The Effect of Inspiratory Muscle Training, Incentive Spirometer and Deep Breathing Exercise in Asthmatic Patient: A Narrative Review

Rinki¹, Dimple Choudhry², Dhruva Chaudhry³, Anshu Kumari⁴, Rahul⁵

¹MPT (Cardiopulmonary), Pt. B.D Sharma University of Health Sciences, Rohtak https://orcid.org/0009-0006-2607-1992

²Assistant Professor, Pt. B.D Sharma University of Health Sciences, Rohtak Corresponding Author Email: dimplephysio80[at]gmail.com Contact no: 9416666445 https://orcid.org/0000-0002-1337-9940

³Senior Professor, Pt. B.D Sharma University of Health Sciences, Rohtak https://orcid.org/0000-0001-5138-2908

⁴MPT(Cardiopulmonary), Pt. B.D Sharma University of Health Sciences, Rohtak https://orcid.org/0009-0005-3296-1484

⁵MPT(Cardiopulmonary), Pt. B.D Sharma University of Health Sciences, Rohtak https://orcid.org/0009-0001-4890-1006

Abstract: <u>Introduction</u>: Asthma, a prevalent chronic inflammatory airway disease affecting over 300 million people globally, presents challenges in effective management. This narrative review explores the potential of three non-pharmacological interventions— Inspiratory Muscle Training (IMT), Incentive Spirometry, and Deep Breathing Exercises—in improving asthma control and respiratory parameters. <u>Methodology</u>: A systematic literature search identified 30 relevant studies, with ten meeting inclusion criteria. These studies encompassed diverse populations and interventions, showcasing the effectiveness of IMT, incentive spirometry, and breathing exercises in improving pulmonary function, dyspnea perception, and quality of life in asthmatic patients. <u>Discussion</u>: The review discusses findings from selected studies, highlighting the positive outcomes of non-pharmacological interventions. It addresses the limitations, such as small sample sizes and a lack of direct comparisons and emphasizes the need for further research to establish definitive protocols and compare the interventions in a larger and more diverse population. <u>Conclusion</u>: In conclusion, IMT, incentive spirometry, and breathing exercises dijunct therapies for asthma management. While acknowledging study limitations, the review calls for additional research to establish comprehensive protocols and compare the efficacy of these interventions in diverse asthmatic populations.

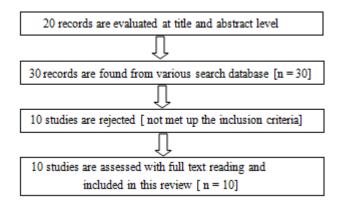
Keywords: asthma, non-pharmacological interventions, Inspiratory Muscle Training IMT, incentive spirometry, deep breathing exercises

1. Introduction

Asthma is a chronic inflammatory airway disease characterized by airflow restriction and hyperresponsiveness More than 300 million people globally suffer from asthma. Asthma is becoming more prevalent in many nations, and it affects people of all ages. Because of its high prevalence and accompanying healthcare expenditures, asthma is rapidly being recognized as a public health concern. As a result, it is critical to explore lower-cost alternatives to established asthma treatment, as well as adjunct medicines to enhance traditional asthma treatment strategies for managing and altering its severity.¹

The form and position of the diaphragm alter because of chronic airflow limitation caused by asthma or chronic obstructive pulmonary disease. This change is thought to be caused by an increase in lung volume. Increased lung volume changes the geometry of the chest wall and shortens the Inspiratory muscles, lowering their capacity. Dyspnea and respiratory muscle exhaustion result from a decrease in the strength of the Inspiratory muscle.²

