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development lifecycle, such strategies will improve the software projects' stability and sustainability in the long run. 
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1. Introduction 
 

Technical debt is quite popular in software development, 

mainly when specialists have worked on the project for many 

years. With long-term development, plenty of shortcuts and 

bad practices can be introduced. This buildup of debt can 

significantly influence sustainability and its ability to grow 

and evolve; thus, software systems' complex, inefficient, and 

expensive characteristics sunk costs. With time and the size 

of such projects, technical debt becomes a big issue that 

development teams must consider in their endeavours to 

provide tremendous and agility-designed software solutions.  

 

A good solution for TD is to have a set of rules that would 

allow it to manage the current technical debt and the future 

one. In this respect, any contemporary methods, including AI 

and ML, can be regarded as ways to improve the identification 

and management of technical debt. Utilizing the opportunity 

AI and ML, the development team can enhance the 

identification of issues, establish hierarchies of debt 

repayment, and incorporate the continuous monitoring 

process into development. They offer state-of-the-art 

approaches to code quality analysis and system performance 

evaluation and ways to improve processes and, thus, enhance 

the vision-making process.  

 

The following paper reviews different approaches to dealing 

with TD when projects have a long duration, mainly about AI 

and ML for enhancing debt recognition and management. 

Thus, by analyzing methods like code smell detection 

employing NLP, performance metrics anomaly detection, or 

code's complexity predictive analysis, the paper attempts to 

demonstrate the advantages of integrating AI technologies 

into tech debt management strategies. Therefore, by 

implementing these new ways of managing technical debt, 

organizations can avoid significant problems, which could 

create software production and attain more stable and 

efficient software systems.  

 

 
Figure 1: Software development 

 

Understanding Technical Debt 

On the other hand, technical debt can be described as the cost 

incurred because of the extended time frame on the project 

due to the use of a poor approach that a better approach could 

have solved, although it is time-consuming (Spínola et al., 

2019). They experience a higher cost to maintain such debt as 

it accumulates over long periods to decrease development 

speed and threaten the system's stability. 

 

Types of Technical Debt 

 

Code Debt 

Concerns the formation of a low-quality and suboptimal code 

structure created because of shortcuts during code 

development (Gradišnik & Hericko, 2018). This kind of debt 

results in code that works but needs more design and 

comments and is challenging to maintain. For example, some 

literal could be used instead of the configuration and constant 

files, which is not viable. Code duplication is a scenario that 

arises when, instead of reusing code, similar procedures are 

written over and over again instead of encapsulated into 

functions. It's also typical to see poor organizations with many 

functions or classes performing multiple actions rather than 

using the single responsibility principle. 

 

Architectural Debt 

Originates from issues with the high-level design of a system, 

it affects the manner of scaling up, execution speed, and ease 

of upkeep. This type of debt might present as components 

heavily dependent on other components, which complicates 

changing or even expanding a part of the system without 

affecting other parts. Such a monolith architecture may also 
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lead to Architectural Ros, which is when one big application 

has tightly coupled components and faces problems in terms 

of scalability and deployment. Also, low SC arises from 

general and architectural solutions that will not allow it in the 

future, for instance, horizontal scaling or proper data 

management (Nasir et al., 2022). 

 

Documentation Debt 

Comes up when there is inadequate documentation, especially 

when documentation is not proportional to the changes in 

code or is lacking totally. It can cause issues with 

comprehension, care, and training. Some examples include 

current API documentation that may need to be updated 

regarding the API's exposure, thus causing confusion and 

errors. Sometimes, design documents need to adequately 

describe the system's architecture da, flow/interactions, or 

integration points (Glumich et al., 2018). In other cases, 

missing commentaries may represent critical parts of the 

code's logic or rationale. 

 

Test Debt 

Happens when testing practices fail because there are not 

enough tests, no automatized tests or low test quality. This 

can lead to different bugs being missed in the studies and the 

general confidence in the software's reliability being lowered 

(Rodríguez-Pérez et al., 2018). For instance, the absence of 

unit tests may mean that only some segments, such as 

individual components or functions, are not tested. This may 

occur when different components or services are not 

adequately tested for integration or when the tests are 

conducted in a way that might give inconsistent results, thus 

making them unbeneficial to quality analysis. 

