
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Performance Testing: Methodology for Determining

Scalability of Web Systems

Deep Manishkumar Dave
1
, Amit Bhanushali

2

1Independent Researcher, Massachusetts, United States of America

2Independent Researcher,West Virginia, United States of America

Abstract: This research focuses on the critical role of performance testing, particularly load testing, in evaluating web systems'

robustness under varying loads. It highlights the methodology centered on request and response times, using https://mu.ac.in/ as an

example. The paper recognizes the broader significance of performance testing in life-critical and mission-critical domains. It presents

key findings from a college website load testing case study, demonstrating the impact of increased user loads on response time and

scalability limitations. The study underscores the importance of systematic load testing in identifying performance bottlenecks and

advocates its adoption for ensuring optimal web system scalability.

Keywords: Performance testing, Application performance, Cloud computing, Web testing, Web application, Load testing, Request time,

Response time

1. Introduction

In the dynamic realm of the web, user expectations for swift

and reliable experiences are paramount. The modern user,

faced with a deluge of online options, is quick to abandon a

website that takes too long to load. The vitality of swift web

applications is especially pronounced in the context of

today's businesses, where online presence is integral to

operations. Every organization relies on the internet to

conduct its online business, emphasizing the critical

importance of optimal web application performance [10][7].

Performance, in this context, refers to the ability of a system

to deliver information accurately and rapidly, even amidst

high multi-user interactions or constrained hardware

resources [13]. Recognizing this, the software development

life cycle (SDLC) places considerable importance on

software testing, a process aimed at discovering and

eliminating software errors [2]. The role of software testing

extends beyond bug detection; it is pivotal in enhancing

software reliability and overall quality [1]. For web

applications, this specialized domain is termed web testing,

encompassing various types as depicted in Figure 1.

The crux of a successful product lies in the harmony of two

essential elements—functionality and performance.

Functionality encapsulates what the application enables

users to accomplish, while performance refers to the

system's ability to execute transactions rapidly and

accurately, irrespective of the challenges posed by high user

interactions or limited hardware resources.

Unfortunately, application failures due to performance-

related issues persist, often stemming from a lack of robust

performance testing methodologies. Pre-deployment

performance testing is pivotal in preventing these issues,

ensuring the availability, reliability, and scalability of

applications in the real-world scenarios they are destined for.

This paper delves into the critical realm of performance

testing, with a specific focus on load testing—a technique

instrumental in evaluating the scalability of web systems.

The study undertakes an experimental approach, subjecting a

college website to varying loads simulated by virtual users.

Through meticulous analysis of key metrics such as response

time and throughput, the research unravels the impact of

escalating concurrent users on system performance.

The ensuing sections of this paper unfold a comprehensive

exploration of load testing concepts, metrics, and tools in

Section 2. Section 3 meticulously details the experimental

load testing methodology, followed by a thorough analysis

of results in Section 4. Conclusions and avenues for future

research are presented in Section 5. This study

fundamentally underscores the indispensability of systematic

load testing in not only determining but also enhancing the

scalability of web systems, ensuring their resilience under

the anticipated peaks of user interactions.

Functional Testing:

Functional testing serves the primary purpose of examining

all links on a webpage, encompassing testing internal

connections, validating outgoing links from each page, and

identifying any broken connections. Additionally, it involves

cookie testing, where cookies - small files stored on user

machines for login sessions - are scrutinized. This testing

method evaluates browser options by enabling or disabling

cookies. Forms, crucial for gathering information from users

and maintaining communication, are also subjected to

testing. This includes verifying the creation, viewing,

deletion, or modification of forms and thoroughly examining

authentication on all fronts. Furthermore, functional testing

delves into database testing to ensure data integrity within

the web application. This comprehensive approach to

functional testing ensures the robustness and reliability of

various elements within the web application.

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1254

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 1: Web testing methods

2. Performance Testing Concepts

Performance Testing, often interchangeably referred to as

Load Testing, constitutes a strategic process wherein an

application undergoes simulated user interactions facilitated

by a load-generating tool. The primary objective is the

identification of system bottlenecks, with a central focus on

testing for scalability, availability, and performance, both in

terms of hardware and software considerations.

