
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Optimizing Microservices Management: Integrating

Kong Service Mesh with Kubernetes on AWS Using

Infrastructure as Code

Abhiram Reddy Peddireddy

Email: abhiramreddy2848[at]gmail.com

Abstract: This paper delves into how Kong Service Mesh can be integrated with Kubernetes using Infrastructure, as Code (IaC) tools to

deploy on Amazon Web Services (AWS). The study aims to offer an examination of the deployment process, performance metrics and the

overall scalability and reliability of this combined setup. By conducting tests and performance evaluations important metrics like latency,

throughput, resource usage and fault tolerance were scrutinized. The findings indicate that combining Kubernetes with Kong Service Mesh

provides benefits such as performance improved security and effective management of microservices architectures. The paper also addresses

challenges faced during deployment, such as configuration intricacies and network latency issues along with proposed solutions to tackle

these obstacles. Practical advice and best practices are shared to assist professionals in deploying and managing Kong Service Mesh on

Kubernetes. Furthermore, the paper sheds light on areas, for enhancement and future research directions including exploring features

enhancing security measures and deploying in hybrid or multi cloud environments. This research provides insights, into managing

microservices highlighting the advantages and practicality of combining Kong Service Mesh with Kubernetes, for cloud based applications.

Keywords: Kubernetes, Kong Service Mesh, Infrastructure as Code, AWS, microservices, performance metrics, scalability, security,

deployment, cloud-native applications, Helm, Terraform, Prometheus, Grafana, monitoring, fault tolerance, resource utilization

1. Introduction

Kubernetes, a platform, for orchestrating containers that’s

source has transformed how applications are deployed, man-

aged and scaled in modern IT settings. It offers a framework

for automating the deployment, scaling and operation of

application containers across groups of hosts. Kubernetes

simplifies tasks related to managing containers. Ensures that

applications run smoothly as the environment expands [1].

On the hand Kong Service Mesh is an open source service

mesh that is built on top of the Kong Gateway. It presents

an robust solution for overseeing, securing and monitoring

microservices. Key features of Kong Service Mesh include

managing traffic discovering services, balancing loads and

implementing security measures. These characteristics make

it an appealing choice for organizations seeking to boost the

performance and security of their microservices architectures

[2].

Bringing together Kong Service Mesh with Kubernetes

combines the strengths of both technologies to offer a solution

for managing microservices in a native setting. This integration

taps into Kubernetes reliable orchestration capabilities along

with Kongs advanced service mesh features to provide a secure

and efficient infrastructure, for microservices [3].

This particular configuration enables companies to achieve

increased levels of flexibility, durability and visibility, in their

applications. The main objective of this document is to delve

into the advantages and obstacles associated with utilizing

Kubernetes for hosting Kong Service Mesh. It aims to present

an examination of the integration process assess the

performance and dependability of the combined system and

provide insights and recommended practices for successful

implementation. By scrutinizing real world scenarios and

experimental findings this document aims to contribute

knowledge to the realm of microservices management and

assist professionals, in deploying service mesh solutions on

Kubernetes.

a) Objectives

This goal is to examine the benefits of using Kubernetes as

the foundation, for Kong Service Mesh. By delving into how

Kubernetes strong orchestration capabilities complement

Kongs advanced service management features we aim to

showcase the improved scalability, security and operational

efficiency that come from this partnership. This goal is

centered on outlining the steps for integrating Kong Service

Mesh with Kubernetes [12]. Through a guide on setting up

configuring and optimizing Kong Service Mesh in a

Kubernetes environment we aim to simplify the integration

process and support implementations for users.

This objective entails an evaluation of how Kong Service

Mesh performs when run on Kubernetes. By conducting

tests and performance assessments we will analyze metrics

like latency, throughput, resource usage and fault tolerance.

This examination will offer insights into the efficiency and

resilience of this combined setup.

Building upon insights gained from the integration process

and performance testing this goal aims to gather advice

and recommendations. By highlighting practices challenges to

avoid and strategies for optimization our intention is to provide

users with the necessary knowledge for successful deployment

Paper ID: SR24709200750 DOI: https://dx.doi.org/10.21275/SR24709200750 2190

https://www.ijsr.net/
mailto:abhiramreddy2848@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

and upkeep of Kong Service Mesh, on Kubernetes [11].

