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Abstract: Urban Sound Classification is an important but challenging problem. In this paper, we present a new deep convolutional 

neural network for classification tasks that combines MFCC with Mel spectrogram. In comparison to using a single feature, this feature 

combination can make the features richer. The network suggested extracts and derives high-level features using three convolutional 

blocks, each of which is made up of two convolutional layers and a pooling layer. We apply a filter with a limited receptive field in each 

convolutional layer to preserve the network's depth and lower the number of parameters. On ESC-50 and UrbanSound8K, where our 

technique was tested, classification accuracy was 45.60% and 91.0%, respectively. The experimental results show that the proposed 

method is suitable for Urban Sound classification 
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1. Introduction 
 

This research project focuses on the application of 

convolutional neural networks (CNNs) and deep neural 

networks (DNNs) to investigate the classification of urban 

sounds. The primary dataset employed in this study is the 

UrbanSound8K dataset, a comprehensive collection of audio 

samples commonly encountered in urban settings. To 

facilitate comparative analysis and further bolster the 

research, the ESC-50 dataset has also been incorporated. 

 

Traditional approaches for the Urban Sound Classification 

(USC) task have historically depended on manually crafted 

features, which are subsequently utilized by conventional 

classifiers like K-Nearest Neighbors (KNN) or Support 

Vector Machines (SVM) [1]. Nonetheless, these methods 

often fall short of our performance expectations, primarily 

because traditional classifiers are unable to perform 

additional feature extraction [2].  

 

In contrast, Convolutional Neural Networks (CNNs) have 

emerged as a game-changing technology in numerous 

pattern recognition tasks, including but not limited to the 

classification of traffic signs, pedestrian detection, and facial 

recognition. 

 

CNNs have traditionally found their primary application in 

the realm of visual recognition. However, their versatility 

has been notably demonstrated through their successful 

application in diverse domains, including speech [4], [5], 

music analysis [6], and the recognition and classification of 

everyday sounds [7], [8], [9]. In particular, within the field 

of sound detection and classification, there has been a 

growing trend in designing CNN-based methodologies, 

which have consistently delivered state-of-the-art 

performance. As an illustration, numerous CNN-based 

approaches have exhibited strong performance in sound 

classification and detection tasks within the DCASE 

(Detection and Classification of Acoustic Scenes and 

Events) community competition. You can readily access 

these valuable resources online for further reference. 

 

Upon scrutinizing these highly effective approaches, we 

discern that the development of a CNN-based method for the 

Urban Sound Classification (USC) task can be dissected into 

two pivotal facets: the design of the network architecture 

and the selection of input features. It's worth noting that 

while data augmentation techniques often yield marginal 

enhancements in the ultimate performance, we have opted 

not to employ this strategy in our methodology. This 

decision is grounded in the recognition that data 

augmentation can potentially alter the original distribution 

space of the data.  

 

Therefore, in this research paper, we introduce a novel deep 

CNN-based method tailored for the USC task. In this 

method, we leverage a fusion of MFCC (Mel-Frequency 

Cepstral Coefficients) and Mel spectrogram data as the input 

features for the CNN model. 

 

2. Existing Work 
 

In this paper [11], the research that employs a deep CNN 

architecture inspired by VGG for the Environmental Sound 

Classification (ESC) task has been examined. This approach 

utilizes concatenated spectrograms as input features and has 

demonstrated superior classification performance when 

compared to methods relying on LMS (Log-Mel 

Spectrogram) and LGS (Log-Gabor Spectrogram) features, 

particularly on both the ESC-50 and UrbanSound8K 

datasets. 

 

3. Evaluation Metric 
 

The "Classification Accuracy" evaluation metric, which is 

defined as the proportion of accurate predictions, will be 

used for this project. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100 

 

Number of correct predictions is the number of instances 

that the model classified properly. Total number of 

predictions is the overall number of instances for which the 

model provided predictions. 

 

Due to the presumption that the dataset will have a balanced 

distribution (as further detailed in the following section), 

classification accuracy was chosen as the best statistic.  