In this comprehensive evaluation, various resource aspects

are scrutinized, including CPU usage, memory utilization,

cache coherence, data consistency (pertaining to main

memory, virtual memory pages, and disk), power

consumption, and network bandwidth usage. These elements

are systematically monitored and reported as integral

components of the performance testing regimen.

Furthermore, the evaluation extends to critical metrics such

as response time and usage patterns associated with routers,

web servers, and application servers (app server). An

exhaustive analysis for performance is not a one-time

endeavor; rather, it needs to be a recurring application at

each stage of the product development lifecycle.

Collectively, system performance emerges as a

comprehensive figure of merit. This includes an evaluation

from various angles, encompassing response time,

throughput, availability, reliability, security, scalability, and

extensibility. By considering these multifaceted aspects,

performance testing becomes an indispensable tool in

ensuring the robustness and optimal functioning of an

application across diverse operational scenarios.

2.1. The need for the Performance Testing

In the contemporary landscape of e-business and the

escalating migration towards cloud platforms, the demand

for competitive web services is more pressing than ever. For

a website to thrive in this competitive milieu, it must meet

certain criteria: pages should load instantaneously, web

transactions must be efficient and accurate, and downtime

should approach zero. The consequences of downtime are

not merely inconvenient but can be exorbitantly expensive.

A Gartner report indicates that the average cost of unplanned

downtime for a mission-critical application is approximately

$100,000 per hour.

In the evolving landscape of online consumer and B2B

marketplaces, the competition is fierce. Web-based

applications need to seamlessly handle multiple

simultaneous users, engaging in various transactions or

interactions. To ensure the delivery of such service levels,

enterprises providing these services must employ application

load-testing tools. Highlighting the significance of this, a

Jupitor Media Metrix consumer survey suggests that more

than 46% of users abandon websites due to technical and

performance issues.

The imperative for performance testing is even more

pronounced in life-critical situations, particularly in systems

integral to procedures like heart surgery or angioplasty. In

the critical moment of an angioplasty, for instance, where a

balloon is inflated inside an artery, any malfunction during

the next 60 seconds could lead to a fatal heart attack.

Another example lies in genome-based applications, such as

drug discovery systems, where a malfunction in the process

could have far-reaching consequences across generations.

In essence, the significance of performance testing extends

beyond the realm of competition and cost implications—it is

a critical measure ensuring the reliability, efficiency, and

safety of systems that play pivotal roles in life-critical

scenarios and groundbreaking scientific endeavors.

2.2. The Benefits of Performance Testing

Performance testing yields a multitude of advantages across

business, project, process, and product dimensions. The

following highlights key benefits:

 Better Reliability: Performance testing mitigates

deadlocks, enhances response time, and ensures

scalability, fault tolerance, and recovery from failures.

This contributes to overall system reliability.

 Shorter Time to Market: For large enterprise

applications, performance testing significantly reduces

the time to market. By treating performance

requirements as high-priority, non-functional aspects,

the time-to-market is improved, leading to a

considerable reduction in the test cycle and defects.

 Memory Problem Management: Performance testing

effectively identifies and addresses memory-related

issues such as leaks, overflows, data inconsistencies,

and byte order violations.

 Secure Software: By detecting memory overflows and

other resource vulnerabilities, performance testing plays

a crucial role in ensuring the security of both web-based

and desktop applications.

 Benchmarking: Performance testing enables the

benchmarking of various architectural options, allowing

for a comprehensive assessment of the Quality of

Service.

 Future Expansion Facilitation: Accurate prediction of

required system and network capacity, facilitated by

performance testing, aids in planning for future

expansions with precision.

 Service Level Tests: Performance testing supports the

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1255

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

testing of different service levels to effectively address

challenges post-deployment, contributing to acceptance

testing.

Hence, performance testing emerges not only as a quality

assurance measure but as a strategic asset that enhances

reliability, security, and overall efficiency while facilitating

streamlined processes and future scalability.

2.3. Factors enabling Successful Load Testing

The execution of performance testing is often intricate,

influenced by several factors that can either streamline or

prolong the process. The complexities arise from intricate

tools, limited experience, and inflexible testing tools.

Successful load testing hinges on adequately addressing

these challenges, necessitating well-trained testers proficient

in tools, versed in the application domain, and possessing a

foundational understanding of design, architecture,

technology influences, and performance testing

methodologies.