 

Infrastructure Debt 

Concerns are tied to deployment and development 

environments that impact efficiency, reliability, and costs 

(Baier et al., 2019). Old deployment pipelines are from the 

CI/CD progression, which is time-consuming, error-prone, or 

needs up-to-date automation. Mismanagement of resources 

implies over-allocation, over-allocation, or under-allocation 

of resources in the cloud; hence, it sounds like an expense or 

lack of IT capacity. Also, only doing deployment, scaling, or 

monitoring through manual operations creates a lot of room 

for errors and ineffectiveness. 

 

Security Debt 

Stem from failing to adhere to security best practices, 

resulting in weaknesses and threats. This can consist of the 

sequence strings and application credential codes such as 

passwords or API codes. Another one is the absence of data 

encryption during transmission and storage. Moreover, 

installing dependencies that have not been updated for some 

time and are exposed have specific vulnerable points that lead 

to security debt (Pashchenko et al., 2020). 

 

Compliance Debt 

Takes place every time the software does not conform to the 

current legislation or industrial standards, resulting in legal 

and financial consequences. This emerging risk category 

includes data privacy infringements, such as failure to meet 

data protection laws that include GDPR or CCPA. Lack of 

audit trails also falls under compliance debt; proper logging 

and tracking mechanisms must be included, and non-standard 

coding practices come in where industry regulations are 

disregarded. 

 

Solving such technical debts requires a strategic approach to 

ensure that the software stays flexible, easy to manage, and 

secure throughout its life cycle. 

 

Strategies for Managing Technical Debt 

 

1) Continuous Identification and Monitoring 

Continuously check code bases and designs for signs of code 

debt. Use static code analysis tools and organize periodic 

architecture reviews to stay aware of the system's health state. 

 

2) TD Prioritization Model 

It is thus essential to identify which technical debt to pay first 

when it comes to software projects. This framework should 

be designed to manage technical debt in interactions that 

improve the performance, stability and efficiency of the 

systems and the development processes (Lenarduzzi et al., 

2021).  

 

The following key factors should be considered:  

 

Also entails assessing the impact of technical debt on the 

speed, the efficiency of the system, and the system's ability to 

respond to end-user needs. Worst-case, debt hampers 

performance, response time, resource consumption, usability 

and, in general, the quality of the application. As for assessing 

this kind of impact, one can use response time that reflects 

response times or latency for crucial functions, throughput 

that estimates the system's performance in handling 

concurrent requests or data processing, and resource 

consumption that quantifies the CPU, memory, and storage 

usage. Such debt should be targeted because it harms the users 

and worsens the system's performance. 

 

Risk to System Stability 

CBT requires an evaluation of its consequences in introducing 

risks that may lead to crashes, data corruption, and other 

crucial failures. Minimizing exposure to credit risk and 

finding out which debts, if left unpaid, could destabilize the 

system is vital. These are the error rate, which measures the 

rate of errors or exceptions that can be attributed to the 

technical debt; the failure rate, which considers the possibility 

of system failure or shutdown due to accumulation of the 

technical debt; and the rate of recovery which determines the 

extent to which debt has impact of the system's recovery in 

cases of failure or shut down. High-risk debts should, 

therefore, be prioritized to avoid failure on hazardous 

equipment and keep the operations going. 

 

Effect on Development Velocity 

Looks at how technical debts influence the development 

team's efficiency due to the extended time needed to deliver 

new functionality or resolve issues (Holvitie et al., 2018). The 

key metrics that must be measured are the time to provide new 

features that are consumed because of the feature debt, the 

time taken to rectify bugs and issues that have been made 

worse by the debt, and code complexity, which results from 

debt with the code base becoming hard to comprehend and 

modify. Debt that slows down the development velocity to a 
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large extent should be managed to optimize the delivery of 

new features. 