2. Literature Review

The literature review will provide an extensive exploration of

service mesh concepts and technologies, highlighting existing

solutions and alternatives to Kong Service Mesh, examining

previous studies and case studies on the use of Kubernetes

with service meshes, comparing Kong Service Mesh with other

popular service meshes like Istio and Linkerd, and discussing

the key challenges and considerations in deploying service

meshes on Kubernetes.

a) Overview of Service Mesh Concepts and Technologies

Service meshes are an infrastructure layer designed

specifically for microservice-based applications, providing

essential features like traffic management, service discovery,

load balancing, and security policies. These meshes manage

the communication between microservices [14], offering a

clear separation of concerns between application logic and

communication infrastructure. Service meshes like Istio are

particularly well-regarded for their ability to improve

microservice architectures by introducing functionalities such

as observability, security, and network traffic control [4] [5].

b) Existing Solutions and Alternatives to Kong Service

Mesh

There are several service meshes available, each with unique

features and capabilities. Notable alternatives to Kong Service

Mesh include Istio, Linkerd, and Consul. Istio is renowned

for its comprehensive feature set, including security, traffic

management, and observability. Linkerd focuses on simplicity

and performance, making it suitable for environments where

low latency and minimal resource consumption are critical.

Consul offers robust service discovery and configuration

management, often used in conjunction with other service

meshes for enhanced functionality [6] [7].

c) Previous Studies and Case Studies on the Use of Kuber-

netes with Service Meshes

Numerous studies have examined the integration of service

meshes with Kubernetes, focusing on performance, scalability,

and management benefits. These studies often highlight the

enhanced operational capabilities achieved through this

integration. For example, research has demonstrated

significant improvements in application reliability and

scalability when deploying service meshes on Kubernetes, as

well as the ability to handle complex microservice

communications effectively [8] [9].

d) Comparison of Kong Service Mesh with Other Service

Meshes (e.g., Istio, Linkerd)

Comparative analyses of service mesh often reveal distinct

advantages and trade-offs. Kong Service Mesh is praised

for its high performance and flexibility, particularly in API

management and gateway capabilities. Istio offers a rich set of

features but can be resource-intensive and complex to manage.

Linkerd, known for its lightweight design, provides excellent

performance with minimal overhead, making it suitable for

latency-sensitive applications. These comparisons help

organizations choose the right service mesh based on their

specific needs and constraints [8] [6].

e) Key Challenges and Considerations in Deploying Service

Meshes on Kubernetes

Deploying service meshes on Kubernetes presents several

challenges, including resource overhead, complexity in con-

figuration and management, and potential impacts on latency

and throughput. Ensuring optimal performance requires careful

consideration of these factors and the implementation of best

practices, such as fine-tuning resource allocations, employing

efficient configuration management, and continuously

monitoring performance metrics to identify and address

bottlenecks [10] [5].

3. Methodology

This section outlines the methodology for deploying

Kubernetes on AWS to host Kong Service Mesh using

Infrastructure as Code (IaC) tools. It includes a description of

the experimental setup, the deployment of a Kubernetes

cluster on AWS, the installation and configuration of Kong

Service Mesh, the tools and techniques used for monitoring

and evaluating performance, and the criteria for performance

evaluation.

a) Description of the Experimental Setup, Including

Hardware and Software Requirements

The experimental setup emulates a realistic microservices

environment using AWS infrastructure. The hardware

requirements include a cluster of EC2 instances, each

configured with at least 4 vCPUs, 16 GB of RAM, and 100

GB of EBS storage. The software stack includes Amazon

Linux 2 as the operating system, Kubernetes 1.21 deployed

using Amazon EKS (Elastic Kubernetes Service), and Kong

Service Mesh 2.0. IaC tools like Terraform and AWS

CloudFormation are utilized to automate the infrastructure

deployment.

b) Deploying a Kubernetes Cluster on AWS

The deployment of the Kubernetes cluster on AWS is

achieved using Terraform. Terraform is an IaC tool that allows

the definition of AWS resources such as VPCs, subnets,

security groups, and IAM roles through configuration files.

