
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Analysing Efficiency and Time Complexity of AVL

Tree Re-balancing during Value Insertion

Himansh Chitkara

Singapore International School, Mumbai, Maharashtra, India

Research Question: Modelling the efficiency of an AVL (Adelson-Velskii and Landis) Tree in re-balancing itself in terms of

time complexity whilst inserting values into it.

Abstract: This research paper experimentally models the efficiency of an AVL (Adelson-Velskii and Landis) Tree in re-balancing itself

during the insertion of values, focusing on its time complexity. The study demonstrates a logarithmic relationship between the time

required for insertion and re-balancing operations in the AVL Tree. Through empirical analysis, the paper provides valuable insights

into the performance characteristics of AVL Trees and their suitability for handling large data sets. The findings highlight the

effectiveness of AVL Trees in maintaining balance and optimizing insertion operations, contributing to the understanding of efficient

data structures.

Keywords: Binary Tree, AVL Tree, Efficiency, Time Complexity, Re-balancing, Insertion Operations, Node, Balancing Algorithms

1. Introduction

Binary search trees are a fundamental data structure widely

used in various applications due to their efficient

organization and retrieval of data. This research paper

focuses on the structure of binary search trees, specifically

exploring one important type: the Adelson-Velskii. These

type of trees are known for their ability to maintain balance,

ensuring optimal performance for insertion operations.

Through the course of this paper, the time complexity of

both trees will be compared whilst inserting values into them

in order to collect data to compare their re-balancing

efficiencies.

The research question guiding this investigation is:

Modelling the efficiency of an AVL (Adelson-Velskii and

Landis) Tree in re-balancing itself in terms of time

complexity whilst inserting values into it. By addressing this

question, we aim to provide valuable insights into the

performance characteristics of these tree structures, aiding in

the understanding and selection of appropriate data

structures for specific applications.

In the following sections, we will delve into the concepts of

AVL Trees, exploring their respective properties,

mechanisms for maintaining balance, and analysing their

time complexity for insertion operations.

2. Background Information

2.1 Binary Search Trees and Time Complexities

Binary Search Trees

A binary search tree (BST) is a data structure organized in a

manner such that it allows for data to be found in the

quickest way possible. It is crucial to understand this

concept as it is the basis of the algorithm in question.

The word binary means “made up of two parts” (Definition

of BINARY, 2023). In the case of binary trees, it means that

each item in a tree can point to a maximum of two other

items: these items are known as children. All of these items

are collectively known as nodes and each of these nodes

contain a value inside of them. A BST is a special type of

this tree that inserts nodes in a manner that makes it possible

to efficiently search, insert, and delete each node of the tree

(Introduction to Binary Search Tree - Data Structure and

Algorithm Tutorials - GeeksforGeeks, 2020).

Figure 1: Binary Tree

As shown above, Figure 1 depicts a binary tree with several

different nodes. Before moving forward, it is important to

understand a few rules relating to the insertion of nodes into

a BST. They have been listed below.

1) If the binary tree is empty, i.e. it contains no nodes

inside of it, the first node to be created inside of it will

be known as the root node. This can be easily identified

by finding the node at the top of the binary tree. For

instance, in Figure 1, the node containing the value 8 is

the root node.

2) Values to left of the root node must are part of the left

subtree and will always contain values lesser than the

root node. Contrarily, values to the right of the root

node are part of the right subtree and will always

contain values greater than the parent node itself.

3) A node can have 0, 1, or 2 children. The left child of

any node will always contain a value lesser than that of

the parent node itself. On the other hand, the right child

of any node will contain a value greater than that of the

parent node itself.

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1078

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4) For the purposes of this investigation, duplicate values

cannot be entered into a binary tree as it will change the

handling algorithms and may require different binary

search algorithms compared to those mentioned in the

research question (Binary Search Tree: Insertion |

PrepInsta, n.d.).

Once a BST has been successfully created, it is possible for

us to begin the “Search” process inside of it using the data

structure to our advantage. In data structures, searching is a

key process which allows for certain values to be found

inside the data structure.

Time Complexities

In the field of Computer Science, time complexity is a term

referring to the time it takes for a particular algorithm to

successfully execute (Understanding Time Complexity With

Simple Examples - GeeksforGeeks, 2017). Although there

are many ways in which the time complexity of an algorithm

can be represented, this essay will focus on the worst-case

time complexity represented through the Big-O Notation in

order to highlight the longest possible time it can take for an

algorithm to execute (Big O Notation in Data Structure: An

Introduction, Simplilearn, 2022).

