
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

From Monitoring to Observability: Enhancing

System Reliability and Team Productivity

Jayanna Hallur

Sr Lead Engineer in Observability Engineering and Data Architect, Richmond, VA, USA

Abstract: Driven by microservices, cloud - native architectures, and distributed environments, IT systems become so complex that

traditional monitoring solutions usually fail to cope with state - of - the - art best - practice approaches toward system reliability.

Traditional monitoring, conceived for predefined metrics and reactive problem detection, cannot support diagnosing and preventing issues

in today's dynamic infrastructures. Observability makes up for these deficiencies by providing a fairly holistic view of the internal behavior

of an application using logs, metrics, and traces. While monitoring is majorly about system understanding, observability focuses on

understanding the internal states of systems for more proactive troubleshooting and optimization. This leads to quicker root cause

analysis, real - time views of system performance, and proactive resolution of incidents. This paper discusses the transition from

monitoring to observability, associated benefits, and real - world examples that demonstrate how observability improves system reliability

and boosts team productivity

Keywords: Monitoring, Observability, Reliability, Metrics, Traces, Logs, Performance, Troubleshooting, Site Reliability Engineer, Mean

Time To Detect, Mean Time To Resolution.

1. Introduction

In the modern IT environment, maintaining excellent

reliability is the mission critical for all every organization to

ensure the services are always available for enhanced user

experience, reliable user services, both internal and external

applications or customers. Organizations began adapting

monitoring of services as near time as possible through

technologies evolved in the last 1 - 2 decades. Monitoring

helps to understand if something is wrong, while

observability helps to understand why it is wrong. Together,

they provide a robust strategy for managing and maintaining

modern complex systems. . This paper also explores some

limitations of monitoring, the transition towards

observability, and how this transition enhances system

reliability by implementing comprehensive system analysis,

proactive incident management, and continued improvements

of reliability at high level.

2. Monitoring and its limitations

The changing IT systems deployment with adapting

distributed and micro service environments have significantly

increased the complexity of managing the health of all

services. Monitoring traditionally used to track the health of

services, systems, infrastructures and providing insights of

up/down, error counts, and other statistics. As a tradition of

monitoring systems, the organizations have adapted the

tracking system health, ensuring the availability and

performance of applications and its services. Monitoring

primarily focuses on predefined metrics and logs to detect

anomalies, but it often lacks the depth needed to troubleshoot

the complex failures in interconnected systems. Monitoring

can identify what is wrong, but struggles to provide

information for why, where, and how which are crucial for

resolution of the issues and restoring the services in the

dynamic environment [1].

a) Predefined Statistics

Monitoring mostly depends on predefined measurable metrics

from the product team, which works well for well understood

failure modes and metrics, but oftenly misses edge case and

dependency scenarios. For example, a micro service based

architecture might have hundreds of interdependent services.

When one service fails, the failure may cascade to other

services in unforeseen ways. A monitoring system tracking

CPU usage, Memory usage, Disk IO or error logs may not

provide information on how this failure propagates [2].

b) Static Alerting

Alert is one of the automated ways for support teams to get

notified when some unexpected metrics are noticed or based

on certain basic conditions. Unexpected metrics such as CPU

greater than certain percentage, request count dropping below

certain threshold, etc. Some basic conditions like search for

specific error texts. But, in the dynamic systems the status

alert thresholds often leads to either too many false positives

or fail to detect the early signs of problems. In every

organization, alert fatigue is common with support

overwhelmed by redundant or irrelevant alert notifications,

which makes it difficult to notice the actual issues. Hence,

monitoring is of a reactive nature in identifying the issues in

the systems or services.

c) Lack of Root Cause Analysis Details

With traditional monitoring, it is only possible to get insight

into the health of systems or some predefined well known

metrics like latency, error rate, cpu usages, etc but not the

underlying causes. For example, if the error rate of a service

goes high, the monitoring system will flag an increased error

rate over the time, but it won’t provide enough details for us

to know whether the issue lies in a service request,, an

overloaded CPU, or a misconfigured network, etc.

3. The transition towards Observability

As organizations offer more and more services to their

customers or expansion of their services, it requires managing

Paper ID: SR241004083612 DOI: https://dx.doi.org/10.21275/SR241004083612 602

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

the increasing complexity of the distribution systems. The

traditional monitoring provides insufficient capabilities for

maintaining highest reliability required for the increasing

modern business and customer satisfaction. Observability

provides deeper insights into system behavior, allowing teams

to detect, diagnose, and resolve issues more efficiently [3].