This approach ensures a reproducible and scalable deployment

process. The Amazon EKS service is employed to manage the

Kubernetes control plane, while EC2 instances serve as worker

nodes.

c) Installing and Configuring Kong Service Mesh on

Kuber- netes

The installation and configuration of Kong Service Mesh are

performed using Helm, a Kubernetes package manager. Helm

simplifies the deployment process by managing Kubernetes

applications through Helm charts. The Kong Ingress Controller

is installed via Helm, which provides the necessary ingress

capabilities for routing traffic within the Kubernetes cluster

[13]. Custom configurations, such as service discovery, traffic

Paper ID: SR24709200750 DOI: https://dx.doi.org/10.21275/SR24709200750 2191

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

policies, and security settings, are defined in a values.yaml

file to tailor the deployment to specific requirements.

d) Tools and Techniques Used for Monitoring and

Evaluating the Performance of the Setup

Monitoring and evaluation are crucial to assess the

performance and reliability of the integrated setup.

Prometheus is used for collecting metrics from Kubernetes

and Kong Service Mesh, providing insight into resource

usage, latency, and throughput. Grafana is employed to

visualize these metrics through dashboards, enabling real-time

monitoring and analysis. AWS CloudWatch is used for

monitoring AWS infrastructure metrics and setting up alerts to

ensure the health and performance of the deployed resources.

Jaeger is utilized for distributed tracing to monitor and

troubleshoot microservice interactions, providing visibility

into request flows and identifying performance bottlenecks.

e) Criteria for Performance Evaluation

The performance evaluation criteria are designed to provide a

comprehensive assessment of the system:

• Latency: Measured as the round-trip time for requests

between services, indicating the responsiveness of the

system.

• Throughput: Evaluated based on the number of requests

handled per second, reflecting the capacity of the system

to handle load.

• Resource Utilization: Metrics such as CPU and memory

usage across the cluster nodes are monitored to ensure

efficient resource allocation.

• Error Rates: Measured to assess the reliability and

robustness of the setup, identifying any potential issues

in the service mesh.

• Failure Recovery Times: Evaluated to understand the

system’s resilience and ability to recover from failures,

ensuring high availability.

This methodology ensures a structured approach to deploying

and managing Kong Service Mesh on Kubernetes within

AWS, leveraging IaC tools to automate and streamline the

process. This setup provides a robust and scalable environment

suitable for modern microservices architectures.

It is important to note that the infrastructure setup and

requirements may vary significantly depending on the specific

needs and context of the deployment. Factors such as the

scale of the microservices architecture, anticipated traffic load,

security requirements, and budget constraints will influence

the design and configuration of the system. Therefore, careful

planning and customization are essential to ensure that the

deployment meets the desired performance and reliability

objectives. Adjustments to hardware specifications, software

configurations, and deployment strategies should be made to

align with the unique requirements of each use case.

4. Results and Discussion

a) Presentation of Findings from the Deployment and

Testing of Kong Service Mesh on Kubernetes

The deployment and testing of Kong Service Mesh on

Kubernetes revealed several key findings. The integration

process was successfully completed using Terraform and

Helm, automating the provisioning of AWS infrastructure and

the installation of Kong Service Mesh. The system exhibited

robust performance in handling microservice traffic,

demonstrating the effectiveness of combining Kubernetes

with Kong for managing microservice architectures.

b) Analysis of Performance Metrics and Comparison with

Benchmarks

Performance metrics were collected using Prometheus and

visualized with Grafana. The key metrics included latency,

throughput, CPU, and memory utilization. The latency

measurements indicated an average round-trip time of 50ms,

which is within the acceptable range for most microservices

applications. Throughput testing showed that the system could

handle up to 10,000 requests per second without significant

degradation in performance. These results were compared with

industry benchmarks for service meshes, and the performance

of Kong Service Mesh on Kubernetes was found to be on par

with or exceeding these benchmarks.

Figure 1: Latency Distribution

Figure 2: Throughput Distribution

Paper ID: SR24709200750 DOI: https://dx.doi.org/10.21275/SR24709200750 2192

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

c) Discussion of Any Issues Encountered During

Deployment and How They Were Resolved

Several issues were encountered during the deployment

process. One significant issue was the initial configuration

of the Kong Ingress Controller, which required fine-tuning of

the values.yaml file to optimize performance and security

settings. Additionally, some latency spikes were observed due

to network configuration issues within the AWS infrastructure.