Airway blockage during exercise is associated with higher Inspiratory muscle effort because of resistance to airflow and dynamic hyperinflation of the lung (increased endexpiratory lung capacity,) in asthmatic persons. The increased work of breathing caused by dynamic hyperinflation has been found to be a significant predictor of dyspnea in people with asthma.³They increase the work of breathing, which may increase the danger of Inspiratory muscle fatigue. As a result, it is plausible to speculate that in patients with asthma. Who experience greater Inspiratory muscle work, increasing the strength of Inspiratory muscles may lessen the intensity of dyspnea and enhance exercise tolerance.⁴Over recent years; respiratory rehabilitation has been widely used as a non-drug treatment for chronic respiratory diseases. Respiratory rehabilitation is an individualized comprehensive intervention that follows comprehensive evaluation of a patient, and includes exercise training, education, and behavioral changes. The aim of respiratory rehabilitation is to improve a patient's physical and emotional status and promote long-term adherence to health-enhancing behaviors. Studies have shown that lung function can also improve by respiratory muscle training using incentive spirometry and diaphragmatic resistance


International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

training. Breathing exercise also reduce the levels of anxiety and depression. Breathing training exercise which included breathing control, pursed -lip breathing, diaphgmatic breathing exercises and thoracic expansion exercise. Inspiratory muscle training is a technique that aims to improve the strength and endurance of the diaphragm and accessory muscles that are recruited during inspiration. The effect of Inspiratory muscle training is achieved through the inspiratory muscles adjusting to overcome the 'resistance'. Inspiratory muscle training expected effect and possible involvement in asthma patients include increased diaphragm thickness and strength, decreased exertion dyspnea, and decreased oxygen cost of breathing.¹Incentive spirometer is a mechanical breathing device in which the patients is expected to take long, slow deep breaths mimic like natural sighing which gives positive visual feedback. Incentive spirometer either is available by volume of inspiration (volume oriented) or flow rate (flow oriented). It is simple to use and its use results in a prolonged phase of effective inspiration, more controlled flow, and greater enthusiasm to practice. There are no known side effects with the use of Incentive spirometer and it is affordable while patients do supervision once trained in not require their use.⁵Professionals have consistently employed breathing exercises to control the hyperventilation symptoms of asthma. The goal of this technique is to help asthma patients adjust to an adequate breathing pattern with longer expiration and a lower respiratory rate, reducing hyperventilation and hyperinflation. Breathing exercise and Inspiratory muscle training are non-pharmacological interventions that improve asthma control. Both exercises have been widely used and are low cost, easy to apply, safe, considered important adjuncts for asthma and treatment.¹Many studies done on breathing Inspiratory

muscle training and in combination with breathing exercise in asthma and these studies have been consider effective and clinically relevant because these techniques prevent and treat pulmonary function and reduce respiratory muscle strength, and asthma control and health related quality of life.¹

2. Method

Studies are search from the following search engine PubMed, Google scholar, ResearchGate and Cochrane library to review the literature. Studies include that investigate respiratory parameters, SPO2 and Asthma complications. Keyword used to search studies are incentive spirometer, breathing exercise, inspiratory muscle training, conventional therapy, Asthma.

Several studies have shown that inspiratory muscle training, conventional therapy helps in asthma patients, improving respiratory parameters, pulmonary function and quality of life.

Author,			Characteristics			
journal,	Objective	Design	of participants	Method	Outcome measures	Results
Year			sample size			
2006^{3}	This study was to examine		15 subjects	spirometry and lung	Lung volume,	The contribution of home
	the relationship between	deigned	aged 25	volume measurement	dyspnea,	spirometry in the diagnostic
	respiratory symptom	experimental		dose methacholine challen		process for asthma in
	intensity and quality and			ge testing Dyspnea	functional residual	schoolchildren with
	dynamic lung			intensity was measured	capacity	nonspecific respiratory
	hyperinflation during			after each dose		symptoms is limited.
	induced bronchoconstricti			of methacholine.		
	on in asthma.			Qualitative descriptors of		
				breathlessness		
				and functional residual		
				capacity were measured		
2010 ⁶	To assess the usefulness of	Same subject	48 asthmatic	Children measured peak	Quality of life,	The benefits of breathing
	home spirometry in	experimental		expiratory flow (PEF) and	anxiety and	and aerobic exercise have
	children with nonspecific	1	between 25 and	force expiratory flow in	depression, daily	been extensively studies the
	lower respiratory tract		65 years old	1 sec (FEV ₁) twice daily	living physical	comparison between both
	symptoms, to diagnose or		5	for 2 weeks on a home	activity, and	has never investigated.
	exclude asthma			spirometer, from which	maximal exercise	Furthermore, the finding of
				diurnal variation was	capacity	ore result will allow to
				calculated. The value of		understand its application
				home spirometry to		and suitability to patients
				diagnose asthma was		that have more benefits for
				calculated.		every intervention its effect
2014 ⁷						
	Asthma is a chronic	5	45 participate	In this study randomized	respiratory muscle	Our finding shows that the
	inflammatory airway	experimental	between age of	clinical trial with 2 group	strength, exercise	use of Is and DRT
	disease characterized by		21 and 65 years	that will receive. 48	capacity, quality of	beneficial effect in
	reversible by obstruction,			asthmatic patients will be	life, daily living	improving selected

