
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

SageMinder: AI-Driven Technical Debt Reduction

in AWS-Based Data Science Pipelines

Sai Tarun Kaniganti

Abstract: This paper focuses on the difficulty of managing technical debt in large-scale software projects that use AI and Machine

Learning for identification and resolution. The approach consists of systematic surveillance of technical debts, gradualistic refinancing

techniques, emphasis on sustaining high-quality standards, and automatic tools for detecting technical debt. When implemented in the

development lifecycle, such strategies will improve the software projects' stability and sustainability in the long run.

Keywords: Technical Debt, Artificial Intelligence, Machine Learning, Amazon Web Service, Software Engineering, Debt, Code Quality,

DevOps, Data Science, Cloud Computing

1. Introduction

Technical debt is quite popular in software development,

mainly when specialists have worked on the project for many

years. With long-term development, plenty of shortcuts and

bad practices can be introduced. This buildup of debt can

significantly influence sustainability and its ability to grow

and evolve; thus, software systems' complex, inefficient, and

expensive characteristics sunk costs. With time and the size

of such projects, technical debt becomes a big issue that

development teams must consider in their endeavours to

provide tremendous and agility-designed software solutions.

A good solution for TD is to have a set of rules that would

allow it to manage the current technical debt and the future

one. In this respect, any contemporary methods, including AI

and ML, can be regarded as ways to improve the identification

and management of technical debt. Utilizing the opportunity

AI and ML, the development team can enhance the

identification of issues, establish hierarchies of debt

repayment, and incorporate the continuous monitoring

process into development. They offer state-of-the-art

approaches to code quality analysis and system performance

evaluation and ways to improve processes and, thus, enhance

the vision-making process.

The following paper reviews different approaches to dealing

with TD when projects have a long duration, mainly about AI

and ML for enhancing debt recognition and management.

Thus, by analyzing methods like code smell detection

employing NLP, performance metrics anomaly detection, or

code's complexity predictive analysis, the paper attempts to

demonstrate the advantages of integrating AI technologies

into tech debt management strategies. Therefore, by

implementing these new ways of managing technical debt,

organizations can avoid significant problems, which could

create software production and attain more stable and

efficient software systems.

Figure 1: Software development

Understanding Technical Debt

On the other hand, technical debt can be described as the cost

incurred because of the extended time frame on the project

due to the use of a poor approach that a better approach could

have solved, although it is time-consuming (Spínola et al.,

2019). They experience a higher cost to maintain such debt as

it accumulates over long periods to decrease development

speed and threaten the system's stability.

Types of Technical Debt

Code Debt

Concerns the formation of a low-quality and suboptimal code

structure created because of shortcuts during code

development (Gradišnik & Hericko, 2018). This kind of debt

results in code that works but needs more design and

comments and is challenging to maintain. For example, some

literal could be used instead of the configuration and constant

files, which is not viable. Code duplication is a scenario that

arises when, instead of reusing code, similar procedures are

written over and over again instead of encapsulated into

functions. It's also typical to see poor organizations with many

functions or classes performing multiple actions rather than

using the single responsibility principle.

Architectural Debt

Originates from issues with the high-level design of a system,

it affects the manner of scaling up, execution speed, and ease

of upkeep. This type of debt might present as components

heavily dependent on other components, which complicates

changing or even expanding a part of the system without

affecting other parts. Such a monolith architecture may also

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2988

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

lead to Architectural Ros, which is when one big application

has tightly coupled components and faces problems in terms

of scalability and deployment. Also, low SC arises from

general and architectural solutions that will not allow it in the

future, for instance, horizontal scaling or proper data

management (Nasir et al., 2022).

Documentation Debt

Comes up when there is inadequate documentation, especially

when documentation is not proportional to the changes in

code or is lacking totally. It can cause issues with

comprehension, care, and training. Some examples include

current API documentation that may need to be updated

regarding the API's exposure, thus causing confusion and

errors. Sometimes, design documents need to adequately

describe the system's architecture da, flow/interactions, or

integration points (Glumich et al., 2018). In other cases,

missing commentaries may represent critical parts of the

code's logic or rationale.

Test Debt

Happens when testing practices fail because there are not

enough tests, no automatized tests or low test quality. This

can lead to different bugs being missed in the studies and the

general confidence in the software's reliability being lowered

(Rodríguez-Pérez et al., 2018). For instance, the absence of

unit tests may mean that only some segments, such as

individual components or functions, are not tested. This may

occur when different components or services are not

adequately tested for integration or when the tests are

conducted in a way that might give inconsistent results, thus

making them unbeneficial to quality analysis.