 

Finally, the cost of repayment, which states the price that is 

incurred if a business delays its repayment: 

It entails analyzing the costs of resolving the debt against the 

potential consequences of not so doing. A few examples are 

the repayment cost, which puts an approximation on the time 

and resources required to clear the outstanding; the delay cost 

of estimating what effect the outstanding will have on system 

predictability and development velocity; and the opportunity 

cost, or what someone loses, in terms of competitive 

advantage and other missed opportunities when they do not 

clear the outstanding. Prioritize debt where the benefits of 

repaying it are justified by performance. Therefore, choose an 

approach such as a cost-benefit analysis to prioritize debt for 

repayment based on the costs of delay. 

 

Business Effects and Stakeholder Issues 

Should be included in the conceptual prioritization 

framework because the satisfaction of obligations has to be 

reconciled with the achievement of business objectives and 

relevant stakeholders' attention. Metrics include customer 

impact, which measures technical debt's impact on a customer 

base satisfaction and retention, as well as its effect on total 

revenues; regulatory implications, which gauges the level of 

debt's compliance with regulatory requirements or standards; 

and stakeholder feedback, in which relevant stakeholders rank 

the importance and urgency of particular debt about others. 

Pay attention to high-value business debts or debts that are 

particularly important to stakeholders and customers to reflect 

the company's strategy and meet the marketplace needs. 

 

Long-Term Sustainability 

Concerns analyzing the impact of TD on the system's capacity 

to be upgraded and modified with the changes in requirements 

(Chen et al., 2020). Thus, the potential measures that should 

be taken into consideration include maintainability, which 

estimates how debt influences the possibility of further 

alteration and extension of the system; scalability, which 

determines how debt influences the possibility of additional 

enlargement of the system in the future; and technical 

flexibility, which express how debt influences the adaptability 

of the system to the new technologies or new requirements. 

Debt repayment is an order that threatens to destabilize the 

business in the long run, to keep the structure as flexible as 

possible. 

 

2. Incremental Repayment 
 

Integrate debt repayment into the regular development cycle. 

Allocate a percentage of each sprint or development phase to 

addressing identified technical debt. 

 

Table 1: Key Aspects and Strategies for Incremental Debt 

Repayment 
Aspect Description Details 

Defining Debt 

Repayment 

Goals 

Establish clear goals 

and priorities for 

addressing technical 

debt. 

Assess impact on 

performance, stability, and 

velocity. Set measurable 

objectives (e.g., reducing code 

smells, improving coverage). 

Regularly review and adapt 

goals. 

Allocating 

Sprint 

Resources 

Dedicate a 

percentage of 

resources to debt 

repayment each 

sprint or phase. 

Allocate a portion of sprint 

capacity (e.g., 20%) for debt-

related tasks. The remaining 

capacity (e.g., 80%) focuses 

on new features and bug fixes. 

Prioritizing 

Debt Items 

Use a prioritization 

framework to 

determine which 

debt items to 

address first. 

Consider impact on 

performance, risk to stability, 

and effect on velocity. 

Regularly update priority 

based on assessments and 

feedback. 

Monitoring 

and Reporting 

Track progress and 

report outcomes on 

debt repayment 

efforts. 

Monitor number of resolved 

debt items, code quality 

metrics, and system 

performance changes. Use 

sprint reviews or 

retrospectives for reporting 

and adjusting strategies. 

Continuous 

Improvement 

Refine debt 

repayment 

processes based on 

feedback and 

results. 

Gather feedback from teams 

and stakeholders. Adjust 

resource allocation, 

prioritization criteria, and debt 

detection tools. Evaluate and 

improve strategies 

continuously. 

 

3. Education and Culture 
 

Managing technical debt means organizations must champion 

a culture that improves code quality and characteristics 

associated with lasting sustainability. It conceptually implies 

a process of integrating the principles of technical debt 

management into the team's beliefs and behaviours. Thus, the 

mindful approach to writing the code and paying attention to 

technical debt helps adopt a positive outlook when it comes 

to not accumulating the debt in the first place. It is 

recommended that training sessions and workshops be 

conducted regularly to enable the team members to gain 

knowledge on issues regarding code quality, including, but 

not limited to, standards of coding, code review procedures, 

and the need and procedure for code testing. 

 

Discussions of technical debt within team meetings and 

retrospectives can keep it regularly at the top of the mind. 