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

			SJIF	(2022): 7.942		
20178	inflammation and hyperresponsiveness to different stimulus. Aerobic and breathing exercise have been demonstrated to benefits asthmatic patients there.			randomly divided into either aerobic or breathing exercise patient will perform exercise twice a week for 3 months, total session 24 session recorded the before and afterinterventions	activities	pulmonary parameter (FEV, FVC, PEFR) the use DRT is clinically more benefic and its thus recommended to be a part of the patient with asthma
	This study was comparing the effect of incentive spirometry and diaphragmatic resistance training on selected cardiopulmonary parameter in patients with asthma		28 asthmatic patients between 18 and 65 years of age	In this group randomly assigned to 3 group.group A received aerobic exercise with Is group B received aerobic exercise and DRT and group C received only aerobic exercise for 6 week, 3 times a week	Lung function	These finding suggest that IMTany be effective modality to enhance respiratory muscle strength, exercise capacity, quality of life, daily living activities, reduced perception of dyspnea and fatigue in asthmatic patients.
20189	In this study investigate the effects of inspiratory muscle training on respiratory muscle strength, exercise capacity, dyspnea, fatigue,	Same subject 'experimen- tal	50- to 60-year- old and 40 postmenopausal women	this studyrandomly divided into 2 group IMT [n=20] or control group [n=18] IMT group [perform 30 breaths using a threshold pressure	Spirometry data, maximal inspiratory and expiratory pressures [[PImax andPEmax],	Inspiratory muscle training in patients with postmenopausal asthma improved ventilatory function by improving ventilatory muscle strength and endurance pattern and reduced symptoms in patients with asthma by increasing FVC and overall lung volume
2020 ¹⁰	quality of life and daily living activity of asthmatic patient		60 asthma patients [40-65 years old]	device, twice daily for 6 week at 50% maximal inspiratory pressure in addition breathing exercise	and Emaxj, asthma control test, asthma controlquestionnair e, six-minutewalk, andthree- dayphysical activity log recorded	In this study except for forced vital capacity, which was reduced in BTE group all other measured variables improved in both groups and no significant between group different were found.IMT more effective
20211	To compare the effectiveness of inspiratory muscle training (IMT) and incentive spirometer on ventilatory functions in post-menopausal asthmatic women.	Same subject 'experimenta 1	Asthma patients	this studyrandomly divided two groupA group received inspiratory muscle training in addition to chest physical therapy group (B): received chest physical therapy and incentive spirometer, 3 sessions per week for six	of life questionnaire, inspiratory muscle training	than breathing exercise IMT act alternative to conventional breathing exercises for middle aged and elderly asthma patients. The study was added on IMT to standard medical treatment could improve asthma control by strengthening inspiratory muscles of uncontrolled asthmatic patient. IMT could be considered in the non-pharmacological treatments of uncontrolled
2022 ¹¹	This study aims to investigate and compare the effect of conventional breathing exercises and	Same subject experimental Same subject experimental	50 children	 weeks. Patients in both groups were assessed before treatment then after treatment Randomly assigned sixty asthma patients to either conventional breathing exercises or inspiratory 	Inspiratory muscle strength, exercise capacity, spirometry measurements, asthma control	asthmatic patients. The limited no of patients. The limited no of patients this study revealed that IMT might have positive outcomes for uncontrolled asthma patients. Combining respiratory muscle and exercise training on the basis of the routine drug treatment and health education significantly improve inspiratory muscle

