝑇) in 

𝜍𝑎(𝑇)i.e.𝜍1(𝑇) = 𝜍𝑎(𝑇)\𝜍𝑢𝑠𝑏𝑓 −(𝑇). A straight forward 

application of Theorem3.2leads to the following corollaries. 
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Corollary 3.1: Suppose 𝑇 ∈ 𝐵(𝐻) is such that 𝜍𝑎
𝑖𝑠𝑜 (𝑇) = 𝜙 

and 𝑆 ∈ 𝐵(𝐾) satisfies property (Baw1) with 𝜍𝑎
𝑖𝑠𝑜 (𝑆) ∩

𝜍𝑃𝐹(𝑆) = 𝜙 and𝜍1(𝑇 ⊕ 𝑆) = 𝜑, then 𝑇 ⊕ 𝑆 satisfies 

property(Baw1). 

 

Proof:  Since 𝑆satisfies property (Baw1), therefore given 

condition 𝜍𝑎
𝑖𝑠𝑜 (𝑆) ∩ 𝜍𝑃𝐹(𝑆) = 𝜙implies  that𝜍𝑎(𝑆) =

𝜍𝑢𝑠𝑏𝑓 −(𝑆). Now  𝜍1(𝑇 ⊕ 𝑆) = 𝜙 gives that 𝜍𝑎(𝑇 ⊕ 𝑆) =

𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆) = 𝜍𝑎(𝑇) ∪ 𝜍𝑢𝑠𝑏𝑓 −(𝑆).  Thus, from Theorem 

3.2 we have that 𝑇 ⊕ 𝑆 satisfies property(Baw1).  

 

Corollary 3.2: Suppose 𝑇 ∈ 𝐵(𝐻) is such that 𝜍1(𝑇) ∪
𝜍𝑎

𝑖𝑠𝑜 (𝑇) = 𝜙 and 𝑆 ∈ 𝐵(𝐾) satisfies property (Baw1). 

If𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆) = 𝜍𝑢𝑠𝑏𝑓 −(𝑇) ∪ 𝜍𝑢𝑠𝑏𝑓 −(𝑆), then property 

(Baw1) holds for 𝑇 ⊕ 𝑆. 

 

Theorem 3.3: Suppose 𝑇 ∈ 𝐵(𝐻) is an isoloid operator that 

satisfies property (Baw1), then  𝑇 ⊕ 𝑆  satisfies property 

(Baw1) whenever 𝑆 ∈ 𝐵(𝐾) is a normal operator and 

satisfies property (Baw1). 

 

Proof: If  𝑆 ∈ 𝐵(𝐾) is normal, then 𝑆  (also,𝑆∗) has SVEP, 

and 𝑖𝑛𝑑 𝑆 −  𝜆 = 0 for every 𝜆 such that 𝑆 −  𝜆 is B-

Fredholm. Observe that 𝜆 ∉ 𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆 )  𝑇 −  𝜆 and 

𝑆 −  𝜆 are B- Fredholm and ind(𝑇 −  𝜆) + 𝑖𝑛𝑑𝑆 −  𝜆) =
𝑖𝑛𝑑(𝑇 −  𝜆) = 0. 

 𝜆 ∉

 𝜍𝑎 𝑇 \𝜍𝑢𝑠𝑏𝑓 − 𝑇  ∩

 𝜍𝑎 𝑆 \𝜍𝑢𝑠𝑏𝑓 − 𝑆  . Hence,𝜍𝑢𝑠𝑏𝑓 −(𝑇 ⊕ 𝑆) = 𝜍𝑢𝑠𝑏𝑓 −(𝑇) ∪

𝜍𝑢𝑠𝑏𝑓 −(𝑆). 

 

It is well known that the isolated points of the spectrum of a 

normal operator are simple poles of the resolvent of the 

operator(implies S is a-isoloid). Hence the result follows 

from Theorem 3.1.    

   

 

4. Property (Baw) and perturbations 
 

In this section, we study the preservation of property (Baw) 

under perturbations by finite rank and nilpotent operators. 