Thus, the more an organization appreciates and compensates 

for creating value that aims to decrease technical debt metrics, 

the more it conveys the importance of such actions. Levelling 

out steps to ensure promotion, tolerance, and culture, change 

improvement to enhance the present quality of code and 

nurture a tactic plan for the long-term management of 

technical debt (Yang et al., 2023). 

 

 
Figure 2: Technical Debt and How to Manage It 
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4. Automated Debt Detection 
 

Use AI and ML patterns and best practices to identify possible 

issues causing technical debts. This can include: 

 

The use of AI and ML to automatically identify technical debt 

can increase the performance of managing debt in software 

projects (Pandi et al., 2023). By using such advanced 

technologies, teams can analyze possible problems, minimize 

extensive scrutiny and concentrate on the high-risk debt 

segments. Several techniques illustrate the potential of AI and 

ML in automating debt detection: 

 

Identification of the Code Smell with the Help of NLP 

Some of the code smells may result in the formation of 

technical debt. Such smells can be identified with the help of 

NLP by analyzing the code comments, documentation, and 

actual code (Kokol et al., 2021). Such includes code comment 

analysis that entails using NLP techniques to analyze 

comments and documentation to look for areas of weakness 

that might indicate less than optimal code quality 

descriptions. In addition, conventional techniques of NLP can 

also be taught the most proven attributes of more frequent 

code smells like lengthy methods, a large number of global 

variables, or inadequate naming standards. To achieve this, 

the code is divided into tokens, and the tokens' syntactic 

analysis is performed before applying machine learning 

algorithms to identify the violations. For example, CodeNLP 

has a localized NLP approach to analyze the code comments 

to find the divergence between the documentation and the 

code or the code smell. 

 

 
Figure 3: Understanding Code Smell Detection in Software 

Development 

 

Digging into System Performance Metrics for Anomalies 

The patterns of performance metrics can be analyzed using 

anomaly detection techniques, thus pointing towards the 

technical debt (Conejero et al., 2018). This process includes 

time series analysis, typically involving algorithms that 

monitor the performance over time to identify patterns of 

deviation from the standard. Measures like the response time, 

the rate of occurrences of errors, usage of CPU and other 

resources are then checked for any abnormality. Where TFQ 

has not been calculated, numeric techniques set threshold 

limits to identify unusual behaviour that could be put down to 

technical debt; the methods used include z-score or moving 

average. Other machine learning algorithms like Isolation 

Forests, Autoencoders, and Long Short-Term Memory 

(LSTM) networks can identify different patterns and outliers 

within the data that affect the performance. For example, 

Prometheus, alongside Grafana, could work with ML-based 

anomaly detection services showing the real-time status of 

performance issues. 

 

 
Figure 4: A Study on Performance Metrics for Anomaly 

Detection Based on Industrial Control System Operation 

Data 

 

Code Complexity and Maintainability Index Prediction 

Predictive analysis refers to employing algorithms along with 

machine learning to calculate future difficulties in complexity 

and maintainability by referring to current measurements of 

the code and the archive (Vallim Filho et al., 2022). This 

technique uses complexity measures involving cyclomatic 

complexity, code churn, and class coupling to identify the 

probable areas that will be an issue. The complexity of code 

can be predicted using machine learning models based on the 

historical data collected. In addition, the future 

maintainability of codes can be checked using ML algorithms 

by using historical maintainability data and code changes, 

whereby one can use regression or a classification method to 

determine probable regions that would require frequent 

maintenance. Systems like CodeClimate or SonarQube, 

which use ML algorithms, analyze the code's complexity and 

maintainability, thus helping the teams identify the code to be 

refactored. 

 

 
Figure 5: A Simple Understanding of Code Complexity 

 

Automated Code Review Systems 

Automated code review points to the use of AI and ML in 

assessing code changes and the presence of problems. These 

systems combine the static code analysis tools, which are AI-

based, by recognizing the code smells about vulnerabilities 
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and other deviations from set coding standards (Hamfelt, 

2023). The different AI models can understand patterns 

related to low code quality. Secondly, dynamic analysis tools 

work during the code execution to look for some problems 

that static analysis tools cannot find. ML models then analyze 

the execution pattern to determine which areas are 

problematic. For example, GitHub Copilot or Amazon Code 

Guru apply artificial intelligence solutions to provide code 

recommendations and detect code review problems to help 

developers optimize source code (Sarkar et al., 2022). 