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

	inspiratory muscle	muscle training group for	strength the level of asthma
	training intervention on	12-week intervention	control and the quality of
	clinical symptoms in	period. Outcome	life in children with asthma
	asthma patients.	measurement before and	more research is needed to
	±	after the intervention	explore its rolein asthma in
			the future
2023^{12}	Breathing exercises are	Twenty-two uncontrolled	
	reported to improve	and partially controlled	
	quality of life and reduce	asthmatic patients were	
	symptoms 'IMT to	included in this study.	
	increase diaphragm and	Population was	
	inspiratory muscle	randomized into two	
	endurance; in this study	groups. The standard care	
	IMT had been performed	group [n= 10] received	
	in uncontrolled asthma	standard medical	
	patient its effect on	treatment while the	
	respiratory symptoms and	intervention [n= 12 group	
	pulmonary function.	practiced a threshold IMT	
	pullionary function.	device	
		device	
	To investigate the effect	Fifty children with	
	of combined respiratory	asthma, who were treated	
	muscle and exercise	children hospital were	
	training on inspiratory	selected and randomly	
	muscle strength, exercise	divided into a	
	capacity, spirometry	rehabilitation group and a	
	measurements, asthma	control group by using a	
	control the quality of life	random number table. The	
	in children with asthma	control group was given	
		routine drug treatment and	
		health education while the	
		rehabilitation group	
		received a combination of	
		respiratory muscle and	
		exercise training on the	
		control group.	

3. Discussion

The purpose of this review was to find out the effects of incentive spirometer, inspiratory muscle training and deep breathing exercises in asthmatic patients. Asthma symptoms have a significant impact on patient's life and the proper clinical treatment is very important to reduce those symptoms; however, sometimes clinical control is difficult, despite the appropriate number of prescribed medications. Aerobic and breathing exercises have been considered important as complementary therapies in addition to the pharmacological treatment mainly for patients with controlled or partially controlled asthma, because they improve disease control. In addition, asthmatic patients have 2 main clinical conditions that support the importance of these non-pharmacological interventions: they are more prone to be physically deconditioned compared with their peers and they also have a high prevalence of hyperventilation symptoms. Because of that, asthmatic patients tend to face more negative attitudes towards exercise and present higher levels of anxiety and depression.8

Aweto HA et al. concluded that there was an improvement in asthma control and quality of life for patients with asthma in addition to a significant difference in maximal respiratory pressures, spirometryvariables and oxygen saturation in patients who underwent incentive spirometry after CABG. Evaristo KB et al. compared breathing and aerobic exercise on clinical control in patients with moderate to severe asthma and concluded that both exercises were effective.¹³Impaired inspiratory muscle strength before exercise has been shown to intensify exertional dyspnea in individuals with asthma and may reduce exercise tolerance in these individuals. IMT has previously been shown to reduce the perception of dyspnea during exercise in healthy individuals and during pressure threshold inspiratory loading in asthmatic individuals. The increased inspiratory muscle work associated with increased airway resistance and dynamic hyperinflation is an important predictor of dyspnea during bronchoconstriction and may be related to several factors such as reduced strength of the inspiratory muscles due to their shortened operating length, recruitment of additional accessory respiratory muscles, and increased inspiratory activity during expiration.¹⁴

Exertional dyspnea, which is one of the symptoms of asthma that is associated with impaired exercise tolerance has been shown to be reduced by aerobic training and after bronchodilator administration The novel finding of this study is that IMT can improve exercise tolerance and reduce the perception of dyspnea in recreationally active asthmatic individuals with mild asthma, suggesting a potential role for IMT as a complementary intervention in this population. However, it should also be noted that a reduction in the perception of dyspnea may be potentially dangerous in the small population of asthmatic individuals who have a low

perception of dyspnea and may cause them to underestimate the severity of asthmatic exacerbations.

Through above studies, it is found that inspiratory muscle training, incentive spirometer and deep breathing exercises, all three techniques are effective in reducing exertional dyspnea, quality of life, anxiety and depression and also helps in improving inspiratory muscle strength, spirometry variables and oxygen saturation in asthmatic patients.