Infrastructure Debt

Concerns are tied to deployment and development

environments that impact efficiency, reliability, and costs

(Baier et al., 2019). Old deployment pipelines are from the

CI/CD progression, which is time-consuming, error-prone, or

needs up-to-date automation. Mismanagement of resources

implies over-allocation, over-allocation, or under-allocation

of resources in the cloud; hence, it sounds like an expense or

lack of IT capacity. Also, only doing deployment, scaling, or

monitoring through manual operations creates a lot of room

for errors and ineffectiveness.

Security Debt

Stem from failing to adhere to security best practices,

resulting in weaknesses and threats. This can consist of the

sequence strings and application credential codes such as

passwords or API codes. Another one is the absence of data

encryption during transmission and storage. Moreover,

installing dependencies that have not been updated for some

time and are exposed have specific vulnerable points that lead

to security debt (Pashchenko et al., 2020).

Compliance Debt

Takes place every time the software does not conform to the

current legislation or industrial standards, resulting in legal

and financial consequences. This emerging risk category

includes data privacy infringements, such as failure to meet

data protection laws that include GDPR or CCPA. Lack of

audit trails also falls under compliance debt; proper logging

and tracking mechanisms must be included, and non-standard

coding practices come in where industry regulations are

disregarded.

Solving such technical debts requires a strategic approach to

ensure that the software stays flexible, easy to manage, and

secure throughout its life cycle.

Strategies for Managing Technical Debt

1) Continuous Identification and Monitoring

Continuously check code bases and designs for signs of code

debt. Use static code analysis tools and organize periodic

architecture reviews to stay aware of the system's health state.

2) TD Prioritization Model

It is thus essential to identify which technical debt to pay first

when it comes to software projects. This framework should

be designed to manage technical debt in interactions that

improve the performance, stability and efficiency of the

systems and the development processes (Lenarduzzi et al.,

2021).

The following key factors should be considered:

Also entails assessing the impact of technical debt on the

speed, the efficiency of the system, and the system's ability to

respond to end-user needs. Worst-case, debt hampers

performance, response time, resource consumption, usability

and, in general, the quality of the application. As for assessing

this kind of impact, one can use response time that reflects

response times or latency for crucial functions, throughput

that estimates the system's performance in handling

concurrent requests or data processing, and resource

consumption that quantifies the CPU, memory, and storage

usage. Such debt should be targeted because it harms the users

and worsens the system's performance.

Risk to System Stability

CBT requires an evaluation of its consequences in introducing

risks that may lead to crashes, data corruption, and other

crucial failures. Minimizing exposure to credit risk and

finding out which debts, if left unpaid, could destabilize the

system is vital. These are the error rate, which measures the

rate of errors or exceptions that can be attributed to the

technical debt; the failure rate, which considers the possibility

of system failure or shutdown due to accumulation of the

technical debt; and the rate of recovery which determines the

extent to which debt has impact of the system's recovery in

cases of failure or shut down. High-risk debts should,

therefore, be prioritized to avoid failure on hazardous

equipment and keep the operations going.

Effect on Development Velocity

Looks at how technical debts influence the development

team's efficiency due to the extended time needed to deliver

new functionality or resolve issues (Holvitie et al., 2018). The

key metrics that must be measured are the time to provide new

features that are consumed because of the feature debt, the

time taken to rectify bugs and issues that have been made

worse by the debt, and code complexity, which results from

debt with the code base becoming hard to comprehend and

modify. Debt that slows down the development velocity to a

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2989

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

large extent should be managed to optimize the delivery of

new features.

Finally, the cost of repayment, which states the price that is

incurred if a business delays its repayment:

It entails analyzing the costs of resolving the debt against the

potential consequences of not so doing. A few examples are

the repayment cost, which puts an approximation on the time

and resources required to clear the outstanding; the delay cost

of estimating what effect the outstanding will have on system

predictability and development velocity; and the opportunity

cost, or what someone loses, in terms of competitive

advantage and other missed opportunities when they do not

clear the outstanding. Prioritize debt where the benefits of

repaying it are justified by performance. Therefore, choose an

approach such as a cost-benefit analysis to prioritize debt for

repayment based on the costs of delay.

