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Abstract: Biomedical imaging data (from X-rays, CT scans, MRIs) is a rich and crucial source of information for diagnosing and 

treating patients, yet it is often the most complex to interpret. The large volume of visual data generated can be challenging even for the 

most experienced clinical professionals to handle and use for diagnosis with high accuracy. With the traditional diagnosis approaches, 

patients usually face high costs too. Sometimes, abnormalities remain unspotted, causing delays in intervention which can be the 

difference between saving and losing patient lives. Most traditional radiomics studies use hand-crafted feature extraction techniques, 

such as texture analysis, followed by conventional machine learning classifiers, such as random forests and support vector machines 

(SVMs). In this paper, we further establish that X-ray, MRI or CT-image classification using convolutional neural networks (CNNs) 

could be an efficient, cost-effective and fast approach for diagnosis and interpretation. The research is focused on training a CNN 

algorithm to develop diagnostic analysis power using 250 brain MRI images and then testing the accuracy and predictive power of the 

developed CNN algorithm on 5 images. We have shown the superiority of CNN models in image classification when compared to 

traditional ML Classifiers by performing an extensive ablation study. We have then compared a selected set of existing models with the 

new model we have built based on the EfficientNet v2-S architecture – this has helped estimate the relative predictive power and 

accuracy of these models on their ability to provide various differential diagnoses from the brain MRI scans. 

 

Keywords: Medical Imaging; Brain MRI (magnetic resonance imaging); AI (artificial intelligence); CNN (convolutional neural network) 

models for medical imaging; Deep Learning; ML classifiers; EfficientNet v2-S architecture 

 

1. Introduction 
 

Magnetic resonance imaging (MRI) is used less commonly 

than the plain X-rays and computer tomography (CT) scans, 

yet it is best for viewing and interpreting soft tissues such as 

fat, water, muscle, and cerebrospinal fluid (CSF) inside the 

brain for neurological and musculoskeletal pathology. Based 

on a study [1], nearly 82% of the brain MRI scans come out 

normal, while the rest require further diagnoses and clinical 

correlation. While only 1.2% of the brain MRIs require 

urgent or immediate referral, sifting through voluminous sets 

of images and arriving at the ones that show abnormalities 

needing further assessment is very onerous.  

 

While imaging data from brain MRI scans is an 

incredibly useful and rich source of information about 

patients for neurological conditions, it is often one of the 

most complex one. Moreover, with the traditional diagnosis 

techniques, patients usually face high costs and delays in 

care delivery as sometimes it may even take months before a 

life-threatening condition is discovered. Sometimes, even 

the slightest abnormalities remain unspotted, which can be 

the difference between saving and losing the life of a patient. 

 

The artificial intelligence (AI) based algorithms can scan 

through the image to recognize anomalies like lesions, 

tumors, musculoskeletal injuries, and so forth. AI-algorithms 

can spot even the slightest of abnormalities invisible to the 

human eye, making them an ultimate tool for improvised 

and effective medical diagnosis. The use of AI-based 

algorithms serve a two-fold purpose by giving additional 

resources in the hands of the patients to get their biomedical 

images diagnosed with just a click of a button and drastically 

save their time and resources while also providing a second 

opinion to radiologists and their staff. 

 

To tackle these challenges, we have developed an AI-based 

MRI scanning engine that can help identify features in MRI 

biomedical images quickly and precisely, by simply 

uploading the MRI scan images in the application that has 

the diagnostic engine. This research is focused on training a 

convolutional neural network (CNN) algorithm to develop 

diagnostic analysis power using 250 brain MRI images and 

then testing the accuracy and predictive power of the 

developed CNN algorithm on 5 images. An EfficientNet v2 

[2] based CNN algorithm has been developed in this study. 

To demonstrate the power of CNN algorithms in extracting 

contextual information as well as spatial features from an 

input image, we also compare the predictive performance of 

traditional statistical ML algorithms on the same dataset 

with our proposed CNN-based engine. To build these 

models, we have designed and deployed the neural networks 

on the Kaggle Cloud ML Engine that supports Tensorflow 

API.  

 

2. Brief Literature Review 
 

It is well acknowledged that computer vision based on 

convolutional neural networks (CNNs) have enabled 

practitioners in various fields to innovate on applications 

such as face recognition, autonomous vehicles, self-service 

supermarkets, and intelligent medical treatments [3]. CNN is 

a type of deep learning model for processing data that has a 

grid pattern, such as images, which is inspired by the 

organization of visual cortex and designed to adaptively 

learn spatial hierarchies of features, from low-level to high-

level patterns. CNN is a mathematical construct that is 

typically composed of three layers (or building blocks): 

convolution layer, pooling layer, and fully connected layer. 