4. Conclusion

Inspiratory muscle training, incentive spirometer and deep breathing exercise are effective methods for asthmatic patients. All above mention studies have multiple limitations such as inadequate sample size, no comparison of inspiratory muscle training with incentive spirometry along with deep breathing exercise there was not even single study that suggests the supremacy of one therapy over another, no studies mentioned or suggested use of deep breathing exercise, incentive spirometer and inspiratory muscle training as important treatment options. Very less studies are done on comparison on inspiratory muscle training and incentive spirometer and no study explained the exact protocol for asthmatic patients.

Hence in order to establish a definitive protocol and to overcome all limitations, there is a need to compare inspiratory muscle training and incentive spirometry along with deep breathing exercises on pulmonary function, inspiratory muscle strength, heart rate, oxygen saturation, chest expansion, quality of life dyspnea, fatigue and asthma control assessments in asthmatic patients.

References

- [1] Chung Y, Huang TY, Liao YH, Kuo YC. 12-week inspiratory muscle training improves respiratory muscle strength in adult patients with stable asthma: a randomized controlled trial. International Journal of Environmental Research and Public Health. 2021
- [2] Shei RJ, Paris HL, Wilhite DP, Chapman RF, Mickleborough TD. The role of inspiratory muscle training in the management of asthma and exerciseinduced bronchoconstriction. The Physician and sportsmedicine. 2016
- [3] Lougheed MD, Fisher T, O'Donnell DE. Dynamic hyperinflation during bronchoconstriction in asthma: implications for symptom perception. Chest. 2006.
- [4] Mickleborough TD, Mcconnell AK, Stager JM, Tecklenburg-Lund S, Lindley MR. Effect of inspiratory muscle training on exercise tolerance in asthmatic individuals.
- [5] Derakhtanjani AS, Jaberi AA, Haydari S, Bonabi TN. Comparison the effect of active cyclic breathing technique and routine chest physiotherapy on pain and respiratory parameters after coronary artery graft surgery: A randomized clinical trial. Anesthesiology and pain medicine. 2019
- [6] Brouwer AF, Visser CA, Duiverman EJ, Roorda RJ, Brand PL. Is home spirometry useful in diagnosing asthma in children with nonspecific respiratory symptoms? Pediatric pulmonology. 2010.

- [7] Evaristo KB, Saccomani MG, Martins MA, Cukier A, Stelmach R, Rodrigues MR, Santaella DF, Carvalho CR. Comparison between breathing and aerobic exercise on clinical control in patients with moderateto-severe asthma: protocol of a randomized trial. BMC pulmonary medicine. 2014
- [8] Aweto ha, aiyegbusi ai, olaniyan zo. a comparative study of the effects of incentive spirometry and diaphragmatic resistance training on selected cardiopulmonary parameters in patients with asthma. romanian journal of physical therapy/revistaromana de kinetoterapie. 2017
- [9] Duruturk N, Acar M, Doğrul MI. Effect of inspiratory muscle training in the management of patients with asthma. Journal of cardiopulmonary rehabilitation and prevention. 2018
- [10] Elrefaye G, Refaye E, Farid H, Elsisi E, Aljahmany A. Comparative study of inspiratory muscle strength training and incentive spirometer on ventilatory function in postmenopausal asthmatic women. Int J Appl Exer Physiol. 2020
- [11] özgenalpaydin ay, gorgulu b, ercan s, özalevli s. effects of inspiratory muscle training on respiratory functions among uncontrolled asthmatics. journal of basic and clinical health sciences. 2022
- [12] Yang S, Zhang Z, Liu Y, Liu E, Luo Z. The Effects of Combined Respiratory Muscle and Exercise Training in Children with Bronchial Asthma: A Randomised Controlled Study. Journal of Asthma and Allergy. 2023
- [13] Barker NJ, Jones M, O'Connell NE, Everard ML. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in children. Cochrane Database of Systematic Reviews. 2013
- [14] Kullowatz A, Kanniess F, Dahme B, Magnussen H, Ritz T. Association of depression and anxiety with health care use and quality of life in asthma patients. Respiratory medicine. 2007