Business Effects and Stakeholder Issues

Should be included in the conceptual prioritization

framework because the satisfaction of obligations has to be

reconciled with the achievement of business objectives and

relevant stakeholders' attention. Metrics include customer

impact, which measures technical debt's impact on a customer

base satisfaction and retention, as well as its effect on total

revenues; regulatory implications, which gauges the level of

debt's compliance with regulatory requirements or standards;

and stakeholder feedback, in which relevant stakeholders rank

the importance and urgency of particular debt about others.

Pay attention to high-value business debts or debts that are

particularly important to stakeholders and customers to reflect

the company's strategy and meet the marketplace needs.

Long-Term Sustainability

Concerns analyzing the impact of TD on the system's capacity

to be upgraded and modified with the changes in requirements

(Chen et al., 2020). Thus, the potential measures that should

be taken into consideration include maintainability, which

estimates how debt influences the possibility of further

alteration and extension of the system; scalability, which

determines how debt influences the possibility of additional

enlargement of the system in the future; and technical

flexibility, which express how debt influences the adaptability

of the system to the new technologies or new requirements.

Debt repayment is an order that threatens to destabilize the

business in the long run, to keep the structure as flexible as

possible.

2. Incremental Repayment

Integrate debt repayment into the regular development cycle.

Allocate a percentage of each sprint or development phase to

addressing identified technical debt.

Table 1: Key Aspects and Strategies for Incremental Debt

Repayment
Aspect Description Details

Defining Debt

Repayment

Goals

Establish clear goals

and priorities for

addressing technical

debt.

Assess impact on

performance, stability, and

velocity. Set measurable

objectives (e.g., reducing code

smells, improving coverage).

Regularly review and adapt

goals.

Allocating

Sprint

Resources

Dedicate a

percentage of

resources to debt

repayment each

sprint or phase.

Allocate a portion of sprint

capacity (e.g., 20%) for debt-

related tasks. The remaining

capacity (e.g., 80%) focuses

on new features and bug fixes.

Prioritizing

Debt Items

Use a prioritization

framework to

determine which

debt items to

address first.

Consider impact on

performance, risk to stability,

and effect on velocity.

Regularly update priority

based on assessments and

feedback.

Monitoring

and Reporting

Track progress and

report outcomes on

debt repayment

efforts.

Monitor number of resolved

debt items, code quality

metrics, and system

performance changes. Use

sprint reviews or

retrospectives for reporting

and adjusting strategies.

Continuous

Improvement

Refine debt

repayment

processes based on

feedback and

results.

Gather feedback from teams

and stakeholders. Adjust

resource allocation,

prioritization criteria, and debt

detection tools. Evaluate and

improve strategies

continuously.

3. Education and Culture

Managing technical debt means organizations must champion

a culture that improves code quality and characteristics

associated with lasting sustainability. It conceptually implies

a process of integrating the principles of technical debt

management into the team's beliefs and behaviours. Thus, the

mindful approach to writing the code and paying attention to

technical debt helps adopt a positive outlook when it comes

to not accumulating the debt in the first place. It is

recommended that training sessions and workshops be

conducted regularly to enable the team members to gain

knowledge on issues regarding code quality, including, but

not limited to, standards of coding, code review procedures,

and the need and procedure for code testing.

Discussions of technical debt within team meetings and

retrospectives can keep it regularly at the top of the mind.

Thus, the more an organization appreciates and compensates

for creating value that aims to decrease technical debt metrics,

the more it conveys the importance of such actions. Levelling

out steps to ensure promotion, tolerance, and culture, change

improvement to enhance the present quality of code and

nurture a tactic plan for the long-term management of

technical debt (Yang et al., 2023).

Figure 2: Technical Debt and How to Manage It

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2990

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4. Automated Debt Detection

Use AI and ML patterns and best practices to identify possible

issues causing technical debts. This can include:

The use of AI and ML to automatically identify technical debt

can increase the performance of managing debt in software

projects (Pandi et al., 2023). By using such advanced

technologies, teams can analyze possible problems, minimize

extensive scrutiny and concentrate on the high-risk debt

segments. Several techniques illustrate the potential of AI and

ML in automating debt detection:

Identification of the Code Smell with the Help of NLP

Some of the code smells may result in the formation of

technical debt. Such smells can be identified with the help of

NLP by analyzing the code comments, documentation, and

actual code (Kokol et al., 2021). Such includes code comment

analysis that entails using NLP techniques to analyze

comments and documentation to look for areas of weakness

that might indicate less than optimal code quality

descriptions. In addition, conventional techniques of NLP can

also be taught the most proven attributes of more frequent

code smells like lengthy methods, a large number of global

variables, or inadequate naming standards. To achieve this,

the code is divided into tokens, and the tokens' syntactic

analysis is performed before applying machine learning

algorithms to identify the violations. For example, CodeNLP

has a localized NLP approach to analyze the code comments

to find the divergence between the documentation and the

code or the code smell.

