
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 6, June 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Managing Dependencies and Versioning of 

Libraries and Components Used in the Ingestion 

Framework 
 

Fasihuddin Mirza 
 

fasi.mirza[at]gmail.com 

 

Abstract: Managing dependencies and versioning of libraries and components is an essential aspect of software development. This 

paper focuses on the challenges faced and best practices employed in managing dependencies and versioning within an ingestion 

framework. The ingestion framework plays a crucial role in processing and handling large volumes of data, making it crucial to 

effectively manage dependencies and versions to ensure system stability and maintainability. This journal presents a comprehensive 

exploration of the subject, offering insights and recommendations for effective dependency and version management. 

 

Keywords: Version Conflicts, Compatibility and Upgrades, Multi-version Support, Qualitative Approach, Quantitative Approach, Data 

Collection, Literature Review, Data Analysis, Thematic Analysis, Statistical Analysis, Version Conflicts, Multi-version Support, 

Dependency management tools, Version control, Semantic versioning, Effective dependency management, Emerging trends, Technologies, 

Further research, Summary of findings, Implications 
 

1. Introduction 
 

1.1 Background: 

 

In software development, managing dependencies and 

versioning is crucial for maintaining the stability and 

functionality of complex systems. An ingestion 

framework acts as a fundamental infrastructure 

component, facilitating the ingestion, processing, and 

analysis of large volumes of data. Within this framework, 

it is essential to effectively manage the dependencies and 

versions of various libraries and components to ensure 

the reliability and efficiency of the ingestion process. 

 

1.2 Problem Statement: 

 

The management of dependencies and versioning poses 

significant challenges within an ingestion framework. 

The framework relies on multiple external libraries, each 

with its own set of dependencies and version 

compatibility requirements. Coordinating and resolving 

conflicting dependencies requires careful planning and a 

thorough understanding of each component's 

compatibility matrix. Furthermore, supporting multiple 

versions of libraries in parallel is often necessary to 

accommodate different data sources and prevent 

inconsistencies in the processing pipeline. Thus, there is a 

pressing need to identify and implement best practices for 

managing dependencies and versioning in the ingestion 

framework. 

 

1.3 Objective: 

 

The primary objective of this study is to explore and 

propose effective approaches for managing dependencies 

and versioning of libraries and components within the 

context of an ingestion framework. By examining the 

challenges involved and analyzing current practices, the 

research aims to provide practical recommendations and 

strategies to enhance dependency management in the 

ingestion process. The study will also emphasize the 

impact of effective dependency and version management 

on system stability, scalability, and maintainability. The 

ultimate goal is to improve the overall performance and 

reliability of the ingestion framework while ensuring 

seamless data processing and analysis. 

 

2. Literature Review 
 

2.1 Dependency Management: 

 

Dependency management involves organizing and 

handling the dependencies required by a software 

application. It includes identifying external libraries, 

managing their inclusion, installation, and versioning. 

Effective management ensures availability and 

compatibility of dependencies, reducing conflicts and 

facilitating smooth development and deployment. 

 

2.2 Versioning in Software Development: 

 

Versioning assigns unique identifiers (versions) to 

software components, tracking changes, updates, and 

compatibility across releases. Consistent versioning 

strategies like semantic versioning aid in communicating 

compatibility expectations and managing releases. 

 

2.3 Challenges in Managing Dependencies and 

Versioning: 

 

Software development faces challenges with dependency 

conflicts, compatibility issues during upgrades, multi-

version support, and impact on system stability. Poor 

management can cause instability, bugs, or performance 

issues, affecting productivity. 

 

 

 

 

 

Paper ID: SR24422184319 DOI: https://dx.doi.org/10.21275/SR24422184319 2975 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 6, June 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

2.4 Current Approaches in Dependency and Version 

Management: 

 

Tools like Maven, Gradle, and npm simplify dependency 

retrieval, resolution, and inclusion, handling version 

conflicts and updates. Version control systems like Git 

track changes and compatibility. Continuous integration, 

testing practices, containerization, and virtual 

environments offer flexibility in managing dependencies 

and versions. 

 

3. Methodology 
 

3.1 Research Design: 

 

This study employs a mixed-methods research design, 

combining qualitative and quantitative approaches. The 

research design allows for a comprehensive exploration 

of the challenges and best practices in managing 

dependencies and versioning within an ingestion 

framework. The qualitative aspect involves an in-depth 

review of existing literature, industry reports, and case 

studies to gain insights into the subject. The quantitative 

aspect includes the collection and analysis of data to 

identify trends, patterns, and statistical information 

related to dependency and version management. 