Relating the above paragraph to BST, we find that a BST

can provide us with a significant time advantage when

dealing with large amounts of data through their search

method as compared to linear searches which are executed

in structures such as unordered arrays. This is because the

Big-O Notation for an array is O(N) (Linear Search Vs

Binary Search: Difference Between Linear Search & Binary

Search | upGrad Blog, n.d.) where N refers to the number of

elements present inside the array whereas it is O(log2N)

(Bartakke, 2019) for a BST where N is the number of nodes

in the data structure. When graphed, an obvious difference

between the worst-case scenarios of each data structure is

visible.

Figure 2: Worst-Case Scenarios for Linear Search in an

Array (Green) and using a BST (Red)

As is clearly visible in Figure 2 above, as the size of the data

structure increases, it is more beneficial to use a BST rather

than a data structure such as an array to find an element as it

requires a fewer number of searches implying that it would

clearly take lesser time. However, this diagram assumes that

the binary tree has been organized properly and is balanced.

However, if we consider an unbalanced binary tree as shown

in Figure 3 below, its worst-case time complexity would not

be O(log2N), rather it would be O(N).

Figure 3: An unbalanced binary tree

It is crucial to understand the difference given in the above

paragraph as it contains the answer to the question – Why

are Binary Search Trees required? To avoid problems like

the aforementioned, balancing algorithms are required to

maintain the structure of the BST and ensure that the tree is

created in the most optimal manner possible to reduce search

times. This is also the function of the algorithm in question

in this research paper, the AVL tree.

2.2 AVL (Adelson-Velskii and Landis) Trees:

AVL Trees are a type of BST that apply a special property

called the height-balance property within themselves in

order to balance the binary tree (AVL Trees Height-Balance

Property, 2015). The height-balance property states that for

the tree to be considered as a balanced tree, the height

difference between the children of a particular node cannot

be more than 1. Otherwise, the tree is considered to be

unbalanced.

To explain the above property further, the term height inside

an AVL tree refers to the length of the longest path from the

tree’s root to one of its leaves (Gautam, 2022). Please note

that a leaf in a binary tree is a node that has no children.

Figure 4: A balanced AVL tree.

In the diagram above, the height of the left subtree is 2

whereas the length of the right subtree is 3. As the difference

between these two values is 1, the binary tree has been

successfully balanced as it is meeting the condition which

has been specified in paragraph 1. Although this may not

seem like the best way to balance the tree, it is balanced well

enough for a search algorithm to take place.

In a scenario where the AVL tree is not balanced, i.e., the

height difference property is not met, a process called

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1079

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

rotation takes place inside the binary tree. Let us consider

figure 4 below:

Figure 5: An unbalanced AVL Tree

First, let us understand why this AVL tree is unbalanced. As

the height-difference between the right and left subtrees is 2,

the height-balance property is not met leading to an

imbalance. Hence, this AVL tree must be rearranged.

Although it is beyond the scope of this research paper to

explain how this principle works in the programs attached in

Appendices: 1,2,3, it can be explained in theory.

From figure 5, we can clearly see that the right subtree has

too many nodes inside it leading to an imbalance of the tree.

Hence, to correct this imbalance, a rearrangement process

known as Rotation takes place inside the AVL Tree (AVL

Tree Data Structure - GeeksforGeeks, 2023). In simple

terms, rotation is a process where nodes from the subtree

with the greater height are picked and shifted to the subtree

with a lesser height. Eventually, this shall balance the tree

and it will allow us to run Search algorithms with utmost

efficiency.

To do this, we must follow 3 steps:

1) Find out which side of the tree is unbalanced and locate

the node closest to the root, i.e., the insertion point of

the tree. Let’s call this A.

2) Of A’s two subtrees, locate the subtree with the greater

height. Let us call the root of this subtree B.

3) Finally, locate B’s two subtrees and select the one with

the greater height. Label it C.

This can be seen in figure 6 below.

Figure 6

Now, if you observe carefully, all 3 nodes which we have

marked are in a linear sequence inside the tree. As we have

seen in figure 2 earlier, a linear sequence will increase the

search time required inside the binary tree. Hence to break

this sequence apart, we rearrange the nodes into the pattern

shown in Figure 7.

Figure 7: Rearranging the nodes

The final step is finding what a, b, c corresponds to. Ideally,

a is the smallest value, b is the middle value and c is the

largest. Hence considering our example above, a will

correspond to Node B (contains 50), b will correspond to

Node C (contains 62), c will correspond to Node A (contains

72). Now, as all of these nodes have their subtrees, once they

have been rotated, they will be reconnected to their subtrees

to form an ordered tree with reduced height. The same is

shown in Figure 8 below.