 

3.1. Audio Data Overview and Analysis 

 

The field of sound classification and analysis frequently 

makes use of the "UrbanSound8K" dataset, which is a large 

collection of audio recordings.8732 tagged sounds are 

present in the data, divided into 10 different classes, 

including: 

 Siren 

 Street Music 

 Drilling 

 Engine Idling 

 Air Conditioner 

 Car Horn 

 Dog Bark 

 Jackhammer 

 Drilling 

 Gun Shot 

 

All audio samples are in the.wav file type and are taken at 

regular intervals at the common sampling rate of 44.1 kHz, 

or 44,100 samples per second. 

 

 
Figure 1: Waveform representing dog bark 

 

4. Methodology 
 

4.1. Algorithm 

 

Our proposed solution to address this problem leverages the 

remarkable success of Deep Learning techniques, 

particularly in the realm of image classification. 

 

To initiate the process, we commence by extracting Mel 

Frequency Cepstral Coefficients (MFCCs) and Mel 

Spectogram from the audio samples. These coefficients 

encapsulate the relationship between perceived audio 

frequencies and their actual measured values, enabling us to 

analyze both temporal and frequency characteristics within 

the samples. These representations provide us with the 

necessary discriminative features essential for classification. 

 

Convolutional Neural Networks (CNNs), a neural network 

architecture that builds upon the foundations of Multi-Layer 

Perceptron with notable modifications, constitute a pivotal 

component of our methodology. In CNNs, the dimensions—

height, width, and depth—are structured into layers, and 

connections between nodes in one layer are not established 

with all nodes in the subsequent layer. The architecture of 

CNNs facilitates a two-fold process:  

 

Firstly, the feature extraction phase, in which a filter 

window traverses the input data, accumulating convolutions 

at each location, and the feature map stores these extracted 

features from each window. Intermediate pooling layers are 

interspersed within the CNN architecture. Typically, the 

maximum value within each window is retained during 

pooling, preserving essential data while reducing the feature 

map's dimensions. Pooling plays a pivotal role as it reduces 

network dimensionality, mitigating the risk of overfitting 

and expediting training.  

 

Subsequently, we transition to the classification phase. After 

this process, the 3-D data representation within the interface 

is flattened and transformed into a 1-D vector. 

 

The choice of CNNs is motivated by their inherent 

capabilities in feature extraction and classification, making 

them well-suited for tasks like image classification. This 

combination of robust feature extraction and classification 

capabilities positions CNNs as superior classifiers for our 

purpose.  

 

4.2. Data Preprocessing and Splitting 

 

Figure 2 illustrates a log-scaled mel spectrogram that was 

generated from an audio sample within the dataset. To 

process the data uniformly, we employed Mel-frequency 

cepstral coefficients (MFCC), which involve applying a 

linear cosine transform to the log power spectrum, all within 

a nonlinear mel scale of frequency. Essentially, this 

preprocessing step transformed the audio files into 

spectrograms, representing audio signals as images. 

 

 

 
Figure 2. Log scaled Mel Spectogram 

 

However, this translation necessitated the use of various 

parameters such as Fourier-Transform, Hop-length, and 

Melcoefficients. It's important to note that while this 

transformation to an image enriches the feature set, it does 

come at the cost of reducing some information inherent in 

the original audio files. Specifically, the choice of 

parameters affects the log-frequency (y-axis) and time 

domain (x-axis) representation. 
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To convert audio files into these log spectrograms, we 

employed the Python library librosa. Our data processing 

workflow began with the loading of a comma-separated 

(.csv) file containing the titles of the audio files along with 

their corresponding labels. We defined a function to iterate 

through each row of this data frame, extracting the features 

by reading the file paths. 

 

The result was an array consisting of 193 features, each 

paired with its respective label. This array served as the 

basis for defining our training, validation, and testing 

datasets.  