Figure 3: Understanding Code Smell Detection in Software

Development

Digging into System Performance Metrics for Anomalies

The patterns of performance metrics can be analyzed using

anomaly detection techniques, thus pointing towards the

technical debt (Conejero et al., 2018). This process includes

time series analysis, typically involving algorithms that

monitor the performance over time to identify patterns of

deviation from the standard. Measures like the response time,

the rate of occurrences of errors, usage of CPU and other

resources are then checked for any abnormality. Where TFQ

has not been calculated, numeric techniques set threshold

limits to identify unusual behaviour that could be put down to

technical debt; the methods used include z-score or moving

average. Other machine learning algorithms like Isolation

Forests, Autoencoders, and Long Short-Term Memory

(LSTM) networks can identify different patterns and outliers

within the data that affect the performance. For example,

Prometheus, alongside Grafana, could work with ML-based

anomaly detection services showing the real-time status of

performance issues.

Figure 4: A Study on Performance Metrics for Anomaly

Detection Based on Industrial Control System Operation

Data

Code Complexity and Maintainability Index Prediction

Predictive analysis refers to employing algorithms along with

machine learning to calculate future difficulties in complexity

and maintainability by referring to current measurements of

the code and the archive (Vallim Filho et al., 2022). This

technique uses complexity measures involving cyclomatic

complexity, code churn, and class coupling to identify the

probable areas that will be an issue. The complexity of code

can be predicted using machine learning models based on the

historical data collected. In addition, the future

maintainability of codes can be checked using ML algorithms

by using historical maintainability data and code changes,

whereby one can use regression or a classification method to

determine probable regions that would require frequent

maintenance. Systems like CodeClimate or SonarQube,

which use ML algorithms, analyze the code's complexity and

maintainability, thus helping the teams identify the code to be

refactored.

Figure 5: A Simple Understanding of Code Complexity

Automated Code Review Systems

Automated code review points to the use of AI and ML in

assessing code changes and the presence of problems. These

systems combine the static code analysis tools, which are AI-

based, by recognizing the code smells about vulnerabilities

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2991

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

and other deviations from set coding standards (Hamfelt,

2023). The different AI models can understand patterns

related to low code quality. Secondly, dynamic analysis tools

work during the code execution to look for some problems

that static analysis tools cannot find. ML models then analyze

the execution pattern to determine which areas are

problematic. For example, GitHub Copilot or Amazon Code

Guru apply artificial intelligence solutions to provide code

recommendations and detect code review problems to help

developers optimize source code (Sarkar et al., 2022).

Figure 6: Static Code Analysis Best Practices

CI/CD Integration Continuous Integration and

Deployment

Combining automated debt detection with CI and

CD processes implies that debt detection is continuous instead

of a manual effort conducted once (Biazotto et al., 2023). This

integration entails the utilization of automated testing

frameworks that employ AI to consider claims on probable

technical debt during each build or deployment process,

including unit tests, integration tests, and performance tests.

Integration of some form of reporting system within CI/CD

pipelines to report and track technical debt put into CI/CD

pipeline, issues suspected of technical debt during the

automated tests ensure that technical debts are priced and

solved before becoming a cost to the business. Hence, with

popular technologies like Jenkins or GitLab CI, the outcome

of code analysis can be provided instantly and, combined with

AI-based tools, revealing the issue of technical debt.

By applying the suggested AI and ML approaches to

automated debt detection, companies can advance their

capacities for technical debt identification and remediation,

promoting the development of more sustainable, flexible, and

efficient software systems.

Proposed Architecture for Technical Debt Management

To effectively manage technical debt in long-term projects,

we propose an architecture that integrates AI/ML capabilities

with existing development workflows:

This architecture incorporates the following components:

1) AI-Powered Debt Detector: Utilizes machine learning

models to analyze code, architecture, and system

performance for potential debt indicators.

2) Debt Prioritization Engine: Applies predefined rules and

ML-based recommendations to prioritize identified debt

items.