The first two, convolution and pooling layers, perform 

feature extraction, while the third, a fully connected layer, 

maps the extracted features on to final output, such as 

classification. The convolution layer plays a key role in 
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CNN, which is composed of a stack of mathematical 

operations. In digital images, pixel values are stored in a 

two-dimensional (2D) grid, i.e., an array of numbers and a 

small grid of parameters called kernel. A kernel is a filter in 

the form of an optimizable feature extractor that is applied at 

each image position, which makes CNNs highly efficient for 

image processing, since a feature may occur anywhere in the 

image. As one layer feeds its output into the next layer, 

extracted features can hierarchically and progressively 

become more complex. The process of optimizing 

parameters such as kernels is called training.  

 

The object detection is at the core of using CNN for various 

predictive applications and any engine built using CNN not 

only has to recognize the category of images being 

interpreted but also the segmentation of the image at the next 

level with the right set of classifiers. Most traditional 

radiomics studies use hand-crafted feature extraction 

techniques, such as texture analysis, followed by 

conventional machine learning classifiers, such as random 

forests and support vector machines [4]. There are several 

differences to note between these traditional methods and 

CNN. Firstly, CNN does not require hand-crafted feature 

extraction. Secondly, CNN architectures do not necessarily 

require segmentation of tumors or organs by human experts. 

Thirdly, CNN is far more data hungry because of its millions 

of learnable parameters to estimate which makes it 

computationally more expensive, resulting in requiring 

graphical processing units (GPUs) for model training. 

 

The recent applications of CNN in radiology are divided into 

four categories: classification, segmentation, detection, and 

others. In medical image analysis, classification with deep 

learning utilizes target lesions depicted in medical images, 

and these lesions are classified into two or more classes, for 

example, benign or malignant. For segmentation, one of the 

common ways is to use a CNN classifier for calculating the 

probability of the image being an organ or anatomical 

structure. In this approach, the segmentation process is 

divided into two steps; the first step is the construction of the 

probability map of the organ or anatomical structure using 

CNN and image patches, and the second is a refinement step 

where the database of images and the probability map are 

utilized. Finally, the most important step for radiologists is 

to detect abnormalities within medical images. 

Abnormalities can be rare and hard to spot, and they must be 

detected amongst a majority of normal cases. 

 

The research study by Hasnain Ali Shah et. al. [5] compared 

the performances and efficiencies of six CNN architectures: 

VGG16, GoogLeNet, InceptionResNetV2, Xception, 

ResNet50, and EfficientNet-B0. Each deep CNN in the 

study employed the same set of parameters and features that 

varied according to the depth of the convolution layer and 

the fully connected layers. All models showed a minimal 

error gap at the end of each phase, except for 

InceptionResNetV2, which had a slight overfitting problem 

at the beginning. All the other models showed a very stable 

minimization of loss. In the first study, EfficientNet-B0, a 

deep neural network developed by Google AI was employed 

to investigate the transfer learning approach for detecting the 

brain tumors in MRI scans. The proposed fine-tuned 

EfficientNet-B0 network achieved the highest (98.87%) 

accuracy on the validation data by outperforming the other 

networks discussed below. 

 

3. Methodology 
 

The proposed research performs the task of identifying 

whether an input brain MRI scan contains a tumor or not. 

This is a classical binary classification problem which 

adopts the workflow shown in Figure 1. From a given 

dataset containing brain MRI scans of various patients, we 

first perform a few pre-processing steps to ensure the images 

are in the requisite format for training the CNN architecture. 

We apply normalization by thresholding and dilating each 

image to remove excess noise. We also crop each image 

with dynamic coordinates so that excess portion outside the 

brain‟s cross-section is removed, thus, further de-noising the 

image. Finally, we reshape each image to fit the dimensions 

150 x 150 as a standard across the entire dataset.

 

 
Figure 1: Workflow of the proposed algorithm 

 

After pre-processing, we augment the dataset through 

rotation of axes, horizontal flips, color shifting and random 

cropping, in order to increase the size of our database, thus, 

ensuring the learning algorithm has no bias to the 250 

images present within the dataset.  