Key steps in preparing for a performance test include script

preparation, workload modeling and scheduling, and script

execution. The efficacy and success of load testing are

significantly impacted by the support provided by the chosen

load-testing tool. The following factors contribute to the

success of load testing:

 Testing at Varied Speeds: Evaluating performance

across different connection speeds reveals resource

utilization disparities. However, this might limit the

number of virtual users accessing a website

simultaneously.

 Testing on Multiple Browsers: Single-browser load

testing is insufficient. Ensuring error-free performance

necessitates load testing on various browsers to

comprehend diverse user experiences.

 Creating Complex Scenarios: Simulating authentic

user experiences requires the formulation of intricate

scenarios. The load testing company must design

scenarios closely mirroring transactions performed by

real users.

 Extensive Scripting Possibilities: A comprehensive

test scenario demands a multitude of scripts to ensure

thorough exercise of the system.

 Clear Reporting: Robust reporting encompassing error

logs, response times, throughput information, resource

utilization, and network monitoring is essential for

optimizing system performance.

 User-Friendly Tools: The developed tools should be

user-friendly and intuitive, reducing the cost and effort

associated with load testing while maintaining

effectiveness.

 Performance Prediction: Advanced capacity planning

allows modeling system behavior and forecasting

workload characteristics. However, predicting real-

world performance requires a high-scale factor for

accuracy.

The success of load testing relies on a holistic approach,

encompassing technical proficiency, comprehensive testing

strategies, and the deployment of tools that align with user

needs and system intricacies.

2.4. Factors enabling Successful Load Testing

A load-testing tool serves as a dynamic simulator,

replicating the actions of actual users through the utilization

of "virtual" users. This tool comprehensively captures and

analyzes the site's performance under varying loads,

providing crucial insights into the experiences of virtual

users. Typically, load-testing software is distributive,

deployed across multiple servers operating simultaneously,

with each server emulating numerous virtual users.

Often, load-testing tools from vendor companies include

proprietary browsers tailored to the specific testing needs of

individual clients. Concurrently, ongoing records detailing

virtual users' interactions with the test site, encompassing

response times, and encountered errors, are meticulously

preserved for post-production analysis.

To enhance diagnostic capabilities, many testing companies

offer remote monitoring of client websites, recording actual

error messages experienced by virtual users for subsequent

review. Detailed logs are generated, chronicling each user's

experience, facilitating later comparisons with CPU and

database testing data obtained during the test to pinpoint and

resolve issues effectively.

One notable feature of load-testing tools is the ability to

externally assess web-based applications from multiple

points of presence. This evaluation helps identify if the

quality-of-service provider's connectivity is contributing to

system slowdowns. For instance, consistent network

slowdowns at 6 Mbps when an expected bandwidth of 10

Mbps is specified might indicate issues such as overloading,

underutilization, or improper usage of the network.

An invaluable attribute of load/performance testing tools is

their capability to furnish insights into the performance of

the client network's infrastructure. Firewalls, routers, and

load balancers, interconnected in a network, may

inadvertently create bottlenecks. For instance, a firewall

might lack sufficient throughput to handle simultaneous

users adequately. By simulating real user activity, load-

testing tools prioritize the assessment of application and

database performance under stress, providing comprehensive

evaluations of system capabilities.

3. Application Performance

Performance objectives, typically centered around response

time and throughput under specific workloads and

configurations, constitute critical benchmarks. Adopting a

proactive approach to performance testing, starting early in

the software development life cycle and validating at various

stages, including software requirements, is an established

best practice.

Considered under the umbrella of non-functional testing,

performance testing demands meticulous attention during

the requirement specification stage. Here, performance

objectives undergo analysis to ensure completeness,

feasibility, and testability. Feasibility is assured through

prototyping, simulation, or other modeling approaches.

Transitioning into the design phase, performance

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1256

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

requirements are meticulously applied to individual design

components, with simulation, prototyping, and modeling

guiding the analysis. Throughout development and

deployment, performance analysis remains a focal point at

every testing level, necessitating the creation of test data

tailored to performance testing scenarios. Modern

microprocessors often employ profile-guided performance

optimizations for tuning.