3) Debt Repayment Scheduler: Integrates with project

management tools to schedule debt repayment tasks

alongside feature development.

4) Continuous Monitoring System: Tracks debt metrics

over time and provides insights on the effectiveness of

repayment efforts.

Table 2: Components and Features of the Technical Debt

Management Architecture
Component Function Key Features

AI-Powered

Debt

Detector

Utilizes ML

models to analyze

code,

architecture, and

performance for

identifying

technical debt.

- Code Analysis: Detects code

smells, complexity,

maintainability.

 - Architecture Assessment:

Identifies design flaws and

scalability issues.

 - Performance Monitoring:

Detects anomalies in

performance metrics.

- Integration: Works with

version control systems and

build pipelines.

Debt

Prioritization

Engine

Applies rules and

ML-based

recommendations

- Rule-Based Prioritization:

Ranks debt items by impact on

performance, stability, and

development velocity.

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2992

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

to prioritize debt

items.

 - ML Recommendations:

Predicts long-term impact and

refines prioritization.

- Customizable Metrics: Aligns

prioritization with project goals.

- Integration: Syncs with project

management tools.

Debt

Repayment

Scheduler

Schedules and

allocates

resources for debt

repayment tasks

alongside feature

development.

- Sprint Integration: Allocates a

portion of each sprint to debt

repayment.

 - Resource Allocation:

Manages developer time for

debt tasks.

 - Task Management:

Coordinates with task tracking

systems.

 - Feedback Mechanism:

Adjusts scheduling based on

progress and feedback.

Continuous

Monitoring

System

Tracks debt

metrics over time

and provides

insights on debt

repayment

effectiveness.

- Metric Tracking: Monitors

debt-related metrics

(complexity, test coverage,

performance).

 - Effectiveness Analysis:

Analyzes impact of repayment

activities.

- Reporting and Alerts: Provides

updates on debt management

progress.

 - Adaptive Insights:

Recommends improvements

based on historical data.

Leveraging AI and ML for Technical Debt Management

Artificial intelligence and machine learning offer significant

potential for enhancing technical debt management processes.

Here are some specific applications:

1. Automated Code Review

Implement ML models trained on large codebases to identify

potential code smells and suggest improvements. This can be

integrated into the development workflow through IDE

plugins or code review tools.

Example code snippet for a simple code smell detector using

Python and scikit-learn:

python

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

import numpy as np

Training data (simplified example)

code_samples = [

 "def function():\n pass",

 "def long_function():\n # Many lines of code...",

 # ... more samples ...

]

labels = [0, 1] # 0: Good, 1: Potential smell

Create feature vectors

vectorizer = TfidfVectorizer(token_pattern=r'\b\w+\b')

X = vectorizer.fit_transform(code_samples)

Train classifier

clf = MultinomialNB()

clf.fit(X, labels)

Function to predict code smells

def predict_code_smell(code):

 X_new = vectorizer.transform([code])

 return clf.predict(X_new)[0]

Example usage

new_code = "def very_long_function():\n # Lots of complex

logic..."

if predict_code_smell(new_code):

 print("Potential code smell detected!")

2. Architecture Debt Detection

Determining possible technical debt can be automated using

computer learning techniques, especially the ML models

applied to system architecture. These models can be trained

to learn from good examples and examples of adverse

outcomes. Thus, these models are capable of identifying flaws

and inefficient structures. Suppose the models superficially

calculate aspects like modularity, scalability, and coupling. In

that case, PF can identify design patterns that will result in

future technical debt, such as high interdependence and

improper data flow design patterns (Varga, 2018). This

proactive detection contributes to solving architectural

problems at the early stages of development when, for

instance, such issues do not turn into severe ones.

When it comes to implementing the ML-based architecture

analysis, these generated models have to be connected to the

design review tools and the CI/CD pipelines. The practical

work of consumer committees provides an opportunity for

constant assessment of architectural changes and immediate

identification of possible problems in the field of debt. There

is also the capacity to look at the architecture and how the

enemy's strategies can enhance system design when historical

and real-time data is collected. This approach guarantees that

architecture is adequately preserved and that technical debt is

dealt with properly, creating more 'architecturally sound'

systems (Soliman et al., 2021).

Figure 7: Technical Debt in ML systems

3. Performance Anomaly Detection

Use time series analysis and anomaly detection algorithms to

identify potential performance-related technical debt by

monitoring system metrics over time.