 

Once we have the pre-processed and augmented set of 

images, we train the EfficientNet v2-S architecture 

configuration with an input of shape 150 x 150. EfficientNet 

v2-S is a version of EfficientNet v2 architecture which is 

pre-trained on ImageNet [6] dataset and is widely used in 

performing various image classification tasks achieving 

state-of-the-art performance. The output probabilities from 

the network are used to assign a class to the input image, 

which in turn is used to identify whether the MRI scan is a 

tumor or not. 
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3.1 Dataset 

 

We use a dataset titled „Brain MRI Images for Brain Tumor 

Detection‟ [7], available on Kaggle as an opensource 

database of 253 Brain MRI scans belonging to two classes: 

containing a tumor or not. Out of 253 raw images, a total of 

155 images show a tumor and 98 images are benign.  

 

3.2 Data Pre-processing and Augmentation 

 

MRI scans can falsely induce intensity averages due to 

various distortions introduced to the system while scanning 

the subject. This condition may lead to the algorithm falsely 

identifying a benign MRI scan containing tumor, therefore, 

the pre-processing stage is extremely important. We perform 

normalization of the entire image which in essence is a 

function to reduce the intensity values to come within a 

range suitable for the CNN to learn the spatial characteristics 

of the MRI scan. This step sets the mean intensity close to 0 

and standard deviation close to 1. Since our network takes 

an input of shape 150 x 150, we re-shape each image to this 

dimension before feeding it to our CNN. 

 

Since the dataset is a small database of MRI scans, we also 

perform data augmentation to increase the amount of 

training images fed to the CNN model for optimizing the 

cost function. This process generates additional training data 

based on the original scans through a series of 

transformations which preserve the true nature of each scan 

and adds some variance within the dataset. Each image in 

the training set is rotated within a range of 20 degrees 

randomly, either clockwise or anti-clockwise. We also shift 

the height and width dimensions by a factor of 20%. 

Similarly, we apply shear and zoom transformations which 

are 0.2 times the original dimensions. Finally, we also flip 

each image across the horizontal axis, thus, preserving their 

spatial references. The pre-processed and augmented set of 

training images are then fed to the CNN network whose 

architecture is described in the next sub-section. 

 

3.3 EfficientNet v2-S Architecture 
 

Since CNNs can learn features within training images and 

classify appropriately using both visual and spatial 

information, they are a suitable choice for our proposed 

architecture instead of using filters to perform image 

classification. We employ the technique of transfer learning 

where the network is first pretrained on a large-scale dataset, 

typically, ImageNet [6], and the learned weights of the 

parameters are used as a starting point to optimize the cost 

function generated using the given small dataset. This works 

under the hypothesis that spatial features like edges, curves, 

and so forth, that are learned using a large-scale dataset can 

be translated to smaller-scale datasets. We leverage this 

property to effectively deploy the EfficientNet v2-S 

architecture for classifying the images in our database of 

Brain MRI scans. 

 

EfficientNet [8] is a family of CNNs which employ various 

scaling methodologies to uniformly re-scale each dimension 

of the input using a dynamic coefficient called compound 

coefficient. Usually, in a generic CNN, these dimensions 

(height, width, number of channels) are randomly scaled 

with factors learned during the training procedure. 

EfficientNet makes this process uniform by fixing the 

scaling coefficient using methods described in Figure 2. We 

can intuitively verify this by assuming that if the resolution 

of input image is considerably high, the number of layers 

required within the network would also be larger to increase 

the receptive field. This also means that we require more and 

more channels to learn the patterns existing within the 

receptive field. The base network is designed using inverted 

bottleneck residuals, squeeze and excitation blocks proposed 

in MobileNet v2 [9]. 

 

 
Figure 2: Scaling techniques used in EfficientNet [8] 

 

EfficientNet v2 architecture improvises upon EfficientNet in 

terms of parameter efficiency and time required by the cost 

function to reach global minimum. We leverage the S 

configuration of EfficientNet v2 architecture which is the 

most light-weight configuration containing a total of 22M 

training parameters requiring a total of 8.8B FLOPs. This 

configuration ensures that we can design and deploy our 

model on a computational platform with minimal 

requirements in terms of both memory and efficiency. 

Moreover, the EfficientNet v2-S configuration takes around 

7.1 hours to train on the ImageNet dataset which is relatively 

quick in comparison to other state-of-the-art classifiers like 

Vision Transformer ViT-L [10], which takes around 172 

hours for convergence. 
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Table I: EfficientNet v2-S architecture 
Stage Block Channels Layers 

0 3x3 Conv 24 1 

1 3x3 Fused-MBConv1 24 2 

2 3x3 Fused-MBConv4 48 4 

3 3x3 Fused-MBConv4 64 4 

4 3x3 MBConv4 128 6 

5 3x3 MBConv6 160 9 

6 3x3 MBConv46 256 15 

7 1x1 Conv + Pooling + FC 1280 1 

8 Flatten 32000 1 

9 Dense 1024 1 

10 Dropout 1024 1 

11 Dense 1 1 

 