Memory, a critical resource for both system and application,

demands careful management to optimize overall

performance. Reclaiming memory after usage significantly

influences system efficiency. Technologies like

COM/DCOM, J2EE, or .NET incorporate built-in garbage

collector routines utilizing popular algorithms such as

simple mark-and-sweep, generation-based, or advanced train

algorithms [5]. Given that memory-related issues, including

leaks, overflow, and byte order violations, can lead to major

performance problems and even security breaches, constant

monitoring and reporting through diagnostic reports are

imperative.

In the era of distributed and concurrent systems, including

commercial multi-cores and Network-On-Chip architectures,

memory-related challenges such as cache coherence and

consistency become pivotal performance parameters.

Addressing these concerns requires strategic measures, and

automated tracking using hardware-software co-design

proves advantageous [2]. Application performance is the

aggregate outcome of these multifaceted aspects,

necessitating well-planned tests that consider the intricate

interplay of various performance parameters.

Figure 2: Stages of product development

3.1. Sources of Performance Issues - Concise Overview

Efficient testing necessitates a tester's awareness of primary

sources of performance problems. The following outlines

key sources of performance issues across various facets of a

system and its architecture:

 Technologies: J2EE is esteemed for scalability;

however, intensive threading, rich environments, and

heavy transactions can induce performance overhead in

Java/J2EE environments. Conversely, .NET and

COM/DCOM face constraints from a heavy memory

footprint, tightly coupled nature, and inadequate load

balancing support.

 XML Usage: Widely used for interoperability, XML's

storage, retrieval, and processing in the critical path can

introduce delays. Navigation through XML using

Document Object Model (DOM) incurs heavy memory

use, while XPath navigator is lighter and faster for

regular usage.

 Database Considerations: Placing a database server on

a web server can lead to severe performance issues and

security threats. The use of stored procedures can

alleviate network traffic.

 Language Impact: While Java is considered

performance-oriented, its use of synchronization

statements between threads may cause deadlocks, a

potential system breakdown. Servlets, comprising

multiple threads, are susceptible to memory leaks and

deadlocks.

 Network Challenges: Common performance problems

include network traffic and communication delays. High

Speed Ethernet (HSE) combined with high-speed H1

field bus protocol offers a comprehensive solution.

 Protocol Awareness: Intelligent leveraging of network

protocols is crucial. For example, SOAP protocol may be

slower and heavier than HTTP.

 Wireless Protocols: Bluetooth's short-distance, high-

speed operation faces challenges like connection failures

due to scalability issues or interference with other

standards like Wi-Fi.

 Batch Processing Consideration: Utilizing batch

processing, normalized data, and disconnected data

objects like DataSet in .NET can significantly enhance

network performance.

 Internationalization Challenges: Handling resource

bundles in local languages may require more storage, and

conversions may lead to memory issues. Careful design

is needed for optimization in performance and scalability,

particularly when dealing with internationalization

considerations.

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1257

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 Security Impact: Security features such as firewalls and

data encryption/decryption can introduce performance

problems, including increased access delays.

 Server Platforms: Efficient servers like DELL or HP

integrity servers optimize performance, emphasizing the

importance of their usage for enhanced system

performance.

 Algorithmic Impact: Imaging algorithms, especially in

medical imaging, demand careful consideration for

performance and correct visualization effects. Striking a

balance between performance and visualization effects is

critical to avoid resource problems and system crashes.

3.2. Strategies for Performance Issue Remediation

To effectively address performance problems, consider the

following strategic approaches:

 Establishing a Comprehensive Test Lab: Develop a

test lab that replicates the actual deployment

environment, complete with substantial data storage, and

conduct thorough tests. While this approach closely

simulates real scenarios, it may not perfectly emulate the

geographically dispersed nature of applications like ATM

banking, SAP, and wireless mobile network applications.

 Infrastructure Enhancement: Improve infrastructure

by upgrading servers and transitioning operating systems,

such as upgrading from Windows 2000 to Windows

2003. A case study demonstrated a 36% increase in

server utilization for an average of 25-30 users, with no

observed delays.

 Leveraging Automation Tools: Employ automation

tools for performance, load, and stress testing. Utilizing

standard performance/load test automation tools during

the testing phase or earlier stages can significantly

alleviate performance problems. Sometimes, functional

tests...