Observability transforms the traditional monitoring by

focusing on the internal state of each system and services. The

observability enables teams to check beyond the predefined

metrics. This shift is very crucial for handling the complexity

of modern systems.

a) Three Pillars Of Observability

Observability is the ability to measure a system's internal

states by looking at its outputs. If a system's current state can

be determined solely from information from outputs, such as

sensor data, then it is said to be observable [7].

In the modern distributed systems, observability is a crucial

aspect for maintaining highly reliable systems, applications

and services. As there are plenty of monitoring tools available

in the market or inhouse development tools by many

enterprises, the tools and technology for observability are

increasing over the last few years.

Observability is a way to get insights into the whole

infrastructure. It is essential for the operations team. It means

assembling all fragments from logs and monitoring tools and

organizing them in such a way that gives actionable

knowledge of the whole environment, thus creating insight. It

is a combination of multiple items to create a deep

understanding of the actual health, real issues, and what

should be done to improve the environment and troubleshoot

at a root level [7].

Observability relies on these three types of telemetry data:

logs, metrics and traces. Each provides a different perspective

on system behavior [4]. OpenTelemetry, also known as OTel,

is a vendor - neutral open source Observability framework for

instrumenting, generating, collecting, and exporting telemetry

data such as traces, metrics, and logs.

Logs: Time - stamped records of events that help engineers

understand historical system behavior.

Metrics: Quantifiable measurements of system performance,

such as CPU usage, memory consumption, or request counts.

Traces: Data that follows a request as it moves through a

system, offering insights into how different services interact

with one another.

Figure: Logs, Traces and Metrics for Observability

As indicated in the above diagrams, with the help of logs,

traces and metrics from the applications, it is possible to

transition to observability for the benefits listed and explained

in the below section.

b) Benefits of Transitioning to Observability

Transitioning from traditional monitoring to observability has

several advantages that addresses the limitations mentioned

in the above monitoring sections. Transitioning to

observability also comes with few challenges that need to be

gradually addressed which will be discussed in the later

section of this document. By adapting observability in Site

Reliability Engineering [9], following are some of the

benefits.

Proactive Problem Detection: By gathering logs, traces and

metrics into single observability tools, the team can detect the

anomalies and potential problems before those impact the

health of the services which may lead to outages of the

services. By continuous ingestion and monitoring of logs,

traces and metrics in near real time, can provide detailed

insight into the service behaviors, any required statistics, and

to detect any unusual patterns. Observability enables teams to

quickly identify the root cause by providing a comprehensive

view of the system behaviors through logs, metrics and traces.

Reduce Meant Time To Detect (MTTD): Services of any

applications might degrade sometime due to many

circumstances like sudden increase in the request or network

issues or resource unavailability in the system and many

more, but how soon the issue is detected is critical part of Site

Reliability Engineering [9]. By correlating logs, traces, and

metrics when an incident occurs, the observability tools help

to identify the root cause more quickly and cause of the issue.

Traces can track the journey of individual requests through

systems which helps to identify the bottlenecks, failures of

specific services, and cause of the failure.

Reduce Mean Time to Resolution (MTTR): Failure or

degradation of services are expected as growing complex

deployment strategies to meet on- demand and also

microservices. Once the root cause for the issues have been

identified, the next immediate task is how fast the Site

Reliability Engineering team can resolve the service.

Observability allows for faster incident response by providing

actionable insights into system behavior. The correlation of

logs, metrics, and traces enables teams to reduce the time it

takes to diagnose and fix issues.

Paper ID: SR241004083612 DOI: https://dx.doi.org/10.21275/SR241004083612 603

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Improves the team productivity:

Observability significantly improves the team productively

by enhancing the ability to detect the issue, diagnose the issue

and resolve the issue efficiently with a comprehensive view

of systems behaviors. With observability, SRE team doesn’t

have to wait for the failures like in traditional monitoring,

with continuous monitoring of telemetry data enabling the

team to detect the anomalies or issues before the actual issue

occurs.

Also, in addition to the above benefits, observability also

provides all the benefits of traditional monitoring.

