
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

ALSA Debugging Tools and Techniques in Linux

Kernel

Anish Kumar

Email: yesanishhere[at]gmail.com

Abstract: This document provides different tools and techniques useful for debugging audio issues in Linux, covering problems from

booting to shutdown. This guide is not exhaustive but aims to explain potential audio issues or bugs that can arise when bringing up audio

drivers on Linux or fixing existing audio corruption issues during playback or capture.

Keywords: ALSA, Audio, Linux kernel, Debug, XRUN

1. Introduction

Audio debugging in Linux systems requires a systematic

approach to identify and resolve issues at various stages of the

audio pipeline. This paper presents a comprehensive guide to

audio debugging tools and techniques, covering bootup

issues, runtime debugging, and specific problems such as

audio corruption and XRUNs.

1.1 Bootup/Bringup Issues

In order to provide audio services, the ALSA sound card is

the first component that gets registered in the system. If you

are not hearing boot-up sounds, check the following in the

procfs filesystem:

a) /proc/asound/: This is a virtual filesystem in Linux that

provides information about the ALSA sound system. It

allows users to interact with and obtain details about

audio devices.

b) Check if /proc/asound/cards is populated. If it is not,

this means sound card registration has failed. All sound

cards are listed there. This entry can be useful for:

• Verifying if a sound card has been properly registered

and is present in the system.

• Finding the index of a given card. Card indexes are

dynamically assigned as cards are registered. User-

space software may assume cards have certain

indexes, which could change depending on runtime

dynamics. For example, index 0 may be assigned to

card B instead of card A if card A’s registration is

deferred due to a missing dependency (e.g., an I2C

codec that has not been probed yet).

If the sound card is registered, check its capabilities and

devices for playback. There are various devices that can be

connected to the system, such as wired headsets, Bluetooth

headsets, and internal speakers. If you are looking to play

audio on a wired headset, look for the corresponding entry in:

a) /proc/asound/pcm: This lists all PCM devices for all

sound cards present in the system. Each PCM device has

a directory structure like:

/proc/asound/cardX/pcmY[p,c]/. Here, X is the card

index number (as found in /proc/asound/cards) and Y is

the PCM device index. The [p,c] indicates the direction

of the PCM stream:

• p: Playback stream. Represents the PCM device used

for audio output (e.g., sending audio data to speakers).

• c: Capture stream. Represents the PCM device used

for audio input (e.g., receiving audio data from a

microphone).

For playback, the relevant PCM device should be listed as:

/proc/asound/card0/pcm0p0c0.

Example output from my system:

00-00: CX20632 Analog : CX20632 Analog : playback 1 : capture 1

00-02: HDMI 0 : HDMI 0 : playback 1

This output indicates that I have only one sound card in my

system, with starting index 0, capable of both playing and

capturing audio. The same sound card also provides HDMI

playback capability, but no ARCIN, so there is no capture

path.

1.2 How Sound Card Registration Happens

If the sound card is not registered, or if it is registered but the

corresponding device node is not created, it is important to

understand how the ASoC core creates these nodes. In

summary, it creates PCM nodes once it finds all the CPU

DAI, codec DAI, and platform DAI associated with the

particular snd_soc_dai_link instance.

For example, in the kernel source file littlemill.c [3]:

SND_SOC_DAILINK_DEFS(cpu,

 DAILINK_COMP_ARRAY(COMP_CPU("samsung-i2s.0")),

Paper ID: SR241028040136 DOI: https://dx.doi.org/10.21275/SR241028040136 1938

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 DAILINK_COMP_ARRAY(COMP_CODEC("wm8994-codec", "wm8994-aif1")),

 DAILINK_COMP_ARRAY(COMP_PLATFORM("samsung-i2s.0")));

SND_SOC_DAILINK_DEFS(baseband,

 DAILINK_COMP_ARRAY(COMP_CPU("wm8994-aif2")),

 DAILINK_COMP_ARRAY(COMP_CODEC("wm1250-ev1.1-0027", "wm1250-ev1")));

The SND_SOC_DAILINK_DEFS macro helps define the

parameters for a digital audio interface (DAI) link in a

structured way. The macro typically includes definitions for

several important components of a DAI link:

• CPU DAI: The data interface associated with the CPU

that handles audio data. It defines how the CPU interacts

with the audio subsystem.

• Codec DAI: The data interface for the audio codec, which

converts digital audio data to an analog signal (and vice

versa). This is crucial for playback and capture.