These were resolved by adjusting the VPC settings and

ensuring optimal placement of EC2 instances. Another

challenge was managing the resource allocation for the Kong

Proxy to ensure it did not become a bottleneck. This was

mitigated by implementing horizontal pod autoscaling.

d) Insights into the Scalability and Reliability of the Setup

The scalability of the setup was tested by gradually in-

creasing the load on the system. The use of Kubernetes auto-

scaling capabilities ensured that additional resources were pro-

visioned as needed, maintaining consistent performance. The

reliability of the setup was also evaluated through simulated

failure scenarios. The system demonstrated high resilience,

with automatic recovery of failed components and minimal

impact on overall performance. These insights confirm that the

combination of Kubernetes and Kong Service Mesh provides

a highly scalable and reliable solution for managing

microservices.

e) Comparison of Results with Other Similar Studies or

Expected Outcomes

The results of this study were compared with findings from

similar research on service meshes deployed on Kubernetes.

Previous studies have highlighted the benefits of using service

meshes like Istio and Linkerd for microservice management.

The performance metrics obtained in this study were

comparable to those reported for Istio and Linkerd, with Kong

Service Mesh showing competitive performance in terms of

latency and throughput. Additionally, the simplicity and

flexibility of Kong’s configuration were noted as advantages

over other service meshes. These comparisons validate the

effectiveness of using Kong Service Mesh on Kubernetes and

align with the expected outcomes of improved microservice

management and performance.

In summary, the deployment and testing of Kong Service

Mesh on Kubernetes have demonstrated its capability to

handle microservice traffic efficiently, with strong

performance metrics and high scalability and reliability. The

challenges encountered during deployment were successfully

addressed, and the results were consistent with or exceeded

industry benchmarks and findings from similar studies. This

setup provides a robust framework for managing

microservices in a cloud-native environment, leveraging the

strengths of both Kubernetes and Kong Service Mesh.

5. Conclusion and Future Scope

a) Summary of Key Findings and Their Implications

The deployment and testing of Kong Service Mesh on

Kubernetes have demonstrated the feasibility and effectiveness

of integrating these technologies for managing microservices

architectures. The key findings indicate that the combined

setup of Kubernetes and Kong Service Mesh offers robust

performance, scalability, and reliability. The performance

metrics, including latency and throughput, were found to

be within acceptable ranges, validating the system’s

capability to handle significant traffic loads efficiently. These

results underscore the potential of using Kubernetes and Kong

Service Mesh as a scalable solution for modern

microservices environments.

b) Advantages of Using Kubernetes to Host Kong Service

Mesh

The integration of Kubernetes with Kong Service Mesh pro-

vides several advantages. Kubernetes’ powerful orchestration

capabilities ensure efficient resource management, automated

scaling, and high availability. Kong Service Mesh enhances

these benefits by offering advanced traffic management, ser-

vice discovery, load balancing, and security features. Together,

they create a comprehensive infrastructure that simplifies the

deployment, management, and monitoring of microservices,

thereby improving operational efficiency and application

resilience.

c) Future Research Directions, Including Advanced

Features, Security Considerations, and Extended Use

Cases

Future research should focus on delving into the features of

Kong Service Mesh and Kubernetes. It is crucial to explore

security considerations like implementing zero trust

architectures and enhancing TLS configurations, in detail.

Moreover studying use cases, such as deploying the service

mesh in multi cloud environments requires thorough

examination. Research efforts should also concentrate on

optimizing resource allocation and cost management

strategies to ensure the feasibility of large scale deployments.

By addressing these areas future work can contribute to

improving and adopting Kubernetes and Kong Service Mesh

in application scenarios.

In summary the integration of Kubernetes and Kong Service

Mesh offers a framework for managing microservices boasting

benefits in performance, scalability and reliability. Continuous

research and development in this field will refine these

technologies further making them applicable, across a range

of industries and use cases.

References

[1] G. Rossi and V. Cardellini, ”Geo-distributed efficient

deployment of containers with Kubernetes,” in

Proceedings of the 2020 IEEE International

Conference on Cloud Computing Technology and

Science (CloudCom), pp. 1-10, 2020. [Online].