4. Observability Tools and Technologies

Let's talk about some observability tools and technologies for

Observability. As observability is in the process of growing

across many organizations, the new tools are evolving and are

exploring phases to production phases. There are some

vendor tools and also evolution of some open sources from

the developers community.

Figure: Picture: High level architecture for Observability with logs, metrics and traces

Observability depends in part on specialized tools and

technologies that bring far - reaching capabilities for insight

into the performance and behaviors of distributed systems.

Specialized tools in this area focus on three key pillars:

metrics, logs, and traces.

On the metrics collection side, Prometheus is a very popular

open - source tool that was designed to collect time - series

data about system performance like CPU usage, memory

consumption, and request latencies. It fits well with

containerized and cloud - native environments, thus being the

perfect candidate for modern infrastructure. Prometheus goes

hand in glove with Grafana, an open - source visualization

platform used popularly by teams to create interactive

dashboards for tracking and monitoring system health in real

- time.

Looking from the perspective of Distributed Tracing,

essential tools are Jaeger and Zipkin. These utilities trace the

request flow across microservices to help engineers find

latency bottlenecks and precisely locate where failures occur

within complex distributed systems. Tracing is critical to

understand how diverse services interact and for diagnosing

performance issues that span multiple components.

In the case of logs management, it generally relies on

platforms such as the Elastic Stack - installed Elasticsearch,

Logstash, and Kibana - to aggregate, search, and analyze logs

in real time. These tools correlate logs and metrics with traces

for deep diving into the issues that happen inside a system.

Complete observability platforms, such as Datadog, offer an

all - in - one solution that includes metrics, logs, and traces

combined and represented within one unified interface. Such

centralization heavily facilitates teams in terms of monitoring

their systems much more efficiently, responding to incidents

much quicker, with less downtime, and ultimately ensuring

better reliability of the overall system.

Paper ID: SR241004083612 DOI: https://dx.doi.org/10.21275/SR241004083612 604

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Added to that, New Relic is a powerful observability platform

that provides real depth and breadth of monitoring across

applications, infrastructure, and digital experiences. It can

integrate well into diverse environments, granting real - time

analytics, granular performance insights, and enhanced

alerting. This makes it easy to use dashboards and AI - driven

anomaly detection that allows teams to proactively manage

performance and rapidly resolve potential problems.

Observe is another powerful tool in the observability

landscape, designed to be an end - to - end platform for

complex systems. Observe unifies metrics, logs, and traces

into one single interface, thus allowing correlation and

analysis without any glitches. Its intuitive interface and

customizable dashboards make it easier to visualize the health

of the system and all trends or anomalies that need attention.

Observe also features automated alerting and incident

management to further help you keep the system reliable.

SigNoz is an open - source observability platform that focuses

on simplicity and scalability. Based on modern technologies

such as ClickHouse for highly efficient data storage, SigNoz

provides natively complete monitoring, tracing, and logging

without the complexity attributed to other observability tools.

Its lightweight architecture makes it easy to deploy and

manage, while its rich set of features—including real - time

dashboards, anomaly detection, and customizable alerts—

enable teams to maintain high levels of system reliability and

performance.

This will let them combine these varied tools—Prometheus,

Grafana, Jaeger, Zipkin, Elastic Stack, Datadog, New Relic,

Observe, and SigNoz—into one robust observability stack,

tailored just right for organizations. The combination will

ensure that teams have the necessary insights into system

health, diagnose issues much faster, and are constantly

optimizing performance for greater system reliability and user

experience

5. Implementing Observability: Best Practices

Transitioning from monitoring to observability requires

thoughtful implementation to ensure the full benefits are

realized. For successful transitioning from traditional

monitoring to observability, below are some of the best

practices.

1) Start with defining key service: In implementing

observability, the highest focus should be directed

toward those services that have direct implications for

business outcomes or user experience. This is a means by

which the framework of observability will immediately

add value by giving insight to where it matters most.

Emphasizing critical services means teams gain quick

wins and showcase effectiveness to people concerned

about this.

