
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF 2022: 7.942

Volume 12, Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Evaluation the Performance of Data Structures: A

Comparative Approach

Ayshah A. Alnoshan
1
, Hessah A. Alhodithy

2
, Meznah S. Alquraishi

3

1College of Engineering and Information Technology, Onaizah Colleges, Onaizah, Qassim, Saudi Arabia

Email: ayshah_an[at]oc.edu.sa

2College of Engineering and Information Technology, Onaizah Colleges, Onaizah, Qassim, Saudi Arabia

Email: hassah.h[at]oc.edu.sa

3College of Engineering and Information Technology, Buraydah Colleges, Buraydah, Qassim, Saudi Arabia

 Email: meznahqu[at]gmail.com

Abstract: The importance of data structures makes the people to use them in many domains in real world to facilitate the dealing with

the data and information. Dealing with these data structures in real worlds are possible using different operations such as insertion,

deletion, searching, sorting. The effectiveness of these operations with data structures is important and can be measured in different

ways. In this paper we focus on evaluate the effectiveness of operations specially searching and sorting operations on three data

structure that is array, singly linked list and tree and measured based on a high range of numbers to increase the accuracy by calculate

the elapsed time to execute operations and the number of comparisons and swapping in operation.

Keywords: Data structure algorithms; sorting; searching; effectiveness; comparison; time complexity

1. Introduction

Sort and search are important operations in computer

sciences. The sorting used to arrange data structure elements

in a certain order. However, a sorted data structure is a

benefit for searching which is considered the second

operation. Hence, to carry out the data processing activities

including calculations, sorting and searching use an

algorithm which that is a significant fraction of the several

science fields. For examples, database systems as well as

searching, networking, data transmission, pattern matching,

and data analytics. Furthermore, there are a large number of

good sort algorithm and we will cover some of them like

insertion, bubble, quick and heap [1][3].

One of the oldest sorting algorithms is insertion sort. It

works by inserting each element in its correct place in the

dataset. That means it removes one element from the input

data and inserted into the appropriate position relative to the

sorted elements. The algorithm continues doing these steps

until no input elements remain. Bubble sort is the simplest

sorting algorithm and the basic idea works by repeatedly

comparing adjacent elements and swapping the pair of

adjacent elements if their order is reversed. It repeats this

step until no swaps have occurred on the data set [2][5].

Quick sort is a divide and conquers algorithm. In general, it

will be applied recursively by select element as pivot

element and compare the elements remain to it. So, the set

was split then select another pivot from the subset and so on.

The last algorithm present is heap-sort. In brief, the

algorithm is continuous swap the first element in the data set

with the last element [1][2].

On the other hand, the efficiency of these algorithms

depends on a type of data structure which is a way to

facilitate access to organized data and process it. Some of

the data structures examples are array, linked list and tree.

An array is a set of elements with fixed size and each item

has a specifically location in the set. The second data

structure type is linked list which it has a node and each of

them connected by another through a specified link. For this

reason, linked list has a dynamic size. Finally, there are

different trees have been proposed, but we will discuss the

most widely used: the binary tree and the AVL tree. Both of

them represent one element as a root of the tree and each

element has at most two children [1][4].

In this paper, we will perform a qualitative comparative

performance evaluation of these sorting algorithms which

that depend on the most representative structures by

computing time complexity. The time complexity of an

algorithm is the total amount of time will take to complete its

execution depending on the input size. We can describe

these complexities by using the commonly expressed called

big-oh notation.

First, some of the related works are explained in section 2. In

section 3 and 4 we present brief description of data

structures and operations used and the methodology. While

in section 5 we present the results and discuss these results

with curves. Finally, in section 6 will conclude the paper.

2. Previous Work

Here we will talk about previous work, we have done

research and we have found researches in this area, but we

chose some of them.

Authors in [6] was given a comparative analysis of different

types of sorting algorithm, e.g. the Quicksort, Bubble sort,

Insertion sort and Heap sort. This paper is perhaps the

closest to the concept of our paper. Where the aim of this

Paper ID: SR23807001651 DOI: 10.21275/SR23807001651 880

mailto:ayshah_an@oc.edu.sa
mailto:hassah.h@oc.edu.sa
mailto:Meznahqu@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF 2022: 7.942

Volume 12, Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

paper is counting the number of swap and comparison per

algorithm by the added counter in the C programming

language. However, the researchers after calculate the time

complexity of algorithms, they concluded that quicksort is

the fastest and bubble sort is the slowest.