Example using Python and Facebook's Prophet library for

time series forecasting:

python

from fbprophet import Prophet

import pandas as pd

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2993

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Load historical performance data

df = pd.read_csv('performance_metrics.csv')

df['ds'] = pd.to_datetime(df['date'])

df['y'] = df['response_time']

Create and fit the model

model = Prophet()

model.fit(df)

Make future predictions

future = model.make_future_dataframe(periods=30)

forecast = model.predict(future)

Identify anomalies

threshold = 1.5 # Standard deviations

anomalies = forecast[abs(forecast['yhat'] - forecast['y']) >

threshold * forecast['yhat'].std()]

print("Potential performance anomalies detected:")

print(anomalies[['ds', 'y', 'yhat']])

Case Study: Managing Technical Debt in an AWS-based

Data Science Project

To illustrate the application of these principles in a real-world

scenario, let's consider a hypothetical long-term data science

project deployed on Amazon Web Services (AWS).

Figure 8: Applying a Data Science Process Model to a Real-

World Scenario

Project Overview

The area is the huge Machine Learning data pipeline

that will be processing terabytes of data each day. This

pipeline consists of several components: data ingestion, data

preprocessing, data feature engineering, model training, and

finally, prediction service through a RESTful API. It is

implemented to perform large computations to provide

solutions and forecasts for critical applications in the business

environment. Due to the broad usage and evolution of the

system, the existing technical dept has grown, which applies

pressure to the system, which affects its performance,

evolution and scalability.

The technical debt appears in different shapes and forms, such

as old architectures of ML models, ineffective data

preparation and processing workflows, non-uniform code

styling, and unused AWS services. These issues have

gradually resulted in increased maintenance overhead, slower

development cycles, and performance degradation. Over

time, with the change in requirements, eradicating this

technical debt has emerged as necessary for improved and

effective system functionality. The project aims to develop

and establish an all-encompassing technical debt management

plan to improve the system’s effectiveness by utilizing

contemporary instruments and approaches.

Identified Technical Debt

1) Outdated ML model architecture

2) Inefficient data processing pipelines

3) Lack of comprehensive unit and integration tests

4) Inconsistent code style and documentation

5) Overprovisioned and underutilized AWS resources

Table 3: Identified Technical Debt and Suggested Actions

Technical Debt Description Impact
Suggested

Action

Outdated ML

Model

Architecture

Use of

deprecated or

inefficient

model

architectures in

machine

learning

systems.

Decreased

performance,

limited

scalability, and

maintainability

issues.

Update or

refactor model

architecture to

utilize modern

frameworks

and techniques.

Inefficient Data

Processing

Pipelines

Data pipelines

that are slow,

poorly

optimized, or

difficult to

maintain.

Increased

processing

time, higher

costs, and

potential data

quality issues.

Optimize

pipelines,

adopt modern

processing

frameworks,

and improve

pipeline

design.

Lack of

Comprehensive

Unit and

Integration Tests

Insufficient

testing

coverage for

code and

system

integration.

Increased risk

of bugs, lower

code quality,

and higher

maintenance

costs.

Develop and

implement

comprehensive

unit and

integration

tests to

improve

reliability.

Inconsistent

Code Style and

Documentation

Variability in

coding

practices and

documentation

standards

across the

codebase.

Reduced

readability,

maintainability

issues, and

increased

onboarding

time.

Standardize

code style and

documentation

practices, and

enforce them

through tools

and guidelines.

Overprovisioned

and

Underutilized

AWS Resources

AWS

resources that

are provisioned

beyond current

needs or not

fully utilized.

Increased costs

and inefficient

resource

management.

Perform

resource

optimization,

scale resources

according to

actual needs,

and implement

cost

management

practices.

Debt Management Strategy

1) Implement automated code review using Amazon

CodeGuru

2) Refactor ML pipeline using AWS Step Functions for

better orchestration

3) Introduce AWS DevOps tools (CodeBuild,

CodePipeline) for CI/CD

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2994

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4) Utilize Amazon SageMaker for model versioning and

deployment

5) Implement infrastructure-as-code using AWS

CloudFormation

Table 4: Debt Management Strategy and Implementation
Debt

Management

Strategy

Description
Expected

Benefits

Implementation

Steps

Implement

Automated

Code Review

Using

Amazon

CodeGuru

Use Amazon

CodeGuru to

automatically

review code,

detect issues, and

provide

recommendations.