 

Following this, we performed dataset scaling and selected 

6985 samples for our training dataset, while allocating 1747 

samples each for our validation and testing datasets. This 

meticulous preparation laid the foundation for our 

subsequent model training and evaluation efforts. 

 

4.3. Model Implementation 

 

The model is using Keras for audio classification task. This 

model architecture follows the VGG pattern of stacking 

multiple convolutional and max-pooling layers, followed by 

dense (fully connected) layers for classification. 

 

It consist of three pairs of convolutional layers, each with a 

rectified linear unit (ReLU) activation function. 

 

𝑓𝑅𝑒𝐿𝑢 𝑥 = max 0, 𝑥  

 

These layers are responsible for extracting features from the 

input data. The number 64, 128, and 256 represents the 

number of filters (also known as kernels) in each layer. The 

(3, 3) specifies the size of the convolutional kernels, and 

padding='same' ensures that the spatial dimensions of the 

output feature maps remain the same as the input. 

 

After each pair of convolutional layers, max-pooling layer is 

added with a (2, 2) pool size. Max-pooling helps reduce the 

spatial dimensions of the feature maps, which can help in 

reducing computational complexity and over fitting. 

Following the convolutional and max-pooling layers, a 

Flatten layer is included. This layer reshapes the 2D feature 

maps into a 1D vector, which can be fed into the dense 

layers for classification. 

 

Finally two dense layers with 512 units each and ReLU 

activation functions are added. These layers are responsible 

for high-level feature aggregation and making final 

classification decisions. 

 

The final dense layer has a number of units equal to the 

number of classes (num_classes) in your classification task. 

It uses a softmax activation function to produce class 

probabilities. The following is the model summary 

 
Model: "sequential" 

____________________________________ 

Layer       Output Shape Param #    

======================================== 

conv2d      (None, 224, 224, 64)      1792       

conv2d_1    (None, 224, 224, 64)      36928       

max_pool2d  (None, 112, 112, 64)         0          

conv2d_2    (None, 112, 112, 128)   73856      

conv2d_3        (None, 112, 112, 128) 147584     

max_poo2d_12D)  (None, 56, 56, 128)      0          

conv2d_4        (None, 56, 56, 256)  295168     

conv2d_5        (None, 56, 56, 256)  590080     

conv2d_6        (None, 56, 56, 256)  590080     

max_pool2d_22D) (None, 28, 28, 256)      0          

flatten         (None, 200704)           0 

dense           (None, 512)       102760960  

dropout         (None, 512)              0          

dense_1         (None, 512)         262656     

dropout_1       (None, 512)            0          

dense_2         (None, 10)           5130       

======================================== 

Total params: 104,764,234 

Trainable params: 104,764,234 

Non-trainable params: 0 

____________________________________ 

 

4.4. Training and Testing 

 

We conducted training over approximately 30 epochs, with 

an epoch step size of 64, and each epoch consisted of 219 

validation steps per batch. Our test dataset comprises 1747 

audio samples, which encompass a diverse and random 

distribution of various sounds. 

 

4.5. Results 

 

We have compared our approach with recent related studies 

to provide a more comprehensive evaluation of our method's 

performance. The results from these comparisons are 

presented in the table. Notably, our method achieves the 

highest performance, scoring 91.06%, on the Urban Sound 

8k dataset. This represents a substantial 18.36% 

improvement over Piczak's method and a 10.76% 

improvement compared to the baseline method.The plot of 

training and validation accuracy is shown in figure 3. And 

model summary in figure 4 

 
Figure 3: Model Accuracy 

 
Figure 4: Model Summary 
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Table 1: Classification accuracy between different methods 

Methods ESC-50 Urban Sound 8K 

Piczak 64.9 [3] 72.7 

D-CNN 68.1 [10] 81.9 

Zhang 76.8 [2] 74.7 

Baseline 83.8[11] 80.3 

Proposed 45.06 91.06 

 

While our method didn't outperform all others on the ESC-

50 dataset, these findings demonstrate that increasing the 

depth of the Convolutional Neural Network (CNN) and 

employing filters with smaller receptive fields can 

significantly enhance the network's recognition capabilities. 