Linos and Marcus [7] also worked with the complexity of

arrays and linked lists, the also says because the nested loops

in the insertion, selection, bubble sort it takes O(n2), but the

division of quicksort algorithm into sub lists it has O(nlogn).

They said the bubble, insertion, and selection sort very slow

or does not work very well with a huge number of unsorted

elements but all of them was easy to understand and

implement. On the other hand, they say the quick sort was

difficult to implement, slow working in sorted elements, but

it’s very effective way can be used when we have huge

random/unsorted elements.

Svetlana and Milo in [8] give a comparative analysis of the

most popular types of trees. Additionally, they both based on

the height balancing. But the difference between them is that

the Red-Black tree depends on the colors in its branches. On

the other hand, the evaluation in this study done by

simulation with a synthetic workload model. After the

authors done the experiment on the number of data set. They

found that the AVL trees has the efficiency better.

In [9] the author focused on the analyzing of two types of

sorting algorithms selection and quick sorting algorithms on

different types of inputs by measuring their speed with many

implementations. He applied these two algorithms on

integers and strings types. Where the researcher show that

the performance of selection sort is better than the

performance of quick sort and the array of integer type is

faster than the array of string type.

The ordering of items and elements is more important to

make the dealing with these elements is much easier. In [10]

the author focuses on the analysis of different sorting

algorithms. The researchers show the implementation and

results got it after applying different execution on these

algorithms and show that index sort is the best with small

elements, but with large elements index sort is take more

time than insertion and less time than bubble sort.

Authors in [13], reviewed evaluating the available

voxelisation algorithms for different geometric primitives as

well as voxel data structures and they ware spilt data

structures into static and dynamic grids considering the

frequency to update a data structure.

In the paper [14], the researchers discuss the performance of

data structures with machine language and when they are

called learned data structures. As a corollary of this general

analysis, learned data structures achieve outstanding

practical improvements in space occupancy and time

efficiency.

Yang et al. in [15] represented the various types of sorting

algorithms applied to arrays. This paper describes the best

and worst cases. They represent the results as the time

complexity of insertion, bubble and selection sort is O(n2).

On the other hand, the time complexity of quicksort is

O(nlogn). The researchers also note to the time complexity

of all sorting algorithms it doesn’t have more difference with

small input data, and it stays quicksort is the best whenever

growing on input data.

Researchers in [16], proposed a methodology sorting

technique by dividing the input array into a piece, sorting

each of the blocks using a proposed bubble sort, and then

merging all of the blocks together using a modified insertion

sort. As result, they showed how various scenarios

performed in addition the suggested sort outperforms

traditional bubble and insertion sorting.

Roopa and Reshma in [17], conducted a comparative study

on various sorting algorithms that depends on two

parameters first, the time taken when is executed the data

and second parameter the execution speed of the data. The

summarized results were the larger and complex lists of data

binary search can be used by taking small amount of time in

contrast with linear search which can be used for less amount

of data. Finally, quick sort it the most efficient to handle

large data as compared to selection sort and bubble sort.

Authors in [18] examined nine of well-known algorithms and

they found that quicksort is the best choice according to

memory need when it comparing with heap sort and merge

sort.

Min in [20], presented two ideas of bidirectional for bubble

sort algorithm to optimize the original bubble sort algorithm

and examine these two ideas of bidirectional for bubble sort

algorithms and analyzing them by comparing the time

complexity and space complexity of these two ideas with the

original.

3. Types of Data Structures and Operations

In our paper we focus on three types of data structures which

is array, linked list (singly) and tree with two types of

operations: sort and search operations.

3.1 Data Structure

Array is one of data structure types which contains a set of

elements grouped together with the same type such as

integer, string, double and so on and have an index used to

access any element in the array. Because the array has

organized elements it can be used effectively in different

operations such as search and sort. In addition, it can be one-

dimensional or multi-dimensional array and this support in

different features. Linked list another type of data structures

which is a sequence of nodes where each of these nodes

contains a data of any type and pointer to the next that is

used to access any node in the linked list. The linked list may

be one of singly linked list which it has only one pointer to

the next, double linked list which it has two pointers one for

the next node and another for the previous node or cycle

linked list which connect all nodes together. Tree is an

important type of data structures that contains a collection of

nodes connected together using the edges in hierarchal form

Paper ID: SR23807001651 DOI: 10.21275/SR23807001651 881

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF 2022: 7.942

Volume 12, Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

without having any cycle. Where we dealing with the tree

with a set of things such as root (the first element), children

of each node and so on. Where the tree can be balanced tree

such as AVL tree and unbalanced tree such as Binary Search

Tree (BST) and based on these we can analyze different

operations such as deletion, insertion, traversal that can be

in-order, preorder or post-order and so on and how it works

on each type [11].