Figure 8: Ordered right sub-tree

3. Hypothesis and Methodology

Based on the theory in Section 2, the principle behind the

working of the AVL tree algorithm has been explored in

detail. Now, to model the relationship between the dataset

size and the time it will take for the algorithm to run, we

must remember that the AVL Tree has a theoretical worst-

case efficiency of 𝑂 (log2𝑁). Although this doesn’t take into

account the insertion of values into the tree and rebalancing,

which is being done in this experiment, as modern

computers are extremely fast this shouldn’t impact results

vastly.

Hence, it can be predicted that the logarithmic relationship

seen in Figure 2 of this essay will be seen in the results of

this experiment too.

To carry out this experiment, the independent variable will

be the size of the dataset and the dependent variable will be

the time take to insert and re-balance the tree. Datasets will

contain consecutive integers from 1 to N, where N is the size

of the dataset incremented in 100s. The time will be

measured in nanoseconds through the program in order to

obtain the most precise reading possible.

4. Results, Graphs, and Analysis

As per the methodology above, the experiment has been

conducted for multiple data set sizes and each reading has

been collected and averaged over 10 times to obtain a

reliable result.

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1080

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 9: Result Readings

Figure 10: Graph of Results table in Figure 9. Y-axis is average time in nanoseconds X-axis is the size of the dataset.

(Please note these readings have been collected on a MacBook Air M1 2020 and can vary depending on the computer’s

performance)

Based on the graph obtained above (drawn using Excel), we

clearly see that there is a logarithmic relationship between

the average time taken for insertion and the size of the

dataset. This confirms my hypothesis in section 3.

I have also inputted these values into my GDC (Graphic

Display Calculator) to find the relationship between the two

values. The model in nanoseconds, expressed as a natural

logarithm, is below:

𝑦 = −1.845 × 106 + 510324.733𝑙𝑛𝑥

However, I would like to point out that the dataset of size

400 stands out as it doesn’t fall within the expected trend of

points. This could be due to recursion being used in the

program obtained which can occasionally impact readings

and lead to shorter times in a few cases. Furthermore, the

model depicts the y-intercept as -0.001845 seconds which

suggests there is a small error in the experiment readings as

the time obtained can never be negative; however, as this is

extremely minute, it can be ignored and the results can be

considered largely accurate.

5. Conclusion

In conclusion, the experiment conducted in this research

paper successfully achieved its objective of developing a

model for inserting values into an AVL tree based on the

theoretical foundation presented in Section 2. As observed in

Section 4, the obtained results demonstrated a consistent and

anticipated logarithmic relationship between the time

required for insertion and re-balancing operations in AVL

trees. Thus, it can be confidently concluded that this

research paper effectively models the relationship between

these variables, effectively fulfilling its intended purpose.

However, it is important to recognize the potential for

further exploration and advancement of this experiment.

Building upon the methodology employed in this study, it is

feasible to create similar models for other binary search tree

(BST) algorithms and conduct a comparative analysis of

their efficiency in value insertion and re-balancing

procedures. Such an investigation would be invaluable in

determining the most optimal algorithm, thereby reducing

processing time and enhancing performance in the industrial

realm. Expanding the scope of this research to encompass a

range of BST algorithms, such as the Red-Black Tree, Splay

Tree, and B-Tree, would facilitate a more comprehensive

evaluation of their insertion and re-balancing efficiency.

Employing a consistent experimental approach as

demonstrated in this paper, one could examine the time

complexity associated with insertion operations and assess

the effectiveness of re-balancing mechanisms employed by

each algorithm.

Overall, I believe this research paper has significantly

improved my understanding of binary trees and has provided

me with a fantastic learning opportunity.

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1081

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] AVL Trees Height-Balance Property. (2015,

September 14). Computer Science Stack

Exchange.https://cs.stackexchange.com/questions/4717

5/avl-trees-height-balance-property

[2] Big O Notation in Data Structure: An Introduction |

Simplilearn. (2022, September 1).

Simplilearn.com.https://www.simplilearn.com/big-o-

notation-in-data-structure-article

[3] Binary Search Tree: Insertion | PrepInsta. (n.d.).