 

 
Figure 6: Static Code Analysis Best Practices 

 

CI/CD Integration Continuous Integration and 

Deployment 

Combining automated debt detection with CI and 

CD processes implies that debt detection is continuous instead 

of a manual effort conducted once (Biazotto et al., 2023). This 

integration entails the utilization of automated testing 

frameworks that employ AI to consider claims on probable 

technical debt during each build or deployment process, 

including unit tests, integration tests, and performance tests. 

Integration of some form of reporting system within CI/CD 

pipelines to report and track technical debt put into CI/CD 

pipeline, issues suspected of technical debt during the 

automated tests ensure that technical debts are priced and 

solved before becoming a cost to the business. Hence, with 

popular technologies like Jenkins or GitLab CI, the outcome 

of code analysis can be provided instantly and, combined with 

AI-based tools, revealing the issue of technical debt. 

 

 
By applying the suggested AI and ML approaches to 

automated debt detection, companies can advance their 

capacities for technical debt identification and remediation, 

promoting the development of more sustainable, flexible, and 

efficient software systems. 

Proposed Architecture for Technical Debt Management 

To effectively manage technical debt in long-term projects, 

we propose an architecture that integrates AI/ML capabilities 

with existing development workflows: 

 
 

This architecture incorporates the following components: 

1) AI-Powered Debt Detector: Utilizes machine learning 

models to analyze code, architecture, and system 

performance for potential debt indicators. 

2) Debt Prioritization Engine: Applies predefined rules and 

ML-based recommendations to prioritize identified debt 

items. 

3) Debt Repayment Scheduler: Integrates with project 

management tools to schedule debt repayment tasks 

alongside feature development. 

4) Continuous Monitoring System: Tracks debt metrics 

over time and provides insights on the effectiveness of 

repayment efforts. 

 

Table 2: Components and Features of the Technical Debt 

Management Architecture 
Component Function Key Features 

AI-Powered 

Debt 

Detector 

Utilizes ML 

models to analyze 

code, 

architecture, and 

performance for 

identifying 

technical debt. 

- Code Analysis: Detects code 

smells, complexity, 

maintainability. 

 - Architecture Assessment: 

Identifies design flaws and 

scalability issues.  

 - Performance Monitoring: 

Detects anomalies in 

performance metrics.  

- Integration: Works with 

version control systems and 

build pipelines. 

Debt 

Prioritization 

Engine 

Applies rules and 

ML-based 

recommendations 

- Rule-Based Prioritization: 

Ranks debt items by impact on 

performance, stability, and 

development velocity.  
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to prioritize debt 

items. 

 - ML Recommendations: 

Predicts long-term impact and 

refines prioritization.  

- Customizable Metrics: Aligns 

prioritization with project goals.  

- Integration: Syncs with project 

management tools. 

Debt 

Repayment 

Scheduler 

Schedules and 

allocates 

resources for debt 

repayment tasks 

alongside feature 

development. 

- Sprint Integration: Allocates a 

portion of each sprint to debt 

repayment.  

 - Resource Allocation: 

Manages developer time for 

debt tasks.  

 - Task Management: 

Coordinates with task tracking 

systems.  

 - Feedback Mechanism: 

Adjusts scheduling based on 

progress and feedback. 

Continuous 

Monitoring 

System 

Tracks debt 

metrics over time 

and provides 

insights on debt 

repayment 

effectiveness. 

- Metric Tracking: Monitors 

debt-related metrics 

(complexity, test coverage, 

performance).  

 - Effectiveness Analysis: 

Analyzes impact of repayment 

activities.  

- Reporting and Alerts: Provides 

updates on debt management 

progress.  

 - Adaptive Insights: 

Recommends improvements 

based on historical data. 

 

Leveraging AI and ML for Technical Debt Management 

Artificial intelligence and machine learning offer significant 

potential for enhancing technical debt management processes. 

Here are some specific applications: 

1. Automated Code Review 

Implement ML models trained on large codebases to identify 

potential code smells and suggest improvements. This can be 

integrated into the development workflow through IDE 

plugins or code review tools. 