3.2 Operations

3.2.1 Sorting operation

Sorting operation is one of the most important operations

used to make the reorganization for a set of elements either

in alphabetical order for elements of type string or character

or in ascending or descending order for elements of integer

type. Where sorting operation apply any algorithm of sorts

on a set of elements that take it as input and return the

ordered elements as output with any type of data structures.

The sorting algorithms that we show it in our paper are:

Bubble sort is the simplest algorithm for sorting where it

starts from first element until the number of elements-1 and

compares each element with all elements and makes

swapping in correct position. But it may take more time

because it compares each element with all elements. Where

the time complexity of bubble sort in worst case is O(n
2
) and

in best case is O(n) [12].

Insertion sort is an inserting algorithm where it takes the first

element and inserts it into the list in ordered form and

continuo with each item at a time until we got the list in

ordered form. The insertion sort can take less time than

bubble sort because it has less comparison. Where the time

complexity of insertion sort in worst case is O(n
2
) and in best

case is O (n) [12].

Quick sort is a popular sorting algorithm based on divide and

conquer procedure. Where it chooses pivot that may be first,

last, middle or random elements and make partition around

this pivot and every element less than pivot go left and

greater than pivot go left and continue in recursively way

with left and right partition until we get the list in ordered

form. Where the time complexity of quick sort in worst case

is O(n
2
) and in best case is O (nlogn) [12].

Heap sort is a sorting algorithm with comparison procedure

and based on heap data structure. Where first it builds a max

or min heap then take the element in the root and swapped

with the element at the end and make heapify to root to

rearrange heap data structure after applying change. Where

the time complexity of heap sort in worst case is O(nlogn)

and in best case is O(nlogn) [12].

3.2.2 Searching operation:

It is an operation used to look up for specific element in the

given list. Where the searching operation can be done in

many forms such as in sequential form and take the time

complexity of O(n) or in binary form and take the time

complexity of O(logn) [11][12].

4. Methodology

We are going to use a macOS operating system with an i5

2.5 GHz CPU. The test programs are constructed utilizing

the java language for all data structures that we are focused

on it in our paper, which are array, singly linked list and tree.

Where we applying test on different data structures with

different set of elements ranged by 50000 elements to be

more accurate and measuring the results based on these sets.

In considering for analyzing the results, we are using five

different sets of numbers as input for each data structures in

both searching and sorting operation and measure the

number of comparisons and swapping for each one. Whereas

the second thing use it to analyzing the results is by calculate

the elapsed time to measure the performances of these

operations by calling nanoTime() function for searching

operation because it working fast and calling

currentTimeMillis() for sorting operations because it takes

too much time.

We try to running the algorithm more than one time to check

the accuracy of results. On the other hand, in searching

operation, we take number 30000 as an input in all cases and

measure the results based on this searching. Finally, after we

collecting different sets of results, we analysis them based on

number of certain operations (comparisons and swapping

operations) and the elapsed time for each operation in

different data structures.

5. Performance Results and discussion

After we collecting all experiments and testing on different

data structures with sorting and searching operations, we

analysis the results based on the time elapsed to execute and

certain operations which is comparisons and swapping

operations and show the final results in curves and tables.

5.1 Sorting Operations

In our paper we choose different algorithms that is bubble,

insertion, quick, and heap sorting algorithms to execute it on

tree different data structures.

5.1.1 Array Sort

In sorting for array, all sorting algorithms in best case is

better than in worst case in considering for number of

comparing and swapping except the heap sorting algorithm

because if it is already sorted they take more comparisons

and swapping operations to build max heap again, but if it is

not sorted, the number of comparing and swapping reduces

because the array is already built in max heap. However, in

considering for time, all sorting algorithms in best case is

better than in worst case. Generally, the fastest sorting

algorithm for array in best and worst case is heap sort. Thus,

in best case the slowest algorithm is bubble then quick then

insertion as shown in Figure 1.

Paper ID: SR23807001651 DOI: 10.21275/SR23807001651 882

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF 2022: 7.942

Volume 12, Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Graphical form of elapsed time for different sorting algorithm of array in best case.