PREP INSTA.https://prepinsta.com/data-

structures/binary-search-tree-insertion/

[4] Binary Search Trees. (n.d.). Binary Search

Trees.https://www.eecs.umich.edu/courses/eecs380/A

LG/niemann/s_bin.htm

[5] Definition of BINARY. (2023, July 28). Binary

Definition & Meaning - Merriam-

Webster.https://www.merriam-

webster.com/dictionary/binary

[6] Gautam, S. (n.d.). Find Height or Maximum Depth of a

Binary Tree. Height (Maximum Depth) of a Binary

Tree.https://www.enjoyalgorithms.com/blog/find-

height-of-a-binary-tree

[7] Introduction to Binary Search Tree - Data Structure

and Algorithm Tutorials - GeeksforGeeks. (2020,

September 30). GeeksforGeeks.

https://www.geeksforgeeks.org/introduction-to-binary-

search-tree-data-structure-and-algorithm-tutorials/

[8] Linear Search vs Binary Search: Difference Between

Linear Search & Binary Search | upGrad blog. (n.d.).

upGrad Blog. https://www.upgrad.com/blog/linear-

search-vs-binary-search/

[9] P. (n.d.). AVL Tree Data Structure. AVL

Tree.https://www.enjoyalgorithms.com/blog/avl-tree-

data-structure

Appendices:

Appendix 1: AvlTree.java
// AvlTree class

//

// CONSTRUCTION: with no initializer

//

// ******************PUBLIC OPERATIONS*********************

// void insert(x) --> Insert x

// void remove(x) --> Remove x (unimplemented)

// boolean contains(x) --> Return true if x is present

// boolean remove(x) --> Return true if x was present

// Comparable findMin() --> Return smallest item

// Comparable findMax() --> Return largest item

// booleanisEmpty() --> Return true if empty; else false

// void makeEmpty() --> Remove all items

// void printTree() --> Print tree in sorted order

// ******************ERRORS********************************

// Throws UnderflowException as appropriate

/**

 * Implements an AVL tree.

 * Note that all "matching" is based on the compareTo method.

 * @author Mark Allen Weiss

 */

public class AvlTree<AnyType extends Comparable<? super AnyType>>

{

 /**

 * Construct the tree.

 */

 public AvlTree()

 {

 root = null;

 }

 /**

 * Insert into the tree; duplicates are ignored.

 * @param x the item to insert.

 */

 public void insert(AnyType x)

 {

 root = insert(x, root);

 }

 /**

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1082

https://cs.stackexchange.com/questions/47175/avl-trees-height-balance-property
https://cs.stackexchange.com/questions/47175/avl-trees-height-balance-property
https://cs.stackexchange.com/questions/47175/avl-trees-height-balance-property
https://www.simplilearn.com/big-o-notation-in-data-structure-article
https://www.simplilearn.com/big-o-notation-in-data-structure-article
https://prepinsta.com/data-structures/binary-search-tree-insertion/
https://prepinsta.com/data-structures/binary-search-tree-insertion/
https://www.eecs.umich.edu/courses/eecs380/ALG/niemann/s_bin.htm
https://www.eecs.umich.edu/courses/eecs380/ALG/niemann/s_bin.htm
https://www.merriam-webster.com/dictionary/binary
https://www.merriam-webster.com/dictionary/binary
https://www.enjoyalgorithms.com/blog/find-height-of-a-binary-tree
https://www.enjoyalgorithms.com/blog/find-height-of-a-binary-tree
https://www.geeksforgeeks.org/introduction-to-binary-search-tree-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-binary-search-tree-data-structure-and-algorithm-tutorials/
https://www.upgrad.com/blog/linear-search-vs-binary-search/
https://www.upgrad.com/blog/linear-search-vs-binary-search/
https://www.enjoyalgorithms.com/blog/avl-tree-data-structure
https://www.enjoyalgorithms.com/blog/avl-tree-data-structure

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 * Remove from the tree. Nothing is done if x is not found.

 * @param x the item to remove.

 */

 public void remove(AnyType x)

 {

 root = remove(x, root);

 }

 /**

 * Internal method to remove from a subtree.

 * @param x the item to remove.

 * @param t the node that roots the subtree.

 * @return the new root of the subtree.

 */

 private AvlNode<AnyType> remove(AnyType x, AvlNode<AnyType> t)

 {

 if(t == null)

 return t; // Item not found; do nothing

 int compareResult = x.compareTo(t.element);

 if(compareResult< 0)

t.left = remove(x, t.left);

 else if(compareResult> 0)

t.right = remove(x, t.right);

 else if(t.left != null &&t.right != null) // Two children

 {

t.element = findMin(t.right).element;

t.right = remove(t.element, t.right);

 }

 else

 t = (t.left != null) ? t.left : t.right;

 return balance(t);

 }

 /**

 * Find the smallest item in the tree.