Improved code

quality, early

detection of

issues, and

reduced manual

review effort.

1. Integrate

CodeGuru with

your version

control system.

2. Configure

analysis settings

and review

results.

3. Act on

recommendations

to improve code

quality.

Refactor ML

Pipeline Using

AWS Step

Functions for

Better

Orchestration

Redesign data

processing

pipelines with

AWS Step

Functions to

improve

orchestration and

management.

Enhanced

pipeline

reliability,

better

scalability, and

easier

maintenance.

1. Assess current

pipeline

architecture.

2. Design and

implement new

pipeline

workflows using

Step Functions.

3. Test and

deploy the

refactored

pipeline.

Introduce

AWS DevOps

Tools

(CodeBuild,

CodePipeline)

for CI/CD

Implement CI/CD

pipelines using

AWS CodeBuild

and CodePipeline

to automate build,

test, and

deployment

processes.

Streamlined

development

workflow,

faster delivery

of features, and

improved code

quality.

1. Set up

CodeBuild

projects for

building and

testing code.

2. Create

CodePipeline

workflows for

automating

deployments.

3. Monitor and

optimize CI/CD

pipelines.

Utilize

Amazon

SageMaker for

Model

Versioning

and

Deployment

Leverage Amazon

SageMaker to

manage model

versioning,

training, and

deployment

processes.

Efficient model

management,

improved

deployment

practices, and

streamlined

training

workflows.

1. Set up

SageMaker

environments for

model training

and deployment.

2. Implement

versioning and

monitoring of

models.

3. Integrate

SageMaker with

existing ML

workflows.

Implement

Infrastructure-

as-Code Using

AWS Cloud

Formation

Use AWS

CloudFormation

to define and

manage

infrastructure

using code,

ensuring

consistency and

scalability.

Simplified

infrastructure

management,

improved

reproducibility,

and automated

provisioning.

1. Develop

CloudFormation

templates for

infrastructure

components.

2. Deploy and

manage resources

using these

AI/ML-Enhanced Debt Management

a) Use Amazon Comprehend to analyze code comments

and documentation for clarity and completeness

b) Implement custom ML models to predict potential

performance bottlenecks based on code changes and

infrastructure metrics

c) Leverage Amazon Forecast to optimize resource

allocation and reduce infrastructure debt

Example CloudFormation template snippet for defining an

optimized SageMaker endpoint:

yaml

Resources:

 OptimizedEndpoint:

 Type: "AWS::SageMaker::Endpoint"

 Properties:

 EndpointName: !Ref EndpointName

 EndpointConfigName: !GetAtt

EndpointConfig.EndpointConfigName

 EndpointConfig:

 Type: "AWS::SageMaker::EndpointConfig"

 Properties:

 ProductionVariants:

 - InitialInstanceCount: 1

 InstanceType: "ml.t2.medium"

 ModelName: !Ref ModelName

 VariantName: "AllTraffic"

 DataCaptureConfig:

 EnableCapture: true

 InitialSamplingPercentage: 100

 DestinationS3Uri: !Sub

"s3://${DataCaptureBucket}/endpoint-data-capture"

 CaptureOptions:

 - CaptureMode: Input

 - CaptureMode: Output

5. Conclusion

Applying the concept of technical debt in long-term projects

requires active and strategic management. The combination

of AI and ML can be considered a secure approach to mitigate

and prioritize technical debt to prevent it from deteriorating

the project's outcome in the future. The described debt

management architecture, including AI debt detection and the

Prioritization component, presents a clear concept of

introducing debt management into the development process.

This makes it easier to keep software projects healthy and

sustainable because debt is addressed, and the overall quality

of code is gradually enhanced.

The example of the case with a data science project based on

AWS infrastructure is informative regarding applying these

principles. If adequately harnessed by utilizing tools such as

cloud-native systems and AI/ML capabilities, this advantage

can lead to enhanced systems performance, maintenance, and

scalability. Such steps as automated code reviews to

refactoring ML pipelines show that managing technical debts

can improve the appropriation of project results and the shift

of existing capacities in the context of systems development.

This is why ongoing surveillance and selective

extinguishment of debts are relevant to guarantee long-term

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2995

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 6, June 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

project flexibility. Suppose these three practices are

incorporated into the development cycle. In that case,

adequate measures to help teams manage technical debt are

provided, enabling them to remain more flexible regarding

changed requirements or new technologies. Besides

preserving the project's overall health, this strategy also

prepares teams for further successful work in the context of

constant technological evolution.