In considering for worst case the slowest algorithm is insertion then bubble then quick sorting algorithm because the number of

comparisons and swapping operations is affected on the speed of algorithm as shown Figure 2.

Figure 2: Graphical form of elapsed time for different sorting algorithm of array in worst case.

5.1.2 Linked List Sort

In sorting for singly linked list, all sorting algorithms in best

case is better than in worst case except the heap sorting

algorithm in considering for number of comparing and

swapping because if it is already sorted they take more

comparisons and swapping operations to build max heap

again, but if it is not sorted, the number of comparing and

swapping reduces because the array is already built in max

heap. In addition, insertion sorting algorithm it is better in

worst case because it takes numbers and directly insert it in

the sorted list, but in best case it takes number and then need

to check for all numbers previously inserted in the sorted list

so it takes more time and comparisons.

As shown in Figure 3 and Figure 4, in considering for time,

all sorting algorithms in best case are better than in worst

case. In general, the fastest sorting algorithm for singly

linked list in best and worst cases is insertion then bubble

then quick then heap sort. Where insertion and bubble in best

case is very close in the result of time so it appears in the

curve one above the other. Because the using of pointer in

singly linked list is affected on results as we saw in the heap

and quick it takes more and more time because it dealing

with pointers very dramatically.

Figure 3: Graphical form of elapsed algorithms time of

linked list in best case.

Paper ID: SR23807001651 DOI: 10.21275/SR23807001651 883

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF 2022: 7.942

Volume 12, Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Graphical form of elapsed algorithms time of

linked list in worst case.

5.1.3 Tree Traversal:

In this section, we analysis two types of tree: AVL and

Binary Search Tree. When our experiment was run we

obtained the number of visiting node and the comparison

number in each type is the same for both cases. Since the

AVL is a self-balancing binary search tree. In considering on

traversal time, AVL traversal is better than BST traversal in

all cases. Because BST in the best case or worst case is very

deep that's mean all traversals in one side either be left or

right. So, it takes a long time in the traversal. On the other

hand, we could get the BST is the best case was much better

than the worst case, but the worst case in AVL takes a little

more time from the best case as shown in Figure 5 below.

Figure 5: Elapsed time tree traversal in best and worst cases.

5.2 Searching Operations

In this section, we apply searching operation to different data

structures.

5.2.1 Array Search:

We use binary and linear search and measure it in both best

and worst case and found that binary search in both cases is

faster than linear search since it takes less time to perform

searching and less comparisons as shown in Figure 6 below.

Figure 6: Elapsed time for searching array in best and worst

cases

5.2.2 Linked List Search

In searching for singly linked list, there is only one way to

search through it that is linear searching. Where we use it

and measure it in both best and worst cases and found that in

best cases is faster than in worst cases since it takes less time

to perform searching and less comparisons as shown in

Figure 7.

Figure 7: Graphical form of elapsed time for searching

linked list in best and worst cases.

5.2.3 Tree Traversal

In tree we apply searching on Binary Search Tree (BST) and

AVL tree and found that the time in AVL tree in worst case

is better than BST tree as shown in the Figure 8 below.

Figure 8: Elapsed time for searching tree in best and worst

cases

From the results we got it, as expected, the BST tree takes

the highest number of steps in each case. Nevertheless, the

number of steps in the best case takes less than the worst

Paper ID: SR23807001651 DOI: 10.21275/SR23807001651 884

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF 2022: 7.942

Volume 12, Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

case. Otherwise, the minimum step number is represented in

the AVL best case. Additionally, the number of steps in the

AVL worst case is small and this is due to the AVL is a

balanced tree.

6. Conclusion

This paper evaluates the effectiveness of sorting and

searching operations for array, singly linked list and tree data

structures in best and worst cases by measuring the time

those operations it takes and the number of comparisons and

swapping for each operation. The domain of these evaluation

focuses on integer numbers with high ranges number start

from 50000 to increase the accuracy of the results. The

results showed that the cases of number either in worst or

best case, the increasing of time and number of comparisons

and swapping effect on the effectiveness and performance of

operation on each data structure. Where in considering for

sorting operations in three data structures the time for sorting

algorithms showed exactly the performance of that algorithm

and proves that with the number of comparisons or

swapping. In considering for searching operation, the time

elapsed and number of comparisons in binary search is better

than in linear search. Also, search in balanced tree is better

than in unbalanced tree. Hence, we can say that it can be

there many future works to improve various sorting and

searching algorithms and removing its disadvantage and also

make new algorithms to keeping on with rapidly growing up

of information in our world.