 * @return smallest item or null if empty.

 */

 public AnyTypefindMin()

 {

 if(isEmpty())

 throw new UnderflowException();

 return findMin(root).element;

 }

 /**

 * Find the largest item in the tree.

 * @return the largest item of null if empty.

 */

 public AnyTypefindMax()

 {

 if(isEmpty())

 throw new UnderflowException();

 return findMax(root).element;

 }

 /**

 * Find an item in the tree.

 * @param x the item to search for.

 * @return true if x is found.

 */

 public boolean contains(AnyType x)

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1083

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 {

 return contains(x, root);

 }

 /**

 * Make the tree logically empty.

 */

 public void makeEmpty()

 {

 root = null;

 }

 /**

 * Test if the tree is logically empty.

 * @return true if empty, false otherwise.

 */

 public booleanisEmpty()

 {

 return root == null;

 }

 /**

 * Print the tree contents in sorted order.

 */

 public void printTree()

 {

 if(isEmpty())

System.out.println("Empty tree");

 else

printTree(root);

 }

 private static final int ALLOWED_IMBALANCE = 1;

 // Assume t is either balanced or within one of being balanced

 private AvlNode<AnyType> balance(AvlNode<AnyType> t)

 {

 if(t == null)

 return t;

 if(height(t.left) - height(t.right) > ALLOWED_IMBALANCE)

 if(height(t.left.left) >= height(t.left.right))

 t = rotateWithLeftChild(t);

 else

 t = doubleWithLeftChild(t);

 else

 if(height(t.right) - height(t.left) > ALLOWED_IMBALANCE)

 if(height(t.right.right) >= height(t.right.left))

 t = rotateWithRightChild(t);

 else

 t = doubleWithRightChild(t);

t.height = Math.max(height(t.left), height(t.right)) + 1;

 return t;

 }

 public void checkBalance()

 {

checkBalance(root);

 }

 private int checkBalance(AvlNode<AnyType> t)

 {

 if(t == null)

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1084

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 return -1;

 if(t != null)

 {

 int hl = checkBalance(t.left);

 int hr = checkBalance(t.right);

 if(Math.abs(height(t.left) - height(t.right)) > 1 ||

 height(t.left) != hl || height(t.right) != hr)

System.out.println("OOPS!!");

 }

 return height(t);

 }

 /**

 * Internal method to insert into a subtree.

 * @param x the item to insert.

 * @param t the node that roots the subtree.

 * @return the new root of the subtree.

 */

 private AvlNode<AnyType> insert(AnyType x, AvlNode<AnyType> t)

 {

 if(t == null)

 return new AvlNode<>(x, null, null);

 int compareResult = x.compareTo(t.element);

 if(compareResult< 0)

t.left = insert(x, t.left);

 else if(compareResult> 0)

t.right = insert(x, t.right);

 else

 ; // Duplicate; do nothing

 return balance(t);

 }

 /**

 * Internal method to find the smallest item in a subtree.

 * @param t the node that roots the tree.

 * @return node containing the smallest item.

 */

 private AvlNode<AnyType>findMin(AvlNode<AnyType> t)

 {

 if(t == null)

 return t;

 while(t.left != null)

 t = t.left;

 return t;

 }

 /**

 * Internal method to find the largest item in a subtree.

 * @param t the node that roots the tree.

 * @return node containing the largest item.

 */

 private AvlNode<AnyType>findMax(AvlNode<AnyType> t)

 {

 if(t == null)

 return t;

 while(t.right != null)

 t = t.right;

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1085

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 return t;

 }

 /**

 * Internal method to find an item in a subtree.

 * @param x is item to search for.

 * @param t the node that roots the tree.

 * @return true if x is found in subtree.

 */

 private boolean contains(AnyType x, AvlNode<AnyType> t)

 {

 while(t != null)

 {

 int compareResult = x.compareTo(t.element);

 if(compareResult< 0)

 t = t.left;

 else if(compareResult> 0)

 t = t.right;

 else

 return true; // Match

 }

 return false; // No match

 }

 /**

 * Internal method to print a subtree in sorted order.

 * @param t the node that roots the tree.

 */

 private void printTree(AvlNode<AnyType> t)

 {

 if(t != null)

 {

printTree(t.left);

System.out.println(t.element);

printTree(t.right);

 }

 }

 /**

 * Return the height of node t, or -1, if null.