Table I summarizes the architecture of EfficientNet v2-S 

used in our research work. EfficientNet v2 accepts a 

dynamic input size, therefore, we set it to 150 x 150 based 

on our dataset. The input is relayed to the first stage 

containing a 3x3 Convolution block with stride 2 and total of 

24 channels. The feature maps generated using this single 

Convolution block are fed into 10 layers of Fused-MBConv 

blocks of kernel size 3x3 each. These blocks have varying 

strides of 1, 2, and 3 across 3 stages, and contain 24, 48, and 

64 channels respectively. The next 3 stages contain 

MBConv blocks each, with large number of channels. There 

is a total of 30 such layers followed by a single 1x1 

Convolution, Pooling, and Fully connected layer. The input 

number of channels for this final stage is set to 1280. Since 

we are performing transfer learning, we remove the top layer 

of EfficientNet v2-S and add a few custom layers. First, we 

flatten the output to a total of 32000 pixels and apply a 

Dense block of dimension 1024. To regularize the training 

process and re-parametrize the input, we add a Dropout layer 

with a threshold probability of 0.2. Finally, we attach an 

output layer with Sigmoid activation to output the 

probability having a single dimension as it is a binary 

classification problem.  

 

3.4 Implementation steps used  

 

To train the architecture deployed in our work, we split the 

dataset into 3 sets used for training, validation and testing 

with 161, 41, and 51 images each respectively. The 

pretrained weights of EfficientNet v2-S on ImageNet were 

pre-downloaded using TensorFlow library and the network 

was further fine tuned across all the layers from start to end 

after addition of stages 8 to 11. The CNN was trained for a 

total of 20 epochs with a batch size of 16 images. We used 

binary cross entropy loss as our cost function and Adam 

optimizer with a learning rate of 1e-4. The end-to-end design 

and development for this research has been done in Jupyter 

Notebook hosted on Kaggle Cloud ML Engine. 

 

4. Experimental results  
 

We present the results from the quantitative analysis 

performed on the test set of the given brain MRI database 

using three key metrics: total number of trainable 

parameters, time taken for inferencing per step, and 

classification accuracy. Total number of trainable 

parameters are simply the weights whose values are learned 

and updated during the optimization procedure of the CNN. 

The key reason for optimizing for the number of weights is 

due to the fact that the overall size of the model is directly 

proportional to the total number of weights it has to update 

as these are saved as floating points in the computer 

memory. Finally, to compare the efficacy of tumor 

classification, we simply compute the classification accuracy 

using Equation 1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
                    (1) 

      

    

Here, TP denotes the total number of true positives detected 

by the CNN, i.e., images classified as tumorous which were 

truly malignant. TN is defined as true negatives, which is the 

total number of images detected benign which were truly 

benign. Similarly, FP (false positives) and FN (false 

negatives) are incorrectly classified images with total 

number of tumorous detections which were truly benign and 

total number of benign detections which were truly 

malignant, respectively. We perform quantitative analysis 

while comparing our key CNN EfficientNet v2-S, with 

various state-of-the-art image classifiers, namely: Inception 

ResNet v2 [11], Inception v3 [12], MobileNet v2 [9], 

ResNet-101 v2 [14], and Xception [15]. These classifiers 

demonstrate extremely strong performance when it comes to 

image classification, specially, on the large-scale ImageNet 

dataset. Therefore, we compare the performance with our 

proposed methodology based on EfficientNet v2-S to 

understand the pros and cons of our CNN-model 

architecture. 

 

Table II 
Algorithm # Params ↓ Inference Time / Step ↓ Accuracy ↑ 

Inception ResNet v2 68.43M 325ms 92.15% 

Inception v3 40.64M 125ms 86.27% 

MobileNet v2 34.99M 45ms 82.35% 

ResNet-101 v2 94.95M 447ms 86.27% 

Xception 73.23M 278ms 86.20% 

EfficientNet v2-S (Recommended) 52.94M 237ms 98.03% 

 

Table II summarizes the quantitative analysis performed in 

this research on various CNN architectures along with our 

proposed methodology denoted by „EfficientNet v2-S‟. It is 

evident that our architecture choice (shown as 

“recommended”) outperforms various other state-of-the-art 

image classifiers in the transfer learning task of identifying 

tumor within Brain MRI scans by achieving a high 

classification accuracy of 98.03%. Inception ResNet v2 

achieves performance closer to our architecture, however, 

takes more size and runtime to compute the classification 

decision. EfficientNet v2-S requires 22.6% less memory in 

terms of trainable parameters and runs faster by 88ms per 
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step in comparison to Inception ResNet v2. MobileNet v2, 

which is one of the most efficient and light-weight CNN, 

performs the classification task on our dataset by using only 

34.99M parameters and 45ms, however, fails to achieve high 

classification accuracy as the model fails to generalize on 

our test set. Therefore, our proposed approach detects 

tumors in a set of unseen images with high accuracy. least 

computational requirement, and faster runtime, making it a 

suitable CNN architecture to be deployed on the mobile 

systems. 

