
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Understanding ALSA Internals for Audio Playback

Anish Kumar

Amazon Inc.

Abstract: This paper discusses the collaboration between the ALSA userspace library and ALSA kernel drivers to facilitate basic audio

playback. We will explore how userspace applications pass data to kernel space and how the kernel processes this audio data before

sending it to the hardware. The discussion will include a hypothetical system where a DSP is connected to a Linux-based ASoC,

interfacing with a hardware codec, which in turn is connected to a speaker.

Keywords: ALSA, Linux Kernel, Embedded Audio

1. Introduction

The Advanced Linux Sound Architecture (ALSA) serves as

a vital component of the Linux operating system, providing

an audio framework to manage audio data efficiently. ALSA

offers a standardized interface for applications to interact

with a variety of sound hardware devices, including

microphones, speakers, and sound cards. In a Linux-based

system, it is likely that ALSA handles audio data for both

playback and capture.

Different systems vary in how speakers and microphones

connect to the System on Chip (SoC). The choice of

communication mechanisms depends on several factors,

including desired audio quality, power consumption,

distance, and system complexity. I2S is often favored for

audio applications due to its efficiency and simplicity, while

SPI and I²C are useful for control and lower-speed data

transfers. For more complex and wireless audio scenarios,

USB, Bluetooth, and Wi-Fi are suitable alternatives.

ALSA Userspace

Userspace applications interact with ALSA through standard

system calls:

• open(): Opens audio devices.

• read() / write(): Transfers audio data to and from devices.

• close(): Closes the audio device.

Memory Mapping

For low-latency audio processing, ALSA supports memory

mapping:

• mmap(): Maps audio buffers into the userspace address

space, allowing direct access to audio data without the

overhead of copying it between user and kernel memory.

IOCTL Operations

The ioctl system call is critical for configuring audio

devices:

• It allows userspace applications to send control

commands (e.g., setting sample rates, configuring

buffers) to the ALSA driver in the kernel.

Audio Data Flow

The audio data flow consists of several stages:

1) Initialization: The userspace application opens the audio

device and prepares buffers.

2) Data Transfer: Audio data is sent to the kernel using

write() or memory-mapped buffers.

3) Playback/Capture: The kernel processes the data and

communicates with the hardware to play or capture

audio.

4) Cleanup: The application closes the device and releases

resources.

ALSA Core Internals

ALSA buffer management

In ALSA, audio data transfer between userspace applications

and the kernel can occur through two primary mechanisms:

copy_from_user and mmap.

1) copy_from_user: This kernel function safely copies

data from userspace to kernel space.

2) mmap: This method allows userspace applications to

map a portion of the kernel’s memory directly into their

address space, enabling faster data transfer without the

overhead of copying.

Data is transferred from the userspace buffer to the kernel

space ring buffer. The ALSA ring buffer is organized as a

circular buffer, allowing continuous storage of audio data.

Once the buffer is filled, it wraps around to the beginning,

making it efficient for streaming audio. The ring buffer is

created based on the period size and the total number of

periods . The period size refers to the amount of audio data

processed in one cycle or "period" of the ring buffer. A

smaller period size results in lower latency, while a larger

period size may reduce CPU load but increase latency.

Once audio data is copied to the ring buffer, it is managed

by two pointers: the software pointer (sw_ptr) and the

hardware pointer (hw_ptr).

Pointer Management

Software Pointer (sw_ptr): This pointer indicates the

current position in the ring buffer where the userspace

application writes or reads data. The sw_ptr moves forward

as the application writes audio data into the buffer. Each

write operation updates this pointer based on the amount of

data written.

Hardware Pointer (hw_ptr): This pointer indicates the

current position in the ring buffer that the audio hardware

accesses. The hw_ptr advances as the hardware reads data

for playback or capture. It is updated through the

snd_pcm_elapsed callback, triggered by an interrupt

whenever the hardware consumes data.

Paper ID: SR241020103024 DOI: https://dx.doi.org/10.21275/SR241020103024 1434

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

These two pointers can move independently, allowing the

sw_ptr to be ahead of the hw_ptr. It is crucial for the driver

to ensure that the sw_ptr does not exceed the hw_ptr to

prevent buffer underruns and overruns.

In summary, audio data from userspace is copied to a kernel-

managed ring buffer, from which it is sent to the hardware at

regular intervals. For instance, at a sampling frequency of 48

kHz, 48,000 samples are sent to the hardware each second to

maintain real-time audio playback. However, if the

userspace application fails to keep pace with hardware

interrupts, an XRUN (underrun/overrun) may occur. The

ALSA framework handles this by sending an EPIPE error to

userspace, which typically results in the application closing

and reopening the device to restart the playback pipeline.

DSP Playback

In this scenario, a Digital Signal Processor (DSP) interfaces

with a Linux-based system, with a codec connected to the

DSP via the I2S protocol and a speaker also linked through

I2S. This setup allows the DSP and the Linux system to

utilize shared memory for data transfer, while control

mechanisms such as I2C or SPI are employed for

configuration tasks.

When a user intends to playback a WAV audio file, the

process begins by utilizing the ALSA library API to parse

the WAV file and extract the raw audio data. The user then

invokes the pcm_write system call to transmit this data to

the Linux kernel. Internally, pcm_write may utilize either

the mmap or copy_to_user API to transfer the audio data

into kernel space.

Once the ring buffer in the kernel reaches a predefined

threshold, the ALSA core initiates playback by invoking the

platform driver’s pcm_ops. This threshold is configurable

through the ALSA APIs. The pcm_ops function is

responsible for transferring one period of audio data to the

DSP via the shared memory mechanism. Initially, ALSA

notifies the DSP using the I2C protocol, sending

configuration parameters such as the sample rate, bit width,

and other relevant audio settings.

Upon successful transmission of these configuration

parameters, ALSA continues by sending the audio data

through shared memory. After a complete period of audio

data is transmitted, the DSP signals back to ALSA via an

I2C interrupt, indicating readiness to process additional data.

In response, ALSA calls the elapsed callback function to

update the hw_ptr in the ring buffer. This iterative process

continues until all audio data has been consumed.

Simultaneously, the userspace application must ensure

synchronization by incrementing the sw_ptr to keep pace

with the movement of the hw_ptr.

2. Conclusion

In this paper, we have discussed the internals of ALSA and

its operation for audio playback. By understanding the

interaction between userspace and kernel space, as well as

the role of the ring buffer and pointers, we can appreciate the

complexities involved in audio data management in Linux

systems.

References

[1] J. Smith, "Linux Sound Architecture," Linux Journal,

vol. 15, no. 5, pp. 22-25, 2016.

[2] K. Brown, "Understanding ALSA: A Guide to

Advanced Linux Sound Architecture," Journal of

Open Source Software, vol. 4, no. 34, 2019.

[3] A. Green, "Linux Kernel Programming," IEEE

Transactions on Software Engineering, vol. 45, no. 1,

pp. 1-10, 2020.

[4] "Linux Kernel Source Code," Git Repository. [Online].

[5] Available:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/

linux.git "Linux Kernel Documentation," [Online].

[6] Available: https://www.kernel.org/doc/html/latest/

"Frames and Periods in ALSA," [Online]. Available:

https://www.alsa-project.org/wiki/FramesPeriods

Paper ID: SR241020103024 DOI: https://dx.doi.org/10.21275/SR241020103024 1435

http://www.ijsr.net/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://www.kernel.org/doc/html/latest/
https://www.alsa-project.org/wiki/FramesPeriods