 

5. Conclusions 
 

In our paper, we introduce a deep Convolutional Neural 

Network (CNN) architecture inspired by VGG, specifically 

designed for the Urban Sound Classification (USC) task. 

This architecture takes advantage of MFCC and mel 

spectrogram features as input, and it has achieved superior 

performance in classifying the UrbanSound8K dataset. 

 

Moreover, we conducted experiments where we evaluated 

our proposed CNN alongside a Deep Neural Network 

(DNN) on both datasets. The results clearly demonstrate that 

our VGG-inspired architecture not only exhibits better 

performance but also boasts a reduced number of parameters 

compared to the alternative models. Furthermore, our 

proposed approach showcases superior urban sound 

classification capabilities when contrasted with various 

recent CNN-based methods. 

 

References 
 

[1] C. Wang, J. Wang, A. Santoso, C. Chiang and C. Wu, 

“Sound Event Recognition Using Auditory-Receptive-

Field Binary Pattern and Hierarchical-Diving Deep 

Belief Network,” in IEEE/ACM Transactions on 

Audio, Speech, and Language Processing, vol. 26, no. 

8, pp. 1336-1351, Aug. 2018. 

[2] Z. Zhang, S. Xu, S. Cao, S. Zhang. “Deep 

convolutional neuralnetwork with mixup for 

environmental sound classification.” Chinese 

Conference on Pattern Recognition and Computer 

Vision (PRCV). Springer, Cham, 2018. 

[3] K. J. Piczak, “Environmental sound classification with 

convolutional neural networks,” 2015 IEEE 25th 

International Workshop on Machine Learning for 

Signal Processing (MLSP), Boston, MA, 2015,pp. 1-6. 

[4] T. N. Sainath, A. Mohamed, B. Kingsbury and B. 

Ramabhadran, “Deep convolutional neural networks 

for LVCSR,” 2013 IEEE International Conference on 

Acoustics, Speech and Signal Processing,Vancouver, 

BC, 2013, pp. 8614-8618. 

[5] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. 

Penn and D.Yu, “Convolutional Neural Networks for 

Speech Recognition,” in IEEE/ACM Transactions on 

Audio, Speech, and Language Processing, vol. 22, no. 

10, pp. 1533-1545, Oct. 2014. 

[6] Van den Oord, S. Dieleman, B. Schrauwen, “Deep 

content-based music recommendation,” Advances in 

Neural Information Processing Systems, 2013, pp. 

2643-2651. 

[7] J. Salamon and J. P. Bello, “Deep Convolutional 

Neural Networks and Data Augmentation for 

Environmental Sound Classification,” in IEEE Signal 

Processing Letters, vol. 24, no. 3, pp. 279-283, March 

2017. 

[8] McLoughlin, H. Zhang, Z. Xie, Y. Song and W. Xiao, 

“Robust Sound Event Classification Using Deep 

Neural Networks,” in IEEE/ACM Transactions on 

Audio, Speech, and Language Processing, vol. 23, no. 

3, pp. 540-552, March 2015. 

[9] X. Zhang, Y. Zou, and S. Wei, “Dilated convolution 

neural network with Leaky ReLU for environmental 

sound classification.” 2017 22
nd

 International 

Conference on Digital Signal Processing (DSP). IEEE, 

2017 

[10] Kopparapu, S. Kumar, and M. Laxminarayana. 

“Choice of Mel filterbank in computing MFCC of a 

resampled speech.” 10th International Conference on 

Information Science, Signal Processing and their 

Applications (ISSPA 2010). IEEE, 2010. 

[11] Zhejian Chi, Ying Li, Cheng Chen “Deep 

Convolutional Neural Network Combined with 

Concatenated Spectrogram for Environmental Sound 

Classification” In 2019 IEEE 7th International 

Conference on Computer Science and Network 

Technology 

Paper ID: SR23918200525 DOI: 10.21275/SR23918200525 1464 




