International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

Exploring Properties and Applications of the F-Structure Equation $F^{4k} + F^k = 0$ in Differential Manifolds

Rajiv Kumar¹, Lakhan Singh²

¹Digamber Jain College, Baraut (Baghpat); UP, India 250611 Email:rajiv73kr[at]gmail.com Orcid id: https://orcid.org/0000-0001-7601-3279

²Digamber Jain College, Baraut (Baghpat); UP, India 250611 Email: lakhansingh.077[at]gmail.com

Abstract: In this paper, we have studied various properties of the F- structure equation $F^{4k} + F^k = 0$, k being a positive integer. Nijenhuis tensors, metric F- structure, kernel, tangent and normal vectors have also been discussed.

Keywords: DM, PO, ACS, NT, Ker, TVS, NVS

Notations Through the paper we use the following abbreviations in the place of standard technical terms. DM- Differential manifold PO- Projection operator ACS- Almost complex structure NT- Nijenhuis tensor Ker- Kernel TVS- Tangent vectors NVS- Normal Vectors

1. Introduction

Various authors and researchers have studied differentiable manifolds, real and complex manifolds, and the F- structure equations from time to time. After the reviewed literature mentioned in the references [1], [2], [3], [4],[14] we find that currently, this field is alive for academicians and researchers. So, we posed a sequel of [6], [7],[8], and [9]. Let M^n be a differentiable manifold of class C^{∞} and F be a (1,1) tensor of class C^{∞} defined on M^n by-

 $F^{4k} + F^k = 0$ (1.1) We define the operators *l* and *M* on *Mⁿ*, satisfying $l = -F^{3k}, m = I + F^{3k}, I$ denotes identity operator (1.2)

From (1.1) and (1.2) we have,

$$l + m = I, l^2 = l, m^2 = m, lm = ml = 0, F^k l = lF^k = F^k, F^k m = mF^k = 0$$
(1.3)

Theorem (1.1): Let the (1,1) tensor α and β satisfy-

$$\alpha = m + F^{k}, \beta = m - F^{2k} \text{ then, (1.4)}$$
$$\alpha^{3} = m - l, \alpha^{6} = I = \alpha \beta \text{ (1.5)}$$

Proof: Using (1.2), (1.3) and (1.4) we get the results.

Theorem (1.2): Let the (1,1) tensor p and q satisfy $p = m + F^{3k}, q = m - F^k$ then, (1.6)

Volume 12 Issue 8, August 2023

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

 $p^2 = q^3 = I$ (1.7) **Proof:** Using (1.2), (1.3) and (1.6) we get (1.7).

Theorem (1.3): Let k be even and rank ((F)) = n then,

l = I, m = 0(1.8)

and $F^{3k/2}$ acts as an almost complex structure.

Proof: From the fact $rank((F)) + nulity((F)) = \dim M^n = n$ (1.9)

We have $rank((F)) = 0 \Longrightarrow \ker F = \langle 0 \rangle$

Thus $FX = 0 \Longrightarrow X = 0$. Let $FX_1 = FX_2 \Longrightarrow F(X_1 - X_2) = 0 \Longrightarrow X_1 = X_2$ or F is 1-1, moreover M^n being finite dimensional F is onto also. Thus F and hence F^k is invertible.

Operating F^{-k} on $F^{k}l = lF^{k} = F^{k}$ and on $F^{k}m = mF^{k} = 0$ we get l = I, m = 0. Operating F^{-k} on (1.1) we have $F^{3k} + I = 0 \Longrightarrow F^{3k/2}$ acts as an almost complex structure.

2. NT

Let N_{E} , N_{I} and N_{m} denote the Nijenhuis tensors corresponding to the operators F, I and m respectively. Then,

 $N_{F}(X,Y) = [FX,FY] + F^{2}[X,Y] - F[FX,Y] - F[X,FY]^{(2.1)}$ $N_{l}(X,Y) = [lX,lY] + l^{2}[X,Y] - l[lX,Y] - l[X,lY] \quad (2.2)$ $N_{m}(X,Y) = [mX,mY] + m^{2}[X,Y] - m[mX,Y] - m[X,mY] \quad (2.3)$

Theorem (2.1): Let F, l and m Satisfy (1.1), (1.2) and (1.3) then, $N_{F^k}(mX, mY) = F^{2K}[mX, mY]$ (2.4) $F^k_{F^k}N(mX, mY) = -l[mX, mY]$ (2.5) $F^k_{F^k}N(mX, mY) + N_l(mX, mY) = 0$ (2.6) $N_m(lX, mY) = 0$ (2.7)

Proof: Using (1.2), (1.3), (2.1), (2.2) and (2.3) we get the results.