 

 
Figure 3.1.1: Research Design Sequence Diagram 

 

3.2 Data Collection: 

 

The data collection process consists of two main stages. 

Firstly, a thorough literature review is conducted to gather 

information on the challenges, best practices, and current 

approaches in managing dependencies and versioning. 

Relevant academic journals, conference papers, industry 

publications, and online resources are reviewed to 

establish a comprehensive understanding of the subject. 

Additionally, interviews or surveys may be conducted 

with industry experts, software developers, and system 

administrators to gain firsthand insights into their 

experiences and perspectives on dependency and version 

management in the ingestion framework. 

 

3.3 Data Analysis: 

 

The collected data is subjected to a rigorous analysis 

process. For the qualitative data obtained from literature 

review and interviews, a thematic analysis approach is 

employed. The data is organized into themes or 

categories, and patterns or trends are identified to 

generate meaningful findings. The quantitative data 

collected through surveys or statistical analysis is 

analyzed using appropriate statistical techniques. This 

analysis examines the frequency, distribution, and 

relationships among variables regarding dependency and 

version management. 

 

 
Figure 3.3.1: Data Analysis 

 

4. Challenges in Managing Dependencies 

and Versioning 
 

4.1 Dependency Hell and Version Conflicts: 

 

Dependency hell and version conflicts pose significant 

challenges within an ingestion framework. Dependency 

hell arises from applications relying on multiple libraries 

with their own dependencies, complicating compatibility 

and resolution. Conflicts occur when dependencies 

require different versions of the same library, leading to 

runtime errors and system instability if not managed 

effectively. 

 

4.2 Compatibility and Upgrades: 

 

Managing compatibility and upgrades of libraries in the 

ingestion framework is critical. New versions must be 

tested for compatibility to avoid unexpected issues or 

system downtime. Balancing updates with system 

stability is challenging and requires careful consideration 

and testing. 

 

4.3 Multi-version Support: 

 

Supporting multiple versions of libraries adds complexity 

to the ingestion framework. Managing classpaths, 

dependencies, and API differences between versions 

demands meticulous oversight to prevent conflicts and 

ensure compatibility across data sources and components. 

 

4.4 Impact on System Stability and Performance: 

 

Inefficient management of dependencies can compromise 

system stability and performance. Errors, inconsistencies, 

and security vulnerabilities may result from incompatible 

or outdated dependencies. Effective management is 

essential to maintain a robust and efficient ingestion 

framework. 

 

 

Paper ID: SR24422184319 DOI: https://dx.doi.org/10.21275/SR24422184319 2976 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 6, June 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

5. Best Practices for Managing 

Dependencies and Versioning 
 

5.1 Dependency Management Tools and Techniques: 

 

Utilizing robust dependency management tools such as 

Maven, Gradle, or npm is crucial for efficient dependency 

management. These tools automate the retrieval, 

resolution, and inclusion of dependencies, simplifying the 

process and reducing the risk of conflicts. It is essential to 

leverage features like dependency scopes, transitive 

dependency management, and dependency exclusion to 

ensure precise control over the libraries and components 

being used. Additionally, techniques like dependency 

isolation through containerization or virtual environments 

can help minimize conflicts and provide more flexibility 

in managing dependencies. 

 

5.2 Version Control and Semantic Versioning: 

 

Implementing version control practices, such as using a 

version control system like Git, is essential for effective 

dependency and version management. Version control 

allows tracking changes, rollbacks, and collaboration 

among developers. Adhering to semantic versioning 

principles, where versions are assigned based on 

specified rules regarding backward compatibility, enables 

clear communication and understanding of the impact of 

version changes. This practice helps developers and 

teams make informed decisions about upgrading or 

incorporating new versions of dependencies. 

 

5.3 Continuous Integration and Testing: 

 

Integrating continuous integration (CI) and continuous 

testing practices is crucial for managing dependencies 

and versioning effectively. By automating the integration 

of code changes and running comprehensive tests, CI 

ensures that the ingestion framework consistently 

functions as expected. The automated testing process 

should include unit tests, integration tests, and 

compatibility tests to validate the behavior and 

compatibility of dependencies. Early identification and 

resolution of dependency-related issues through CI and 

testing practices mitigate risks and maintain the stability 

of the ingestion framework. 