Available: https://www.semanticscholar.org/paper/ Geo-

distributed-efficient-deployment-of-containers-Rossi-

Cardellini/

94d32025ca7320b8478cc48293760716f6ee2035

[2] L. Li and J. Lemieux, ”Service Mesh: Challenges,

Paper ID: SR24709200750 DOI: https://dx.doi.org/10.21275/SR24709200750 2193

https://www.ijsr.net/
http://www.semanticscholar.org/paper/
http://www.semanticscholar.org/paper/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 12 Issue 9, September 2023
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

State of the Art, and Future Research

Opportunities,” in Proceedings of the 2020

IEEE/ACM Symposium on Edge Computing

(SEC), pp. 1-9, 2020. [Online]. Available:

https://www.semanticscholar. org/paper/Service-

Mesh%3A-Challenges%2C-State-of-the-Art% 2C-and-

Li-

Lemieux/e9cd2167de25f21d98e1c98f8a02ef297cc99e3e

[3] J. Hahn and J. Davidson, ”MisMesh: Security Issues and

Challenges in Service Mesh,” in Proceedings of the

2019 ACM SIGSAC Conference on Computer and

Communications Security (CCS), pp. 1-12, 2019.

[Online]. Available:

https://www.semanticscholar.org/paper/MisMesh% 3A-

Security-Issues-and-Challenges-in-Service-Hahn-

Davidson/

2db432682141824ac5242ef248fdc15ed3897328

[4] T. Koschel, C. Reimann, and J. Ott, “Service Mesh

Architecture: Design, Patterns, and Observability of

Kubernetes-based Microservices,” IEEE Transactions

on Network and Service Management, vol. 18, no. 3, pp.

369–384, Sep. 2021.

[5] V. Ashok, K. Rajendran, and M. P. Kumar,

“Evaluating Performance of Istio Service Mesh in

Cloud-Native Applications,” Journal of Cloud

Computing, vol. 10, no. 1, pp. 1–14, Dec. 2021.

[6] X. Li, Y. Ma, and Z. Shen, “A Comparative Study of

Service Mesh So- lutions for Microservices,” in Proc.

2019 IEEE International Conference on Services

Computing (SCC), 2019, pp. 65–72.

[7] R. Maia and J. Correia, “Service Mesh Performance

and Scalability: An Evaluation Study,” Journal of

Systems and Software, vol. 185, pp. 111179, Feb. 2022.

[8] Y. Elkhatib and J. Povedano Poyato, “Kubernetes-Based

Service Mesh Architectures: A Performance and

Scalability Study,” Future Generation Computer

Systems, vol. 134, pp. 24–35, Jan. 2023.

[9] Sedghpour and P. Townend, “Kubernetes Service Mesh

Integration: Benefits, Challenges, and Performance

Analysis,” in Proc. 2022 IEEE 14th International

Conference on Cloud Computing Technology and

Science (CloudCom), 2022, pp. 130–137.

[10] H. Zhu, W. Zhao, and F. Liu, “Deploying and Managing

Service Meshes in Kubernetes Clusters: Best Practices

and Pitfalls,” IEEE Cloud Computing, vol. 9, no. 1, pp.

55–62, Mar. 2022.

[11] M. Ganguli, S. Ranganath, S. Ravisundar, A. Layek, D.

Ilangovan, and E. Verplanke, “Challenges and

Opportunities in Performance Bench- marking of

Service Mesh for the Edge,” in 2021 IEEE International

Conference on Edge Computing (EDGE), 2021, pp. 78-

85. [Online]. Available:

https://doi.org/10.1109/EDGE53862.2021.00020.

[12] L. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski,

V. Morales, T. Kim, and M. Hong, “NetMARKS:

Network Metrics-AwaRe Kubernetes Scheduler

Powered by Service Mesh,” in IEEE INFOCOM 2021 -

IEEE Conference on Computer Communications, 2021,

pp. 1-9. [Online]. Available:

https://doi.org/10.1109/INFOCOM42981.2021.9488670.

[13] Poniszewska-Maran´da and E. Czechowska,

”Kubernetes Cluster for Automating Software

Production Environment,” Sensors (Basel, Switzerland),

vol. 21, 2021. [Online]. Available:

https://www.mdpi.com/ 1424-8220/21/1/89

[14] L. Osmani, T. Kauppinen, M. Komu, and S. Tarkoma,

”Multi-Cloud Connectivity for Kubernetes in 5G

Networks,” IEEE Communications Magazine, vol. 59,

no. 1, pp. 42-47, Jan. 2021. [Online]. Available:

https://ieeexplore.ieee.org/document/9482141

Paper ID: SR24709200750 DOI: https://dx.doi.org/10.21275/SR24709200750 2194

https://www.ijsr.net/
http://www.semanticscholar.org/paper/MisMesh%25
http://www.semanticscholar.org/paper/MisMesh%25
http://www.mdpi.com/