We also plot the training as well as validation curves for the 

CNN architectures of our choice in order to understand the 

optimization process and how well the architecture 

generalizes to the unseen validation set. Figure 4 showcases 

the change in training accuracy per epoch along with the 

reduction in objective function‟s cost or loss across each 

epoch. Similar curves are depicted in Figure 5 for the 

validation set. 

 
Figure 4: Training curves 

 

 
Figure 5: Validation curves 

 

To benchmark the advantage of feeding images directly into 

a CNN instead of using traditional filter-based feature 

classification using statistical ML classifiers, we compare 

the predictive performance on the same dataset by using 3 

powerful algorithms: K-Nearest Neighbors (K-NN), 

Decision Trees and SVM. For this, we create a separate 

pipeline which pre-processes the dataset and passes it on 

through several filters to extract some features from the 

image data. First filter called Gray-Level Co-Occurrence 

Matrix (GLCM) examines the existing textures within the 

image by monitoring the spatial relational of each pixel. It 

basically computes the count of pair of pixels containing 

specific values and a set spatial context, generating a matrix 

of feature transformations. We also use a technique called 

Local Binary Pattern Feature Detection (LBPFD) [15] which 

describes the texture information of each image in the form 

of threshold-based neighboring values of the current pixel. 

With this approach, we are able to capture spatial patterns 

within the grayscale image with the help of the contrast. 

Once we generate the features, we simply feed them into 

statistical classifiers to compute classification accuracy on 

the test set. 
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Figure 6: Accuracy comparison OF CNN architectures with ML classifiers 

 

Figure 6 compares the classification accuracy of CNN-based 

methods and ML classifiers. Our recommended approach 

based on EfficientNet v2-S clearly outperforms ML 

Classifiers by achieving 98.03% classification accuracy. ML 

classifiers fail to achieve comparable accuracy to other 

CNN-based architectures. This indicates that filters fail to 

capture the spatial context and representation-based features 

within the learning task of brain tumor detection, and 

therefore, CNNs are superior in performance to ML 

classifiers. 

 

5. Conclusion  
 

We leveraged the rich information present in the biomedical 

imaging data of Brain MRI scans to identify whether a given 

Brain MRI has tumor or not. Our research focused on 

benchmarking various CNN algorithms to analyze the visual 

features in MRI images and learn patterns to diagnose a 

patient efficiently and accurately. We proposed an end-to-

end pipeline based on state-of-the-art EfficientNet v2-S 

architecture to classify a given brain MRI scan as benign or 

malignant. Our architecture achieved a high classification 

accuracy of 98.03%, while requiring minimal memory based 

on 52.94M trainable parameters. The proposed architecture 

performs inferences in 237ms per step, which is fast in 

comparison to state-of-the-art image classifiers like 

Inception ResNet v2, Xception, etc. as depicted through our 

quantitative evaluation. We also showcased the superiority 

of CNN models in image classification when compared to 

traditional ML Classifiers by performing an extensive 

ablation study. In conclusion, we studied the design of 

various CNNs and ML classifiers to propose a highly 

efficient and accurate architecture to identify brain tumors.  

 

6. Limitations and Ideas for future research 
 

Though statistically significant, the training set of ~250 

images and the testing set of 5 images could be further 

enhanced, especially we could add more images for testing 

the predictive accuracy. In addition, the input images resized 

to 150 X 150 could be augmented further in the subsequent 

research to achieve even higher accuracies for a few of the 

architectures studied. Finally, a test-run along with a trained 

physician or a radiologist could further help get to 

qualitative insights on the predictive accuracy, along with 

any obvious „misses‟ that the model may have done. 

 

Towards future research, we could explore the application of 

GenAI (generative AI) through using Vision-Language 

foundation models to the brain MRI dataset to be able to 

create and train an engine/capability to re-create the key 

aspects of abnormalities detected from the CNN-based 

diagnosis s into reliable visual images.  This has been done 

for the Chest X-ray generation [16]. 
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