2) Define service level agreements and service level

objectives for all the key services: A Service Level

Objective (SLO) is a quantifiable target within an SLA

that explains the expected performance of a service. It

establishes well - defined targets like an average uptime

of 99% or serving 95% of all requests with a latency

threshold (e. g., 300 milliseconds). SLOs are the internal

goals of a team to monitor and validate if their system is

healthy, whereas an SLA specifies the agreed standard

against which SLOs can be assessed. A Service Level

Agreement (SLA) is a formally documented contract that

outlines agreements between the service provider and the

customer, backing up the expected level of delivered

performance, including guarantees around system

availability, response time, and performance. SLAs may

also contain penalties or bonuses if the service provider

fails to meet predefined performance levels. SLAs

represent high - level expectations and commitments,

while SLOs help define more specific and measurable

targets to meet those SLAs. For example, a cloud

provider might have an SLA guaranteeing 99.9% uptime

to its customers but maintains an internal SLO of

resolving 95% of incidents within one hour to ensure they

consistently meet the SLA. Both serve to keep customers

happy and ensure smooth operations.

3) Use open standards: This would make adoption of open

standards, such as OpenTelemetry, important for

flexibility and long - term scalability. This gives a unified

framework for collecting telemetry data across different

environments and platforms, thus making sure that

different observability tooling can interoperate. Vendor

lock - in can be avoided this way; the stack can evolve

with the growth in system complexity

4) Centralized Data Platform: Regarding observability, a

single source of truth for all telemetry data (logs, metrics,

traces) leads to great advantages. It enables teams to

analyze data in a powerful way; aggregating all

performance metrics into one location gives a complete

view of how the system is doing. By bringing the data

together from different services and sources, engineers

can gain better insight into correlating events and

tracking dependencies, leading to faster root cause

detection. A centralized platform eliminates data silos, as

all relevant data is available in a single location for

troubleshooting and performance optimization,

enhancing cross - team collaboration and

communication. Additionally, centralized management

improves data consistency and accuracy, helping teams

set more reliable alerts and thresholds. This reduces the

operational overhead involved in managing multiple

observability tools and enables more efficient storage and

retrieval processes. In summary, centralized platforms

improve workflow speed, simplicity, and incident

response time.

5) Automate Data Collection and Analysis: Operation

teams cannot afford to collect data manually when

modern systems produce telemetry data in such

ontological volumes; besides, this is slow and prone to

errors. Automation within observability provides real -

time data ingestion and automatic detection of anomalies.

This automation in observability can be empowered

through tools like Prometheus for metrics collection and

Grafana for visualization, thus automating log, metric,

and trace monitoring by teams at the application level.

Automation streamlines incident detection and reduces

the level of manual work required by engineers.

6) Leverate Distributed Tracing for End to End

Visibility: Distributed tracing is probably one of the most

important things you can have for observability, as it

allows teams to trace a request as it goes through multiple

services in a microservices architecture. This can be

Paper ID: SR241004083612 DOI: https://dx.doi.org/10.21275/SR241004083612 605

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

achieved using distributed tracing tools like Jaeger or

Zipkin, which enable teams to view the request flow, find

bottlenecks, and identify the root cause when they fail in

a complex system.

7) Foster a Collaborative Culture Around

Observability: Observability is a team support tool, and

it must be embedded into the team culture for

observability to win. Observability is not just a role of an

operations team; it is everyone's business and

encompasses developers, operations, and security. It also

facilitates better collaboration during incidents by

providing shared dashboards and cross - functional

access to observability data, ensuring that insights get

applied.

To summarize, in modern, distributed architectures,

deploying observability is crucial to keeping the system up.

These insights might reveal the benefits of focusing more on

critical services instead of trying to instrument every service,

the importance of open standards, automation in data

collection, distributed traces, and traceability as a first - class

citizen to lift incident response latency barriers, encouraging

information sharing, and continuous improvement that we

would expect from iterative software development. All of this

uplifts the observability framework, closing the loop with real

- time system health. Adopting these best practices will ensure

observability takes its central place in your organization’s

strategy for proactive monitoring, faster incident resolution,

and continuous system optimization.

6. Conclusion

This shift to observability is a major advancement in

managing modern IT systems, particularly as more

organizations adopt complex, distributed, and dynamic

architectures. Traditional monitoring, while effective at

identifying known issues, is inherently reactive and

dependent on predefined metrics with static thresholds,

making it less suitable for today’s microservices and cloud -

native environments. Observability offers a more proactive

approach by integrating logs, metrics, and traces to give teams

deeper insights into their systems. This enables faster

detection, diagnosis, and resolution of issues, often before

users are even aware, and facilitates root cause analysis for

continuous improvement.