 */

 private int height(AvlNode<AnyType> t)

 {

 return t == null ? -1 : t.height;

 }

 /**

 * Rotate binary tree node with left child.

 * For AVL trees, this is a single rotation for case 1.

 * Update heights, then return new root.

 */

 private AvlNode<AnyType>rotateWithLeftChild(AvlNode<AnyType> k2)

 {

AvlNode<AnyType> k1 = k2.left;

 k2.left = k1.right;

 k1.right = k2;

 k2.height = Math.max(height(k2.left), height(k2.right)) + 1;

 k1.height = Math.max(height(k1.left), k2.height) + 1;

 return k1;

 }

 /**

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1086

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 * Rotate binary tree node with right child.

 * For AVL trees, this is a single rotation for case 4.

 * Update heights, then return new root.

 */

 private AvlNode<AnyType>rotateWithRightChild(AvlNode<AnyType> k1)

 {

AvlNode<AnyType> k2 = k1.right;

 k1.right = k2.left;

 k2.left = k1;

 k1.height = Math.max(height(k1.left), height(k1.right)) + 1;

 k2.height = Math.max(height(k2.right), k1.height) + 1;

 return k2;

 }

 /**

 * Double rotate binary tree node: first left child

 * with its right child; then node k3 with new left child.

 * For AVL trees, this is a double rotation for case 2.

 * Update heights, then return new root.

 */

 private AvlNode<AnyType>doubleWithLeftChild(AvlNode<AnyType> k3)

 {

 k3.left = rotateWithRightChild(k3.left);

 return rotateWithLeftChild(k3);

 }

 /**

 * Double rotate binary tree node: first right child

 * with its left child; then node k1 with new right child.

 * For AVL trees, this is a double rotation for case 3.

 * Update heights, then return new root.

 */

 private AvlNode<AnyType>doubleWithRightChild(AvlNode<AnyType> k1)

 {

 k1.right = rotateWithLeftChild(k1.right);

 return rotateWithRightChild(k1);

 }

 private static class AvlNode<AnyType>

 {

 // Constructors

AvlNode(AnyTypetheElement)

 {

 this(theElement, null, null);

 }

AvlNode(AnyTypetheElement, AvlNode<AnyType>lt, AvlNode<AnyType> rt)

 {

 element = theElement;

 left = lt;

 right = rt;

 height = 0;

 }

AnyType element; // The data in the node

AvlNode<AnyType> left; // Left child

AvlNode<AnyType> right; // Right child

 int height; // Height

 }

 /** The tree root. */

 private AvlNode<AnyType> root;

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1087

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 // Test program

 public static void main(String [] args)

 {

AvlTree<Integer> t = new AvlTree<>();

 final int SMALL = 40;

 final int NUMS = 1000000; // must be even

 final int GAP = 37;

System.out.println("Checking... (no more output means success)");

 for(int i = GAP; i != 0; i = (i + GAP) % NUMS)

 {

 // System.out.println("INSERT: " + i);

t.insert(i);

 if(NUMS < SMALL)

t.checkBalance();

 }

 for(int i = 1; i < NUMS; i+= 2)

 {

 // System.out.println("REMOVE: " + i);

t.remove(i);

 if(NUMS < SMALL)

t.checkBalance();

 }

 if(NUMS < SMALL)

t.printTree();

 if(t.findMin() != 2 || t.findMax() != NUMS - 2)

System.out.println("FindMin or FindMax error!");

 for(int i = 2; i < NUMS; i+=2)

 if(!t.contains(i))

System.out.println("Find error1!");

 for(int i = 1; i < NUMS; i+=2)

 {

 if(t.contains(i))

System.out.println("Find error2!");

 }

 }

}

Appendix 2: AvlNode.java
 package DataStructures;

 // Basic node stored in AVL trees

 // Note that this class is not accessible outside

 // of package DataStructures

 class AvlNode

 {

 // Constructors

AvlNode(Comparable theElement)

 {

 this(theElement, null, null);

 }

AvlNode(Comparable theElement, AvlNodelt, AvlNode rt)

 {

 element = theElement;

 left = lt;

 right = rt;

 height = 0;

 }

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1088

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 8, August 2023

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 // Friendly data; accessible by other package routines

 Comparable element; // The data in the node

AvlNode left; // Left child

AvlNode right; // Right child

 int height; // Height

 }

Appendix 3: Program used to conduct the experiment

Paper ID: SR23808235947 DOI: 10.21275/SR23808235947 1089