Example code snippet for a simple code smell detector using 

Python and scikit-learn: 

python 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.naive_bayes import MultinomialNB 

import numpy as np 

 

# Training data (simplified example) 

code_samples = [ 

    "def function():\n    pass", 

    "def long_function():\n    # Many lines of code...", 

    # ... more samples ... 

] 

labels = [0, 1]  # 0: Good, 1: Potential smell 

 

# Create feature vectors 

vectorizer = TfidfVectorizer(token_pattern=r'\b\w+\b') 

X = vectorizer.fit_transform(code_samples) 

 

# Train classifier 

clf = MultinomialNB() 

clf.fit(X, labels) 

 

# Function to predict code smells 

def predict_code_smell(code): 

    X_new = vectorizer.transform([code]) 

    return clf.predict(X_new)[0] 

 

# Example usage 

new_code = "def very_long_function():\n    # Lots of complex 

logic..." 

if predict_code_smell(new_code): 

    print("Potential code smell detected!") 

 

2. Architecture Debt Detection 

Determining possible technical debt can be automated using 

computer learning techniques, especially the ML models 

applied to system architecture. These models can be trained 

to learn from good examples and examples of adverse 

outcomes. Thus, these models are capable of identifying flaws 

and inefficient structures. Suppose the models superficially 

calculate aspects like modularity, scalability, and coupling. In 

that case, PF can identify design patterns that will result in 

future technical debt, such as high interdependence and 

improper data flow design patterns (Varga, 2018). This 

proactive detection contributes to solving architectural 

problems at the early stages of development when, for 

instance, such issues do not turn into severe ones. 

 

When it comes to implementing the ML-based architecture 

analysis, these generated models have to be connected to the 

design review tools and the CI/CD pipelines. The practical 

work of consumer committees provides an opportunity for 

constant assessment of architectural changes and immediate 

identification of possible problems in the field of debt. There 

is also the capacity to look at the architecture and how the 

enemy's strategies can enhance system design when historical 

and real-time data is collected. This approach guarantees that 

architecture is adequately preserved and that technical debt is 

dealt with properly, creating more 'architecturally sound' 

systems (Soliman et al., 2021). 

 

 
Figure 7: Technical Debt in ML systems 

 

3. Performance Anomaly Detection 

 

Use time series analysis and anomaly detection algorithms to 

identify potential performance-related technical debt by 

monitoring system metrics over time. 

 

Example using Python and Facebook's Prophet library for 

time series forecasting: 

python 

from fbprophet import Prophet 

import pandas as pd 
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# Load historical performance data 

df = pd.read_csv('performance_metrics.csv') 

df['ds'] = pd.to_datetime(df['date']) 

df['y'] = df['response_time'] 

 

# Create and fit the model 

model = Prophet() 

model.fit(df) 

 

# Make future predictions 

future = model.make_future_dataframe(periods=30) 

forecast = model.predict(future) 

 

# Identify anomalies 

threshold = 1.5  # Standard deviations 

anomalies = forecast[abs(forecast['yhat'] - forecast['y']) > 

threshold * forecast['yhat'].std()] 

 

print("Potential performance anomalies detected:") 

print(anomalies[['ds', 'y', 'yhat']]) 

 

Case Study: Managing Technical Debt in an AWS-based 

Data Science Project 

To illustrate the application of these principles in a real-world 

scenario, let's consider a hypothetical long-term data science 

project deployed on Amazon Web Services (AWS). 

 
Figure 8: Applying a Data Science Process Model to a Real-

World Scenario 

 

Project Overview 

The area is the huge Machine Learning data pipeline 

that will be processing terabytes of data each day. This 

pipeline consists of several components: data ingestion, data 

preprocessing, data feature engineering, model training, and 

finally, prediction service through a RESTful API. It is 

implemented to perform large computations to provide 

solutions and forecasts for critical applications in the business 

environment. Due to the broad usage and evolution of the 

system, the existing technical dept has grown, which applies 

pressure to the system, which affects its performance, 

evolution and scalability. 