Observability has significantly boosted engineering teams'

productivity by reducing alert fatigue, fostering collaboration

between development and operations, and supporting

proactive problem prevention. It correlates telemetry data

such as logs, metrics, and traces to help with quick incident

responses and increased system resilience. Real - world

examples from companies like Netflix, Uber, and Spotify

highlight these tangible benefits, including reduced

downtime, improved system reliability, and empowered

teams that innovate faster using tools like Prometheus,

Grafana, Jaeger, and Datadog. This shift from monitoring to

observability represents more than a technological upgrade;

it’s a transformation in how organizations approach system

reliability and problem - solving, paving the way for proactive

management of complex environments.

References

[1] EMM Handbook: What is Monitoring: https: //emm.

iom. int/handbooks/stage - 7 - policy - monitoring - and

- evaluation/what - monitoring

[2] Open source tool for monitoring https: //prometheus.

io/docs/introduction/overview/

[3] What Is Observability? Key Components and Best

Practices https: //www.honeycomb. io/what - is -

observability/

[4] OpenTelemetry, an open source observability

framework https: //opentelemetry. io/docs/

[5] Observability Platforms Reviewes and Rating https:

//www.gartner. com/reviews/market/observability -

platforms

[6] List of the 7 Best Observability Tools for 2024 by

Instatus https: //instatus. com/blog/best - observability

- tools

[7] Gursimran Singh, 27 Aug 2024, https:

//www.xenonstack. com/insights/what - is -

observability

[8] Jaishankar Inukonda, "Leveraging Dimensional

Modeling for Optimized Healthcare Data Warehouse

Cloud Migration: Data Masking and Tokenization",

International Journal of Science and Research (IJSR),

Volume 13 Issue 10, October 2024, pp.437 - 441, https:

//www.ijsr.net/getabstract.

php?paperid=SR241004233606

[9] Jayanna Hallur, "The Future of SRE: Trends, Tools,

and Techniques for the Next Decade", International

Journal of Science and Research (IJSR), Volume 13

Issue 9, September 2024, pp.1688 - 1698, https:

//www.ijsr.net/getabstract.

php?paperid=SR24927125336

[10] Aguirre, L. A., Bastos, S. B., Alves, M. A., & Letellier,

C. (2018). Observability of nonlinear dynamics:

Normalized results and a time - series approach.

Chaos, 18, 013123.

[11] Vidya Rajasekhara Reddy Tetala, "Unlocking Cost

Savings in Healthcare: How Difference - in -

Differences (DID) Can Measure the Impact of

Interventions", International Journal of Science and

Research (IJSR), Volume 13 Issue 10, October 2024,

pp.408 - 411, https: //www.ijsr.net/getabstract.

php?paperid=SR241004074146

[12] https: //medium. com/airbnb - engineering/

[13] Google SRE: Understanding SLAs, SLOs, and SLIs.

Available at Google Cloud Documentation.

[14] How Data Quality & Observability Ensures Successful

AI & ML Data Products

[15] Jaeger: open source, distributed tracing platform https:

//www.jaegertracing. io/

[16] https: //netflixtechblog. com/

Paper ID: SR241004083612 DOI: https://dx.doi.org/10.21275/SR241004083612 606

http://www.ijsr.net/
https://emm.iom.int/handbooks/stage-7-policy-monitoring-and-evaluation/what-monitoring
https://emm.iom.int/handbooks/stage-7-policy-monitoring-and-evaluation/what-monitoring
https://emm.iom.int/handbooks/stage-7-policy-monitoring-and-evaluation/what-monitoring
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.honeycomb.io/what-is-observability/
https://www.honeycomb.io/what-is-observability/
https://opentelemetry.io/docs/
https://www.gartner.com/reviews/market/observability-platforms
https://www.gartner.com/reviews/market/observability-platforms
https://www.gartner.com/reviews/market/observability-platforms
https://instatus.com/blog/best-observability-tools
https://instatus.com/blog/best-observability-tools
https://www.xenonstack.com/insights/what-is-observability
https://www.xenonstack.com/insights/what-is-observability
https://www.xenonstack.com/insights/what-is-observability
https://www.ijsr.net/getabstract.php?paperid=SR24927125336
https://www.ijsr.net/getabstract.php?paperid=SR24927125336
https://www.ijsr.net/getabstract.php?paperid=SR24927125336
https://medium.com/airbnb-engineering/
https://www.jaegertracing.io/
https://www.jaegertracing.io/