These strategic measures provide practical and impactful

ways to proactively manage and mitigate performance

challenges across various applications and systems.

4. Related Work

Guo and Chen [5] proposed a performance testing model for

web services, emphasizing testing capacity and automation.

Their model includes a multi-machine joint testing approach

for load balancing and a simulation approach for a realistic

web services environment.

Büchler and Oudinet [3] introduced SPaCiTE, a security

testing tool based on model checking for web applications. It

identifies vulnerabilities and weaknesses in web applications

by generating attacks and validating them against the system

under test.

Vani and Deepalakshmi [17] discussed the importance of

load testing in evaluating web application performance.

Their work emphasized how load testing addresses quality

of service (QoS) influences, response time, and throughput,

meeting business requirements at different obligation stages.

Stoyanova [15] presented TASSA, an integrated testing

framework for end-to-end testing of Business Process

Execution Language (BPEL) orchestrations. TASSA

supports automation of test condition generation,

implementation, and supervision for web services defined

with BPEL.

Sabharwal and Sibal [12] conducted a literature survey on

web application testing methods from 2000 to 2014. Their

comparative study focused on various testing techniques,

with an emphasis on functional and performance testing.

Dhiman and Sharma [4] compared three performance testing

tools—Apache JMeter, Grinder, and HttpRider-based on

their response times. They highlighted the importance of

performance testing for web services, considering factors

like response time and scalability.

Lee and Chen [8] developed automated waiting mechanisms

to enhance automated record-replay testing. These

mechanisms dynamically specify waiting times, reducing

errors and enhancing efficiency in artificial discrimination

during test execution.

In summary, the related work showcases a variety of

approaches, tools, and frameworks for automated, model-

based testing of web applications, covering aspects such as

performance, security, and functional testing.

5. Performance Testing

When a web application takes minutes to load, it becomes

frustrating, especially when compared to other sites that

download similar content in seconds. If someone attempts to

log in to a web application and encounters a "server busy"

message, it can be aggravating. Similarly, when a web

application responds in some situations but goes into an

infinite wait state in others, it becomes disconcerting. These

issues are performance-related, and performance testing

plays a crucial role in identifying and addressing such

defects. Performance testing is instrumental in uncovering

defects stemming from network bandwidth weaknesses,

server-side limitations, operating system capabilities, and

other software or hardware issues. Its purpose is to simulate

real-world loading scenarios, such as an increase in the

number of online transactions, data volume, or simultaneous

users accessing the web application [11].

Figure 3: Performance Testing steps

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1258

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The primary advantage of performance testing is its ability

to govern the throughput and response time of a web

application. Throughput measures the number of

transactions per second an application can handle during the

test, indicating the volume of transactions produced over

time. It is influenced by factors such as the types of

transactions being processed, specifications of the host

computer, and processing overload in software [11].

Response time, on the other hand, is the time from sending a

user request until the application acknowledges that the

request has been completed, as detailed in the next section

[14].

Performance testing tools are utilized to determine the time

required for the system to execute a task [18]. It ensures that

the non-functional requirements specified in the Software

Requirement Specification (SRS) document are met by the

system. Nowadays, website builders and developers

recognize the essential nature of testing performance before

deployment [19]. Performance testing encompasses load and

stress testing, with load testing specifically focusing on

response times. The main goal of load testing is to assess

whether the application can withstand increasing loads on

the server, a topic that will be explored in detail in the next

section. Stress testing, while similar to load testing, goes

further by pushing the server beyond its normal load limits.

The primary objective of stress testing is to evaluate the

system's behavior under extreme conditions. The following

Figure 2 illustrates the main steps of performance testing [6].

6. Load Testing

Load testing stands out as one of the most widely used

techniques for assessing performance. Its primary objective

is to define the anticipated peak load conditions and the

behavior of web applications. This testing method reveals

crucial insights into system behavior while managing the

specific load imposed by users [10]. The process of load

testing involves a gradual increase in resources. Initially, the

test loads the web application with a limited number of

virtual users and progressively scales up from normal to

peak, as illustrated below:

Load testing is instrumental in measuring the Quality of

Service (QOS) performance of the application, relying on

the actual behavior of customers. Interaction scripts are

constructed using a script recorder based on customers'

requirements. These scripts are then replayed by the load

generator module, potentially adjusted via test parameters in

contrast to the actual website.