• Platform DAI: Represents the platform layer that

connects the CPU and codec DAI. It handles the specifics

of data transfer between the CPU and codec.

• Stream Names: Defines the names for playback and

capture streams, which are used by the audio subsystem

for routing audio data.

This can be simplified as follows for easier understanding:

SND_SOC_DAILINK_DEFS(my_dai_link,

 SND_SOC_DAILINK_REG(cpu_dai),

 SND_SOC_DAILINK_REG(codec_dai),

 SND_SOC_DAILINK_REG(platform_dai));

When devm_snd_soc_register_card is called, the ASoC

core checks if the CPU, codec, and platform DAI probe

callbacks are successful. If any of these fail, the sound card

registration fails.

There are two probes involved: one for the registration of the

device (which could be I2C, I2S, or any hardware device) and

the other is the probe callback from the ASoC core. Both must

succeed for the devices to show up in the proc filesystem.

For example, if the codec driver is I2C-based, the first probe

for the I2C driver should succeed, and as part of this, the

ASoC component gets registered. When the card is being

registered by the machine driver, the ASoC core checks if the

codec component probe is successful. The same applies to

other CPU and platform components.

1.3 Runtime Debugging

Once the sound card and corresponding PCM nodes appear in

the procfs filesystem, basic audio booting is successful.

However, this does not guarantee successful playback using

the aplay command. For example:

aplay -D hw:0,0 sound.wav

if audio does not play, check the following:

• Unsupported Sample Rate: Ensure the audio file’s

sample rate matches the hardware’s supported rates.

Use:aplay -f S16_LE -c 2 -r 44100 sound.wav

• if the hardware does not support the requested sample

rate, it may lead to playback issues.

• Incorrect Channels: Verify that the number of channels

in your audio file matches the hardware’s supported

configuration (e.g., stereo vs. mono).

• Bit Depth Issues: Ensure the bit depth of the audio file

is supported by the hardware.

• Device Configuration: Confirm that the card and device

numbers are correct by checking your device list with:

aplay -l

• Format Conversion: If the format is unsupported,

convert it to a compatible format (e.g., WAV).

1.4 XRUN Debugging

a) What is XRUN?

XRUN refers to an overflow or underflow condition in the

audio buffer during playback or recording.

b) Types of XRUN

• Overflow (XRUN): This occurs when the audio playback

buffer runs out of data to play. This situation arises when

the application is not supplying data to the buffer quickly

enough, leading to dropouts or gaps in the sound.

• Underflow (XRUN): This happens when the audio

capture buffer fills up before the application can process

the incoming data. If the application does not read the data

quickly enough, it causes data loss, and the capture stream

fails to record audio smoothly.

c) Causes of XRUNs

• High CPU Load: If the system is under heavy load, it may

not process audio interrupts on time, leading to missed

interrupts.

• Incorrect Period Size: A period size that is too small may

result in system scheduling delays, causing interrupts to be

handled late and leading to frame drops and ultimately

XRUNs.

• Inefficient Audio Processing by Userspace: If userspace

tasks take too long to execute, this can delay the feeding

or retrieval of data from the buffer.

• I/O Latency: Latency from I/O in single-threaded, non-

optimized audio applications can cause significant

problems related to XRUN. Due to large I/O latencies, the

ALSA buffer is likely to overflow or underflow.

Applications like aplay, arecord, tinyplay, and tinyrecord

may suffer from this issue because they are single-

threaded.

• Misconfiguration: Improper settings in the audio

application or driver configuration can contribute to

XRUN occurrences.

d) Debugging XRUN

Diagnosing the exact cause of XRUNs can be challenging.

However, the following steps can help identify the issue:

1) Reduce CPU Load: Stop any applications other than the

Paper ID: SR241028040136 DOI: https://dx.doi.org/10.21275/SR241028040136 1939

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

playback application to see if the XRUNs cease.

2) Increase Period Size: Adjusting the period size can give

the system more time to handle interrupts.

3) Test with Special Files: If I/O latency is suspected, try

playing audio via special files like /dev/zero (e.g., aplay -

D hw:0,0 -f CD -d 30), as this reads data from RAM rather

than I/O.

4) Change Userspace Application: Switch to a different

application to see if it is the source of the problem.

5) Use ftrace: Profile the call flow of the ALSA drivers using

ftrace to determine if any function calls are taking too long

to execute during XRUN events.