 

The technical debt appears in different shapes and forms, such 

as old architectures of ML models, ineffective data 

preparation and processing workflows, non-uniform code 

styling, and unused AWS services. These issues have 

gradually resulted in increased maintenance overhead, slower 

development cycles, and performance degradation. Over 

time, with the change in requirements, eradicating this 

technical debt has emerged as necessary for improved and 

effective system functionality. The project aims to develop 

and establish an all-encompassing technical debt management 

plan to improve the system’s effectiveness by utilizing 

contemporary instruments and approaches. 

 

Identified Technical Debt 

1) Outdated ML model architecture 

2) Inefficient data processing pipelines 

3) Lack of comprehensive unit and integration tests 

4) Inconsistent code style and documentation 

5) Overprovisioned and underutilized AWS resources 

 

Table 3: Identified Technical Debt and Suggested Actions 

Technical Debt Description Impact 
Suggested 

Action 

Outdated ML 

Model 

Architecture 

Use of 

deprecated or 

inefficient 

model 

architectures in 

machine 

learning 

systems. 

Decreased 

performance, 

limited 

scalability, and 

maintainability 

issues. 

Update or 

refactor model 

architecture to 

utilize modern 

frameworks 

and techniques. 

Inefficient Data 

Processing 

Pipelines 

Data pipelines 

that are slow, 

poorly 

optimized, or 

difficult to 

maintain. 

Increased 

processing 

time, higher 

costs, and 

potential data 

quality issues. 

Optimize 

pipelines, 

adopt modern 

processing 

frameworks, 

and improve 

pipeline 

design. 

Lack of 

Comprehensive 

Unit and 

Integration Tests 

Insufficient 

testing 

coverage for 

code and 

system 

integration. 

Increased risk 

of bugs, lower 

code quality, 

and higher 

maintenance 

costs. 

Develop and 

implement 

comprehensive 

unit and 

integration 

tests to 

improve 

reliability. 

Inconsistent 

Code Style and 

Documentation 

Variability in 

coding 

practices and 

documentation 

standards 

across the 

codebase. 

Reduced 

readability, 

maintainability 

issues, and 

increased 

onboarding 

time. 

Standardize 

code style and 

documentation 

practices, and 

enforce them 

through tools 

and guidelines. 

Overprovisioned 

and 

Underutilized 

AWS Resources 

AWS 

resources that 

are provisioned 

beyond current 

needs or not 

fully utilized. 

Increased costs 

and inefficient 

resource 

management. 

Perform 

resource 

optimization, 

scale resources 

according to 

actual needs, 

and implement 

cost 

management 

practices. 

 

Debt Management Strategy 

1) Implement automated code review using Amazon 

CodeGuru 

2) Refactor ML pipeline using AWS Step Functions for 

better orchestration 

3) Introduce AWS DevOps tools (CodeBuild, 

CodePipeline) for CI/CD 

Paper ID: SR24806050008 DOI: https://dx.doi.org/10.21275/SR24806050008 2994 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 12 Issue 6, June 2023 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

4) Utilize Amazon SageMaker for model versioning and 

deployment 

5) Implement infrastructure-as-code using AWS 

CloudFormation 

 

Table 4: Debt Management Strategy and Implementation 
Debt 

Management 

Strategy 

Description 
Expected 

Benefits 

Implementation 

Steps 

Implement 

Automated 

Code Review 

Using 

Amazon 

CodeGuru 

Use Amazon 

CodeGuru to 

automatically 

review code, 

detect issues, and 

provide 

recommendations. 

Improved code 

quality, early 

detection of 

issues, and 

reduced manual 

review effort. 

1. Integrate 

CodeGuru with 

your version 

control system. 

2. Configure 

analysis settings 

and review 

results. 

3. Act on 

recommendations 

to improve code 

quality. 

Refactor ML 

Pipeline Using 

AWS Step 

Functions for 

Better 

Orchestration 

Redesign data 

processing 

pipelines with 

AWS Step 

Functions to 

improve 

orchestration and 

management. 

Enhanced 

pipeline 

reliability, 

better 

scalability, and 

easier 

maintenance. 

1. Assess current 

pipeline 

architecture. 

2. Design and 

implement new 

pipeline 

workflows using 

Step Functions. 

3. Test and 

deploy the 

refactored 

pipeline. 