Figure 4: Load Testing steps

The primary key to Quality of Service (QOS) is the response

time, which must be measured to understand how customers

perceive different aspects such as keyword search times and

page downloads. When defining response time, differences

between the base HTML pages' download time and other

components like images and ad banners should be

considered. Response time for web applications varies based

on factors such as the customer's internet service provider,

the testing site IPS, bandwidth, and the network route for

packet transmission from the customer to the testing

website. Measuring response time within specific time

windows and geographical locations provides a

comprehensive understanding, acknowledging that response

time is dependent on both time and space [10].

7. Conclusion

The landscape of performance testing has evolved

significantly, especially with the proliferation of applications

in critical domains like medical, healthcare, real-time, and

mission-critical sectors. While metrics like response time

and throughput may appear routine in typical scenarios, they

present formidable challenges in the context of mission-

critical applications and sophisticated technologies like

.NET, J2EE, and XML. Ensuring quality demands

adherence to standards, such as CMMi, FDA (Food and

Drug Administration)—a requisite for medical and health

applications—or industry-specific standards like MISRA,

tailored for communication, automotive, aerospace, and real-

time applications. The imperative is to initiate performance

testing early in the product development cycle to enhance

overall product quality. The rigorous demands of

contemporary applications necessitate vigilance,

standardized processes, and the incorporation of third-party

tools that align with established quality benchmarks. As we

navigate this evolving landscape, the importance of robust

performance testing practices becomes increasingly evident,

ensuring that applications not only meet but exceed the

performance expectations of diverse and demanding sectors.

References

[1] OpenGL (2012), ―OpenGL - The Industry Standard for

High Performance Graphics‖, www.opengl.org.

[2] H. Sarojadevi and S. K. Nandy (2011), "Processor-

Directed Cache Coherence Mechanism – A

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1259

http://www.opengl.org/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Performance Study", International Journal on

Computer Science and Engineering, Volume 3, issue 9,

3202-3206.

[3] HP(2010),―HPBringsAffordablePerformanceTestingtot

heCloud‖,HPwhitepaper,online-

http://www.hp.com/go/loadrunnercloud.

[4] Borland (2006), ―Choosing a Load Testing Strategy‖ ,

A Borland whitepaper. Tom Kelley (2006), ―The Art

of Innovation‖.

[5] R.L. Hudson and E.B. Moss (1992), ―Incremental

collection of Mature Objects‖, Proceedings of the

International Workshop on Memory Management,

Springer-Verlag, 388-403

[6] James S. Collofello (1988), ―Introduction to software

verification and validation‖, SEI curriculum module,

CMU.

[7] GlenfordMyers(1969),―TheArtofSoftwareTesting‖,Joh

nWiley.

[8] Bathla R, Bathla S (2009) Innovative approaches of

automated tools in software testing and current

technology as compared to manual testing. Glob J

Enterp Inf Syst 127–131

[9] Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S

(2015) The oracle problem in software testing: a survey.

IEEE Trans Softw Eng 507–525

[10] B¨uchler M, Oudinet J (2012) SPaCiTE—web

application testing engine. In: IEEE Fifth international

conference on software testing, verification and

validation

[11] Dhiman S, Sharma P (2016) Performance testing: a

comparative study and analysis of web service testing

tools. Int J Comput Sci Mobile Comput 507–512

[12] Guo X, Chen Y (2010) Design and implementation of

performance testing model for web services. In: 2nd

International Asia conference on informatics in control,

automation and robotics

[13] Kaushik M, Fageria P (2014) A comparative study of

performance testing tools. Int J Adv Res Comput Sci

Softw Eng 1300–1307

[14] Khan R, Amjad M (2016) Performance testing (load) of

web applications based on test case management.