6) Check ALSA Documentation: Refer to the ALSA

XRUN Debugging Guide [1] for additional

troubleshooting steps.

7) Inspect procfs Filesystem: Use the command:

cat /proc/asound/cardX/pcmY/subZ/status

to dump the hardware and software pointers of the ring buffer

used by ALSA. Check if the pointers are incrementing

correctly. If they do not change, it indicates that the

underlying hardware is unable to process data, which could

be due to misconfiguration or some bug in interrupt

processing.

e) Example Status Output

The following command displays the status output for a

specific PCM device:

cat /proc/asound/card0/pcm0p/sub0/status

The output is as follows:

state: RUNNING

owner_pid: 1234

trigger_time: 1000000.1000000

tstamp: 1000000.1000000

delay: 1234

avail: 0

avail_max: 0

hw_ptr: 64

appl_ptr: 4192

Description of Fields:

• state: Current state of the PCM device (e.g., RUNNING).

• owner_pid: Process ID of the owner of the PCM stream.

• trigger_time: Time when the last trigger occurred.

• tstamp: Timestamp of the last audio sample processed.

• delay: Current delay in microseconds.

• avail: Available frames in the buffer.

• avail_max: Maximum frames that can be made available.

• hw_ptr: Hardware pointer indicating the position in the

buffer.

• appl_ptr: Application pointer indicating the position in

the buffer.

f) Fixing XRUNs

• Optimize Application: Convert single-threaded

applications like aplay/arecord/tinyplay/tinyrecord to

multi-threaded ones. This allows one thread to read

multimedia data while another thread writes to the

hardware. An additional RAM circular buffer may be

needed to manage I/O latency. The thread reading from I/O

should read larger amounts of data into the circular buffer,

while the thread writing to hardware reads from this buffer.

• Increase Period Size: Adjusting the period size can help

accommodate delays in audio processing, allowing the

CPU more time to handle interrupts.

• Optimize System Performance: Reducing CPU load or

prioritizing audio processing can help mitigate XRUNs [1].

1.5 Audio Pops and Clicks

For detailed information about audio pops and clicks, refer

to the Audio Pops and Clicks Documentation [2].

a) Debugging Pop Issues

• To diagnose and resolve pop issues, consider the

following steps:

Check Sequencing:

• Ensure that the sequencing mentioned in the above

document is being followed correctly.

Device Switching:

• If pops occur during the switch from one device to another,

test by playing zero data to determine if the issue persists:

aplay -f dat /dev/zero

• If the pops continue, it indicates that the device switch is

causing the problem.

Register Write Events:

• If pops occur during register writes due to triggered events,

you can introduce a delay between register writes with the

following command:

• echo 1000 > /sys/kernel/debug/asoc/name-of-the-sound-

card/dapm_pop_time

• This command introduces a delay between register writes,

which may help in identifying the specific register causing

the pop.

2. Conclusion

Audio debugging in Linux systems requires a methodical

approach and understanding of various components in the

audio pipeline. By following the techniques and utilizing the

tools described in this paper, developers can effectively

diagnose and resolve audio-related issues in Linux

environments. Regular system monitoring, proactive

debugging, and staying updated with the latest ALSA

developments are key to maintaining optimal audio

performance in Linux systems.

References

[1] ALSA XRUN Debugging Guide. Available:

https://www.alsa-

project.org/main/index.php/XRUN_Debug

[2] Audio Pops and Clicks Documentation. Available:

[3] Little Mill Documentation. Available:

https://www.kernel.org/doc/Documentation/sound/alsa/

ASoC/LittleMill.txt

Paper ID: SR241028040136 DOI: https://dx.doi.org/10.21275/SR241028040136 1940

http://www.ijsr.net/
https://www.alsa-project.org/main/index.php/XRUN_Debug
https://www.alsa-project.org/main/index.php/XRUN_Debug
https://www.alsa-project.org/main/index.php/XRUN_Debug
https://www.alsa-project.org/main/index.php/XRUN_Debug
https://www.kernel.org/doc/html/latest/sound/soc/pops-clicks.html
https://www.kernel.org/doc/Documentation/sound/alsa/ASoC/LittleMill.txt
https://www.kernel.org/doc/Documentation/sound/alsa/ASoC/LittleMill.txt
https://www.kernel.org/doc/Documentation/sound/alsa/ASoC/LittleMill.txt
https://www.kernel.org/doc/Documentation/sound/alsa/ASoC/LittleMill.txt