Introduce 

AWS DevOps 

Tools 

(CodeBuild, 

CodePipeline) 

for CI/CD 

Implement CI/CD 

pipelines using 

AWS CodeBuild 

and CodePipeline 

to automate build, 

test, and 

deployment 

processes. 

Streamlined 

development 

workflow, 

faster delivery 

of features, and 

improved code 

quality. 

1. Set up 

CodeBuild 

projects for 

building and 

testing code. 

2. Create 

CodePipeline 

workflows for 

automating 

deployments. 

3. Monitor and 

optimize CI/CD 

pipelines. 

Utilize 

Amazon 

SageMaker for 

Model 

Versioning 

and 

Deployment 

Leverage Amazon 

SageMaker to 

manage model 

versioning, 

training, and 

deployment 

processes. 

Efficient model 

management, 

improved 

deployment 

practices, and 

streamlined 

training 

workflows. 

1. Set up 

SageMaker 

environments for 

model training 

and deployment. 

2. Implement 

versioning and 

monitoring of 

models. 

3. Integrate 

SageMaker with 

existing ML 

workflows. 

Implement 

Infrastructure-

as-Code Using 

AWS Cloud 

Formation 

Use AWS 

CloudFormation 

to define and 

manage 

infrastructure 

using code, 

ensuring 

consistency and 

scalability. 

Simplified 

infrastructure 

management, 

improved 

reproducibility, 

and automated 

provisioning. 

1. Develop 

CloudFormation 

templates for 

infrastructure 

components. 

2. Deploy and 

manage resources 

using these 

 

AI/ML-Enhanced Debt Management 

a) Use Amazon Comprehend to analyze code comments 

and documentation for clarity and completeness 

b) Implement custom ML models to predict potential 

performance bottlenecks based on code changes and 

infrastructure metrics 

c) Leverage Amazon Forecast to optimize resource 

allocation and reduce infrastructure debt 

 

Example CloudFormation template snippet for defining an 

optimized SageMaker endpoint: 

yaml 

Resources: 

  OptimizedEndpoint: 

    Type: "AWS::SageMaker::Endpoint" 

    Properties: 

      EndpointName: !Ref EndpointName 

      EndpointConfigName: !GetAtt 

EndpointConfig.EndpointConfigName 

 

  EndpointConfig: 

    Type: "AWS::SageMaker::EndpointConfig" 

    Properties: 

      ProductionVariants: 

        - InitialInstanceCount: 1 

          InstanceType: "ml.t2.medium" 

          ModelName: !Ref ModelName 

          VariantName: "AllTraffic" 

      DataCaptureConfig: 

        EnableCapture: true 

        InitialSamplingPercentage: 100 

        DestinationS3Uri: !Sub 

"s3://${DataCaptureBucket}/endpoint-data-capture" 

        CaptureOptions: 

          - CaptureMode: Input 

          - CaptureMode: Output 

 

5. Conclusion 
 

Applying the concept of technical debt in long-term projects 

requires active and strategic management. The combination 

of AI and ML can be considered a secure approach to mitigate 

and prioritize technical debt to prevent it from deteriorating 

the project's outcome in the future. The described debt 

management architecture, including AI debt detection and the 

Prioritization component, presents a clear concept of 

introducing debt management into the development process. 

This makes it easier to keep software projects healthy and 

sustainable because debt is addressed, and the overall quality 

of code is gradually enhanced. 

 

The example of the case with a data science project based on 

AWS infrastructure is informative regarding applying these 

principles. If adequately harnessed by utilizing tools such as 

cloud-native systems and AI/ML capabilities, this advantage 

can lead to enhanced systems performance, maintenance, and 

scalability. Such steps as automated code reviews to 

refactoring ML pipelines show that managing technical debts 

can improve the appropriation of project results and the shift 

of existing capacities in the context of systems development. 

 

This is why ongoing surveillance and selective 

extinguishment of debts are relevant to guarantee long-term 
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project flexibility. Suppose these three practices are 

incorporated into the development cycle. In that case, 

adequate measures to help teams manage technical debt are 

provided, enabling them to remain more flexible regarding 

changed requirements or new technologies. Besides 

preserving the project's overall health, this strategy also 

prepares teams for further successful work in the context of 

constant technological evolution. 
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