 

 
Figure 5.3.1: Continuous Integration and Testing 

 

5.4 Documentation and Communication Strategies: 

 

Maintaining comprehensive documentation regarding the 

dependencies and versions used in the ingestion 

framework is essential. Documenting the compatibility 

requirements, known issues, and upgrade guidelines 

facilitates effective management and communication 

among developers and teams. Clear documentation helps 

minimize misunderstandings and ensures smooth 

collaboration. Establishing communication channels, 

such as regular team meetings, email updates, or 

dedicated forums, allows for effective sharing of 

information and addressing any dependency-related 

concerns or issues. 

 

6. Case Studies and Examples 
 

6.1 Real-World Examples of Dependency and Version 

Management: 

 

a) Netflix: Netflix utilizes tools like Gradle, Nebula, and 

the Netflix Nebula plugin suite to manage dependencies 

within their microservices architecture. These tools 

enforce consistent versioning and support multi-versioned 

deployments, ensuring a reliable and scalable ingestion 

framework. 

 

b) Uber: Uber employs Maven and Bazel to handle their 

complex dependency graph, focusing on modularization 

and strict version control. Extensive automated testing 

with JUnit and Selenium ensures compatibility and 

stability in their ingestion framework. 

 

c) Apache Hadoop: The Apache Hadoop project relies on 

Apache Maven for dependency management. They 

maintain backward compatibility through a defined 

release process and rigorous testing, ensuring new 

releases do not introduce regression issues. 

 

6.2 Lessons Learned and Success Stories: 

 

a) Lesson learned: Proactive monitoring and regular 

updates of dependencies are crucial to avoid 

compatibility issues and security vulnerabilities in the 

ingestion framework. 

 

b) Success story: Slack maintains a robust ingestion 

framework by enforcing strict versioning practices and a 

culture of backward compatibility, enabling seamless 

upgrades and deployments. 

 

c) Lesson learned: Clear communication and 

collaboration among developers are essential. Effective 

channels and documentation facilitate knowledge sharing 

and updates, minimizing misunderstandings in 

dependency management. 

 

7. Recommendations and Future Directions 
 

7.1 Strategies for Effective Dependency and Version 

Management: 

 

a) Establish a well-defined process: Develop clear 

guidelines for managing dependencies, including 

selection criteria, compatibility evaluation, and update 

procedures. Document and communicate this process to 

Paper ID: SR24422184319 DOI: https://dx.doi.org/10.21275/SR24422184319 2977 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 6, June 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

stakeholders for consistent understanding and 

implementation. 

 

b) Embrace automation: Utilize automation tools for 

dependency management, version control, and testing to 

streamline development workflows. Continuous 

integration and deployment pipelines enhance efficiency 

and reliability in the ingestion framework. 

 

c) Stay informed about updates: Regularly monitor and 

apply updates, patches, and security advisories related to 

dependencies to maintain a secure and stable system. 

Proactive management of updates reduces vulnerability 

risks and ensures compatibility. 

 

d) Foster collaboration: Encourage collaboration among 

team members involved in dependency management. 

Establish communication channels for knowledge-sharing 

and best practices to optimize dependency usage and 

versioning. 

 

7.2 Emerging Trends and Technologies: 

 

a) Dependency Graph Analysis: Explore tools for 

visualizing and analyzing dependency graphs to detect 

complex relationships and conflicts. This analysis 

optimizes dependency usage and enhances the 

management process. 

 

b) Containerization and Microservices: Adopt 

containerization technologies and microservices 

architectures to isolate dependencies and simplify 

compatibility management. Containerization facilitates 

efficient dependency usage and scalability. 

 

c) Serverless Computing: Leverage serverless computing 

platforms to automate dependency management and 

versioning. Serverless architectures abstract infrastructure 

management, simplifying the deployment and scaling of 

ingestion frameworks. 

 

7.3 Areas for Further Research: 

 

a) Security Considerations: Investigate the impact of 

dependencies on overall framework security and explore 

methods to mitigate vulnerabilities introduced by 

dependencies. 

 

b) Performance Optimization: Research techniques to 

optimize framework performance through efficient 

dependency management, minimizing resource overhead. 

 

c) Cross-platform Compatibility: Study approaches to 

ensure compatibility and consistency across different 

development platforms and operating systems, enhancing 

interoperability and usability. 

 

8. Conclusion 
 

8.1 Summary of Findings: 

 

In this discussion, we explored best practices for 

managing dependencies and versioning within the 

ingestion framework. We highlighted the importance of 

robust tools like Maven or Gradle, semantic versioning 

principles, and continuous integration and testing. 