References

[1] H. K. Nievergelt J. Introduction to algorithms. The MIT

Press, 2009. pp. 147-180.

[2] Z. ABBAS. COMPARISON STUDY OF SORTING

TECHN IQUES IN DYNAMIC DATA STRUCTURE.

Malaysia, 2016. pp. 6-18.

[3] Roy, H., Shafiuzzaman, M., Samsuddoha, M. (2019,

December). SRCS: A New Proposed Counting Sort

Algorithm based on Square Root Method. In 2019

22nd International Conference on Computer and

Information Technology (ICCIT) (pp. 1-6). IEEE.

[4] L. NCHENA. M. LARSSON. “SORT ALGORITHMS

AND DATA STRUCTURE: AN OVERVIEW AND

COMPARISSON.” International Journal of

Information, Business and Management, Vol. 9, No.1,

pp. 277-290, 2017.

[5] S. Jadoon, S.olehria, M.Qayum “Optimized Selection

Sort Algorithm is faster than Insertion Sort Algorithm:

a Comparative Study.” International Journal of

Electrical and Computer Science, Vol. 11, No.02, pp.

18-23, 2011.

[6] S. Choudaiah, M. Tinn Kavitha efeld and P. Chowdary,

"Evaluation of Sorting Algorithms, Mathematical and

Empirical Analysis of sorting

Algorithms", International Journal of Scientific &

Engineering Research, vol. 8, no. 5, pp. 2229-5518,

2017.

[7] L. NCHENA and M. LARSSON. SORT

ALGORITHMS AND DATA STRUCTURE: AN

OVERVIEW AND COMPARISSON. International

Journal of Information, Business and Management 02 /

2017. Volume. 9, Essue.1.

[8] S. Štrbac-Savić and M .Tomašević. Comparative

Performance Evaluation of the AVL and Red-Black

Trees. BCI’12, September 16–20, 2012, Novi Sad,

Serbia.

[9] A. Aliyu and B. Zirra, "A Comparative Analysis of

Sorting Algorithms on Integer and Character

Arrays", The International Journal Of Engineering And

Science (IJES), vol. 2, no. 7, pp. 25-30|, 2013.

[10] A. Bharadwaj and S. Mishra, "Comparison of Sorting

Algorithms based on Input Sequences", International

Journal of Computer Applications, vol. 78, no. 14, pp.

7-10, 2013.

[11] A. Drozdek, Data structures and algorithms in C.

England: COURSE TECHNOLOGY, 2005.

[12] Barnett, Granville, and Luca Del Tongo . " Data

Structures and Algorithms : Annotated Reference with

Examples." (2008).

[13] M. Aleksandrov, S. Zlatanova, and D. J. Heslop,

“Voxelisation algorithms and Data Structures: A

Review,” Sensors, vol. 21, no. 24, p. 8241, 2021.

doi:10.3390/s21248241.

[14] P. Ferragina, F. Lillo, and G. Vinciguerra, “On the

performance of Learned Data Structures,” Theoretical

Computer Science, vol. 871, pp. 107–120, 2021. doi:

10.1016/j.tcs.2021.04.015

[15] Y. G. You Yang, Ping Yu. Experimental Study on the

Five Sort Algorithms. International Conference on

Mechanic Automation and Control Engineering

(MACE), 2011

[16] T. Paul, “Enhancement of bubble and insertion sort

algorithm using block partitioning,” 2022 25th

International Conference on Computer and Information

Technology (ICCIT), 2022.

doi:10.1109/iccit57492.2022.10055404.

[17] Ms ROOPA K, Ms RESHMA J, “A Comparative Study

of Sorting and Searching Algorithms” India, 2018.

[18] Kazim Ali, " A Comparative Study of Well-Known

Sorting Algorithms", Lahore Leads University,

Pakistan, 2017.

[19] Reyha Verma and Jasbir Singh, " A Comparative

Analysis of Deterministic Sorting Algorithms based on

Runtime and Count of Various Operations ",

International Journal of Advanced Computer Research,

V olume-5 Issue-21 December-2015.

[20] W. Min, “Analysis on Bubble Sort Algorithm

Optimization”, in International Forum on Information

Technology and Applications, Kunming, China, 2010.

Paper ID: SR23807001651 DOI: 10.21275/SR23807001651 885