References

[1] Spínola, R. O., Zazworka, N., Vetro, A., Shull, F., &

Seaman, C. (2019). Understanding automated and

human-based technical debt identification approaches-a

two-phase study. Journal of the Brazilian Computer

Society, 25, 1-21.

[2] Gradišnik, M. I. T. J. A., & Hericko, M. (2018). Impact

of code smells on the rate of defects in software: A

literature review. In CEUR Workshop

Proceedings (Vol. 2217, pp. 27-30).

[3] Nasir, M. H., Arshad, J., Khan, M. M., Fatima, M.,

Salah, K., & Jayaraman, R. (2022). Scalable

blockchains—A systematic review. Future generation

computer systems, 126, 136-162.

[4] Glumich, S., Riley, J., Ratazzi, P., & Ozanam, A. BP:

Integrating Cyber Vulnerability Assessments Earlier

into the Systems Development Lifecycle. In 2018 IEEE

Secure Development Conference.

[5] Rodríguez-Pérez, G., Robles, G., & González-

Barahona, J. M. (2018). Reproducibility and credibility

in empirical software engineering: A case study based

on a systematic literature review of the use of the szz

algorithm. Information and Software Technology, 99,

164-176.

[6] Baier, L., Jöhren, F., & Seebacher, S. (2019, June).

Challenges in the Deployment and Operation of

Machine Learning in Practice. In ECIS (Vol. 1).

[7] Pashchenko, I., Vu, D. L., & Massacci, F. (2020,

October). A qualitative study of dependency

management and its security implications.

In Proceedings of the 2020 ACM SIGSAC conference

on computer and communications security (pp. 1513-

1531).

[8] Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., &

Fontana, F. A. (2021). A systematic literature review on

technical debt prioritization: Strategies, processes,

factors, and tools. Journal of Systems and

Software, 171, 110827.

[9] Holvitie, J., Licorish, S. A., Spínola, R. O., Hyrynsalmi,

S., MacDonell, S. G., Mendes, T. S., ... & Leppänen, V.

(2018). Technical debt and agile software development

practices and processes: An industry practitioner

survey. Information and Software Technology, 96, 141-

160.

[10] Chen, S., Liang, Y. C., Sun, S., Kang, S., Cheng, W., &

Peng, M. (2020). Vision, requirements, and technology

trend of 6G: How to tackle the challenges of system

coverage, capacity, user data-rate and movement

speed. IEEE Wireless Communications, 27(2), 218-

228.

[11] Yang, Y., Verma, D., & Anton, P. S. (2023). Technical

debt in the engineering of complex systems. Systems

Engineering, 26(5), 590-603.

[12] Pandi, S. B., Binta, S. A., & Kaushal, S. (2023).

Artificial intelligence for technical debt management in

software development. arXiv preprint

arXiv:2306.10194.

[13] Kokol, P., Kokol, M., & Zagoranski, S. (2021). Code

smells: A synthetic narrative review. arXiv preprint

arXiv:2103.01088.

[14] Conejero, J. M., Rodríguez-Echeverría, R., Hernández,

J., Clemente, P. J., Ortiz-Caraballo, C., Jurado, E., &

Sánchez-Figueroa, F. (2018). Early evaluation of

technical debt impact on maintainability. Journal of

Systems and Software, 142, 92-114.

[15] Vallim Filho, A. R. D. A., Farina Moraes, D., Bhering

de Aguiar Vallim, M. V., Santos da Silva, L., & da

Silva, L. A. (2022). A machine learning modeling

framework for predictive maintenance based on

equipment load cycle: An application in a real world

case. Energies, 15(10), 3724.

[16] Hamfelt, P. (2023). MLpylint: Automating the

Identification of Machine Learning-Specific Code

Smells.

[17] Biazotto, J. P., Feitosa, D., Avgeriou, P., & Nakagawa,

E. Y. (2023). Technical debt management automation:

State of the art and future perspectives. Information and

Software Technology, 107375.

[18] Varga, E. (2018). Unraveling Software Maintenance

and Evolution. Springer International Publishing.

[19] Soliman, M., Avgeriou, P., & Li, Y. (2021).

Architectural design decisions that incur technical

debt—An industrial case study. Information and

Software Technology, 139, 106669.

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2996

https://www.ijsr.net/