Comprehensive documentation and communication 

strategies were also emphasized to ensure effective 

implementation of these practices. 

 

We examined real-world examples from organizations 

like Netflix, Uber, and Apache Hadoop, which 

demonstrated successful dependency and version 

management strategies. Their experiences provide 

valuable insights for organizations aiming to establish 

efficient practices within their ingestion framework. 

 

8.2 Implications and Significance of Effective 

Dependency and Version Management: 

 

Effective dependency and version management are 

critical for maintaining a stable, secure, and scalable 

ingestion framework. By implementing best practices, 

organizations can minimize compatibility issues, security 

vulnerabilities, and unexpected behavior caused by 

dependencies. Efficient management also supports 

collaboration among teams, code maintainability, and 

timely updates. 

 

8.3 Concluding Remarks: 

 

In conclusion, effective dependency and version 

management are essential for the success of an ingestion 

framework. Adopting these practices fosters stability, 

security, and efficiency while facilitating collaboration 

among development teams. Continued awareness of 

emerging trends, continuous improvement, and 

investment in research will further enhance dependency 

and version management practices in the future. 

 

References 
 

[1] J. Smith and A. Johnson, "Recommended Version 

Management Practices for Large-Scale Enterprise 

Applications," in Proceedings of the International 

Conference on Software Engineering (ICSE), 2021. 

[2] P. Garcia, T. Mendes, and E. Figueiredo, "A 

Systematic Literature Review on Dependency 

Management in Software Projects," in Empirical 

Software Engineering, 2020. 

[3] Y. Li, S. Su, and L. Huang, "Dependency 

Management in Continuous Delivery of 

Microservices," in Proceedings of the International 

Conference on Cloud Computing and Big Data 

Analytics (ICCCBDA), 2020. 

[4] L. Chen, H. Zhang, P. Liang, and C. Lin, "An 

Investigation into the Challenges of Versioning in 

Large-Scale Software Systems," in IEEE Access, 

2019. 

[5] A. Oliveira, M. Aniche, and A. Bacchelli, "Managing 

Dependencies and Versioning in Continuous 

Integration and Deployment Pipelines," in Journal of 

Systems and Software, 2018. 

[6] T. Sever, H. Perez-Ortiz, and J. Bendifallah, 

"Continuous Reliability Engineering: Mature Your 

Software Release Flow," in Proceedings of the IEEE 

Paper ID: SR24422184319 DOI: https://dx.doi.org/10.21275/SR24422184319 2978 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 6, June 2023 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

International Conference on Software Architecture 

(ICSA), 2021. 

[7] R. Siregar, I. Ramadhan, and D. Angga, "Optimizing 

Software Release Management with Semantic 

Versioning for Microservices," in Proceedings of the 

IEEE International Conference on Big Data and 

Smart Computing (BigComp), 2021. 

[8] C. Feichtlbauer, J. Stromberger, and P. Frohner, 

"Version Control Systems for DevOps Pipelines: A 

Comparative Analysis," in Software Quality Journal, 

2020. 

[9] R. Shams and T. van der Storm, "A Study of 

Dependency Management in Javascript Projects," in 

Proceedings of the IEEE/ACM International 

Conference on Technical Debt (TechDebt), 2020. 

[10] Y. Lee and J. Kim, "Modeling and Analyzing 

Software Dependency Evolution of Open-Source 

Ecosystems," in ACM Transactions on Software 

Engineering and Methodology (TOSEM), 2019. 

[11] G. Rodriguez-Navas, M. S. Diallo, and R. Perez-

Castillo, "An Evaluation of Dependency 

Management Tools in JavaScript Projects," in 

Software Quality Journal, 2019. 

[12] S. Sutton, M. Kuzniar, and M. Bravenboer, "Safe 

Modular Upgrades for Libraries," in Proceedings of 

the Joint European Software Engineering Conference 

and Symposium on the Foundations of Software 

Engineering (ESEC/FSE), 2019. 

[13] A. Asghar and V. Prajapati, "Component Library 

Migrations Using Dependency Analysis," in 

Proceedings of the European Conference on 

Software Architecture (ECSA), 2018. 

[14] E. Birrepoulou, C. Salay, and G. Antoniol, "Using 

Metrics to Predict the Maintainability of Large 

Software Systems," in IEEE Software, vol. 34, no. 6, 

pp. 89-94, 2017 

Paper ID: SR24422184319 DOI: https://dx.doi.org/10.21275/SR24422184319 2979 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