Perspect Sci 355–357

[15] Lee S, Chen Y (2018) Test command auto-wait

mechanisms for record and playback-style web

application testing. In: 42nd IEEE international

conference on computer software and applications

[16] Maheshwari S, Jain DC, Maheshwari MS (2012) A

comparative analysis of different types of models in

software development life cycle. Int J Adv Res Comput

Sci Softw Eng 285–290

[17] Menascé DA (2002) Load testing of web sites. IEEE

Internet Comput 70–74

[18] Pressman R, Lowe D (2008) Web engineering: a

practioner’s approach. McGraw-Hill, Inc

[19] Sabharwal S, Sibal R (2015). A survey of testing

techniques for testing web based applications. Int J Web

Appl

[20] Sarojadevi H (2011) Performance testing:

methodologies and tools. J Inf Eng Appl 5–13

[21] Sharmila MS, Ramadevi E (2014) Analysis of

performance testing on web application. Int J Adv Res

ComputCommun Eng 2319–5940

[22] Stoyanova V (2013) Automation of test case generation

and execution for testing web service orchestrations. In:

IEEE Seventh international symposium on service-

oriented system engineering

[23] Teoh SH, Ibrahim H (2017) Median filtering

frameworks for reducing impulse noise from grayscale

digital images: a literature survey. Int J Future

ComputCommun

[24] Vani B, Deepalakshmi R (2013) Web based testing—an

optimal solution to handle peak load. In: International

conference on pattern recognition, informatics and

mobile engineering (PRIME)

[25] https://loadfocus.com/blog/2013/07/04/what-is-

throughput-in-performance-testing. Have been visited at

29 Nov18

[26] https://loadfocus.com/blog/2013/07/03/what-is-

response-time-in-performance-testing. Have been

visited at 02 Dec 18

Author Profile

Deep Manishkumar Dave, IEEE Member

OCR ID 0009-0000-3946-8944

Deep Manishkumar Dave, currently at LTIMindtree

and is involved with Johnson & Johnson's Depuy

Synthes Orthopedics Division. He is an acclaimed Digital

Transformation and IT System Reliability Expert. With an

impressive track record in Industrial IoT (IIoT) and digital strategy,

Deep has significantly enhanced operational processes and patient

outcomes in the medical device manufacturing industry. Deep's

mentorship and training of junior IIoT engineers highlight his

commitment to future talent development. His accolades, including

the Young Achievers Award and a Global Recognition Award,

reflect his impact and dedication to the field. Deep's influence

extends beyond his immediate professional sphere, evidenced by

his contributions to global forums and sustainable manufacturing

practices, along with advocacy for diversity and inclusion in tech.

Deep holds a Bachelor’s in Mechatronics Engineering and a

Masters in Engineering Management, providing him with a robust

foundation in both technical and managerial aspects of technology.

His passion for knowledge extends to research and academia,

having authored multiple research papers on pivotal topics such as

digital transformation, neural manufacturing, Industry 4.0 and 5.0,

IT system reliability, and human-robot collaboration. Deep's

expertise is further recognized through his role as a reviewer for

various scientific journals. He has also contributed numerous

technical articles to platforms like Dzone and other prominent

publications. His role as a judge in the Globee Business and

Leadership Awards showcases his expertise and recognition in the

field. As a senior coach and approved mentor on the ADPlist

organization, Deep demonstrates his commitment to guiding and

nurturing future talent in the technology sector.

Amit Bhanushali, IEEE Senior Member

OCR ID 0009-0005-3358-1299.

Amit Bhanushali is a highly accomplished software

quality assurance professional with over 22 years of

experience in the IT industry. He earned his Master's in Business

Data Analytics from West Virginia University in 2017. Based in

West Virginia, USA, Mr. Bhanushali is a Senior IEEE Member and

has significantly contributed to software testing research and

practice. His expertise spans automation testing, performance

testing, DevOps, and CI/CD implementation. He has also led

testing efforts in complex cloud environments. In addition to

testing, Mr. Bhanushali has authored several articles exploring

cutting-edge topics like artificial intelligence and machine learning.

His published research demonstrates his thought leadership and

impact on software quality engineering. Mr. Bhanushali’s

accomplishments have been recognized through prestigious

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1260

http://www.hp.com/go/loadrunnercloud

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 1, January 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

appointments. He serves as a reviewer for the Elsevier journal and

has been a hackathon judge. His contributions were further honored

in 2023 when he received the International Achievers' Award. With

his sustained record of excellence across software development,

testing, and research, Mr. Bhanushali continues to be an influential

leader in his field.

Paper ID: SR24121010827 DOI: https://dx.doi.org/10.21275/SR24121010827 1261