 

Theorem4.1:  Let 𝑇 ∈ 𝐵(𝑋).  If T has property (Baw) and  

F is a finite rank operator in 𝐵(𝑋) that commutes with T, 

then T+F has property (Baw) if and only if 𝜋𝑎 𝑇 + 𝐹 =
𝐸0

𝑎 𝑇 + 𝐹 . 

 

Proof: If T+F has property (Baw), then 𝜋𝑎 𝑇 + 𝐹 =
𝐸0

𝑎 𝑇 + 𝐹 .  Conversely, if 𝜋𝑎 𝑇 + 𝐹 = 𝐸0
𝑎 𝑇 + 𝐹 .  Since 

F is a finite rank operator in B(X) that commutes with T, 

therefore 𝜍𝑢𝑠𝑏𝑓 − 𝑇 = 𝜍𝑢𝑠𝑏𝑓 −(𝑇 + 𝐹) and 𝜍𝐿𝐷 𝑇 =

𝜍𝐿𝐷 𝑇 + 𝐹 [7, Theorem 4.3].As T satisfies generalized a-

Browder’s theorem, therefore 𝜍𝑢𝑠𝑏𝑓 − 𝑇 = 𝜍𝐿𝐷 𝑇 . Now 

𝜍𝑎(𝑇 + 𝐹) \𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝐹 =𝜍𝑎(𝑇 + 𝐹) \ 𝜍𝐿𝐷 𝑇 + 𝐹 =

𝜋𝑎 𝑇 + 𝐹 = 𝐸0
𝑎 𝑇 + 𝐹 . Therefore, T+F the satisfies 

property (Baw1).     

 

Theorem 4.2: Let 𝑇 ∈ 𝐵(𝑋)  and let N be a nilpotent 

operator commuting with T. If T satisfies property (Baw), 

then the following statements are equivalent. 

(i) T+N satisfies property (Baw).  

(ii) 𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝑁 = 𝜍𝑢𝑠𝑏𝑓 −(𝑇). 

(iii) 𝐸0
𝑎 𝑇 = 𝜋𝑎 𝑇 + 𝑁 . 

 

Proof: (i) ↔(ii) Assume that 𝑇 + 𝑁 satisfies property (Baw), 

then𝜍𝑎(𝑇 + 𝑁) \𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝑁 = 𝐸0
𝑎 𝑇 + 𝑁 . As 𝜍𝑎 𝑇 +

𝑁=𝜍𝑎𝑇 and 𝐸0𝑎𝑇+𝑁=𝐸0𝑎𝑇.Then,  𝜍𝑎(𝑇) 

\𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝑁 = 𝐸0
𝑎 𝑇 . Since T satisfies property (Baw), 

then𝜍𝑎(𝑇) \𝜍𝑢𝑠𝑏𝑓 − 𝑇 = 𝐸0
𝑎 𝑇 . So 𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝑁 =

𝜍𝑢𝑠𝑏𝑓 − 𝑇 .Conversely assume that 𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝑁 =

𝜍𝑢𝑠𝑏𝑓 − 𝑇 , then as T satisfies property (Baw)it follows that 

T+N also satisfies property (Baw). 

 

(i)↔(iii) Assume that 𝑇 + 𝑁 satisfies property (Baw), then 

𝜋𝑎 𝑇 + 𝑁 = 𝐸0
𝑎 𝑇 + 𝑁   [14, Theorem 2.5]. Thus 

𝐸0
𝑎 𝑇 = 𝜋𝑎 𝑇 + 𝑁 . Conversely assume that 𝐸0

𝑎 𝑇 =
𝜋𝑎 𝑇 + 𝑁 . If T satisfies property (Baw), then T satisfies the 

generalized a- Browder theorem [14, Theorem 2.5]. As T+N 

satisfies property(Baw), T+N  satisfies generalized a-

Browder’s theorem that is 𝜍𝑎(𝑇 + 𝑁) \𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝑁 =

𝜋𝑎 𝑇 + 𝑁 . By assumption 𝐸0
𝑎 𝑇 = 𝜋𝑎 𝑇 + 𝑁 , it follows 

that 𝜍𝑎(𝑇 + 𝑁) \𝜍𝑢𝑠𝑏𝑓 − 𝑇 + 𝑁 = 𝐸0
𝑎 𝑇 + 𝑁  and so T+N 

satisfies property (Baw). 
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