3. M – Structure

Let ${}^{\prime}F(X,Y) = g(FX,Y)$ is skew symmetric then, $g(FX,Y) = -g(X,FY)^{(3.1)}$

Theorem (3.1): Let *F* satisfies (1.1) then, $g(F^k X, F^{2k} Y) = (-1)^{k+1} [g(X, Y) - m(X, Y)]$ (3.2) where, m(X, Y) = g(X, mY) (3.3)

> Volume 12 Issue 8, August 2023 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Proof: Using (1.2), (1.3), (3.1) and (3.3) we get $g(F^k X, F^{2k} Y) = (-1)^k g(X, F^{3k} Y)$ $= (-1)^k g(X, -lY)$ $= (-1)^{k+1} g(X, lY)$ $= (-1)^{k+1} g(X, (I-m)Y)$ $= (-1)^{k+1} [g(X, Y) - g(X, mY)]$ $= (-1)^{k+1} [g(X, Y) - (m(X, Y))]$ (3.4)

4. Ker, tangent and normal vectors

We defineker $F = \langle X : FX = 0 \rangle$ (4.1) tan $F = \langle X : FX \parallel X \rangle = \langle X : FX = \lambda X \rangle$ (4.2) $NorF = \langle X : g(X, FY) = 0, \forall Y \rangle$ (4.3)

Theorem (4.1): Let *F* satisfies (1.1) then, ker $F^k = \ker F^{4k}$ (4.4) tan $F^k = \tan F^{4k}$ (4.5) *NorF^k = NorF*^{4k} (4.6)

Proof: Using (1.1), (4.1), (4.2) and (4.3) we get the results. We proved only (4.6).

Let
$$X \in NorF^{k} \Rightarrow g(X, F^{k}Y) = 0$$

 $\Rightarrow g(X, -F^{4k}Y) = 0$
 $\Rightarrow g(X, F^{4k}Y) = 0$
 $\Rightarrow X \in NorF^{4k}$
Thus,
 $NorF^{k} \subseteq NorF^{4k}$ (4.7)
Again let $X \in NorF^{4k} \Rightarrow g(X, F^{4k}Y) = 0$
 $\Rightarrow g(X, -F^{k}Y) = 0$
 $\Rightarrow g(X, F^{k}Y) = 0$
 $\Rightarrow X \in NorF^{k}$
 $NorF^{4k} \subseteq NorF^{k}$ (4.8)
From (4.7) and (4.8) we get (4.6).

Acknowledgement

The authors thank reviewers and editors for their beautiful, pinpoint comments, helpful exchanges, and suggestions regarding the title.

Volume 12 Issue 8, August 2023 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

References

- [1] Das L.S. 2004. On CR-structures and F(2K + 1, 1) –structure satisfying $F^{2k+1} + F = 0$, JTSI, India. 22, 1-7.
- [2] Das, L.S., Nivas, R. and Singh, A., 2008, On CR-structures and F-structures satisfying $F^{4n} + F^{4n-1} + \dots + F^2 + F = 0$, Tesor N.S. 70. 255-260.
- [3] Das. L.S. Nikic, J. and Nivas. R., 2005, Distributions parallelism and geodesic in $F(a_1, a_2, \dots, a_n)$ structure Lagrangian manifolds. Differential Geometry Dynamitical Systems, Romania, 7, 82-89.
- [4] E. Scholz, 1999, The concept of manifold, 1850-1950, in: History of Topology, I.M. James (ed.), Elsevier Science B.V., Amsterdam, pp. 25-64.
- [5] Goldberg, S.I. 1972, On the existence of manifold with an F-structure, Tensor (N.S.), 26, 323-329.
- [6] Lakhan Singh, 2020, On The Cyclic Group related to the F- structure equation $\sum_{k=1}^{p} F^{k} = 0$, Naveen Shodh Sansar Oct. to Dec.Vol. I, issue XXXII ISSN 2320-8767.
- [7] Lakhan Singh, 2017, On Some Properties of Metric F- structure satisfying $F^{2k+1} + F = 0$, International Journal of mathematics and its Applications, Vol. 5, issue 2-A, 63- 66, ISSN 2347-1557.
- [8] Lakhan Singh, 2016, On the Structure Equation $F^{3k} + F^k = 0$, International Journal of Current Research, Vol. 8, issue 09, 38792-38795, ISSN 0975-833X.
- [9] Lakhan Singh,2015, On CR- structure F- structure satisfying $F^7 + F = 0$, International Journal of mathematics Trends and Technology, Vol. 26, No.1, 04- 08, ISSN 2231-5373.
- [10] R. Narasimhan, 1973, Analysis on Real and Complex Manifolds, North-Holland Publishing Comp., Amsterdam.
- [11] Ram Nivas and Surendra Yadav, 2012, On CR-structures and $F_{\lambda}(2\nu + 3,2) HSU$ structure satisfying $F^{2\nu+3} + \lambda^r F^2 = 0$, Acta Ciencia Indica, Vol. XXXVIII M, NO. 4, 645.
- [12] S.S. Chern, 1955, Differentiable Manifolds, mimeographed lecture notes (spring 1952), Department of Mathematics, University of Chicago Press.
- [13] Upadhyay, M.D. and Gupta, V.C. 1977. Integrability conditions of a structure f_{λ} satisfying $f^3 + \lambda^2 f = 0$, Publications Mathematics, 24 (3-4), 249-255.
- [14] Yano, K. 1963. On structure defined by a tensor Reid f of type (1, 1) satisfying $f^3 + f = 0$, Tensor (N.S.), 14,99-109.