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Abstract: In this paper, we have studied various properties of the F- structure equation 
4 0k kF F  , k being a positive integer. 

Nijenhuis tensors, metric F- structure, kernel, tangent and normal vectors have also been discussed. 
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Notations Through the paper we use the following abbreviations in the place of standard technical terms. 

DM- Differential manifold 

PO- Projection operator 

ACS- Almost complex structure 

NT- Nijenhuis tensor 

Ker- Kernel 

TVS- Tangent vectors 

NVS- Normal Vectors 

 

1. Introduction  
 

Various authors and researchers have studied differentiable manifolds, real and complex manifolds, and the F- structure equations 

from time to time. After the reviewed literature mentioned in the references [1], [2], [3], [4] ………….,[14] we find that currently, 

this field is alive for academicians and researchers. So, we posed a sequel of [6], [7],[8], and [9]. Let 
nM be a differentiable 

manifold of class C


and F be a (1,1) tensor of class C
defined on

nM by- 

 
4 0k kF F                           (1.1) 

We define the operators l and m on nM , satisfying- 

3 3, ,k kl F m I F I     denotes identity operator  (1.2) 

 

From (1.1) and (1.2) we have, 
2 2, , , 0, , 0k k k k kl m I l l m m lm ml F l lF F F m mF          (1.3) 

Theorem (1.1): Let the (1,1) tensor  and  satisfy- 

2,k km F m F     then, (1.4) 

3 6,m l I      (1.5) 

Proof: Using (1.2), (1.3) and (1.4) we get the results. 

 

Theorem (1.2): Let the (1,1) tensor p and q satisfy- 

3 ,k kp m F q m F    then, (1.6) 
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2 3p q I  (1.7) 

Proof: Using (1.2), (1.3) and (1.6) we get (1.7). 

 

Theorem (1.3): Let k be even and rank (( ))F n then, 

, 0l I m  (1.8) 

and 
3 /2kF  acts as an almost complex structure.  

 

Proof: From the fact 

(( )) (( )) dim nrank F nulity F M n   (1.9) 

 

We have 

(( )) 0 ker 0rank F F      

 

Thus 0 0FX X   .  

Let 
1 2 1 2 1 2( ) 0FX FX F X X X X      or F is 1 1 , moreover nM being finite dimensional F is onto 

also. Thus F and hence kF is invertible. 

 

Operating kF on k k kF l lF F  and on 0k kF m mF  we get , 0l I m  . Operating kF on (1.1) we have 

3 3 /20k kF I F   acts as an almost complex structure. 

 

2. NT 
 

Let 𝑁
𝐹

,𝑁 
𝑙

and 𝑁
𝑚

denote the Nijenhuis tensors corresponding to the operators F , l and m respectively. Then,  

 

𝑁 
𝐹

2( , ) [ , ] [ , ] [ , ] [ , ]X Y FX FY F X Y F FX Y F X FY    (2.1) 

𝑁 
𝑙

2( , ) [ , ] [ , ] [ , ] [ , ]X Y lX lY l X Y l lX Y l X lY       (2.2) 

𝑁 
𝑚

2( , ) [ , ] [ , ] [ , ] [ , ]X Y mX mY m X Y m mX Y m X mY       (2.3) 

 

Theorem (2.1): Let F , l and m Satisfy (1.1), (1.2) and (1.3) then,  

𝑁
𝐹𝑘

2( , ) [ , ]KmX mY F mX mY     (2.4) 

𝐹𝑘𝑁
𝐹𝑘

( , ) [ , ]mX mY l mX mY  (2.5) 

𝐹𝑘𝑁
𝐹𝑘

( , )mX mY  𝑁 
𝑙

( , ) 0mX mY    (2.6) 

𝑁 
𝑚

( , ) 0lX mY  (2.7) 

 

Proof: Using (1.2), (1.3), (2.1), (2.2) and (2.3) we get the results. 

 

3. M – Structure 
 

Let 
/ ( , ) ( , )F X Y g FX Y is skew symmetric then,  

( , ) ( , )g FX Y g X FY  (3.1) 

 

Theorem (3.1): Let F satisfies (1.1) then, 
2 1 /( , ) ( 1) [ ( , ) ( , )]k k kg F X F Y g X Y m X Y   (3.2)

 
where, 
/ ( , ) ( , )m X Y g X mY

                
(3.3) 
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Proof: Using (1.2), (1.3), (3.1) and (3.3) we get- 
2 3( , ) ( 1) ( , )k k k kg F X F Y g X F Y   

( 1) ( , )k g X lY    

1( 1) ( , )k g X lY   

1( 1) ( , ( ) )k g X I m Y    

1( 1) [ ( , ) ( , )]k g X Y g X mY    

1 /( 1) [ ( , ) ( , )]k g X Y m X Y              
(3.4) 

 

4. Ker, tangent and normal vectors 
 

We define- 

 ker : 0F X FX                        
(4.1) 

tan : || :F X FX X X FX X       (4.2) 

: ( , ) 0,NorF X g X FY Y     (4.3) 

 

Theorem (4.1): Let F satisfies (1.1) then, 

4ker kerk kF F                        (4.4) 

4tan tank kF F                           (4.5) 

4k kNorF NorF (4.6) 

 

Proof: Using (1.1), (4.1), (4.2) and (4.3) we get the results. We proved only (4.6). 

 

Let ( , ) 0k kX NorF g X F Y    

4( , ) 0kg X F Y    

4( , ) 0kg X F Y   

4kX NorF   

Thus, 

4k kNorF NorF                            (4.7) 

Again let
4 4( , ) 0k kX NorF g X F Y    

( , ) 0kg X F Y    

( , ) 0kg X F Y   

kX NorF   
4k kNorF NorF                          (4.8) 

From (4.7) and (4.8) we get (4.6). 
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