International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

On a Hypersurface of a Conformal β -Change

S. K. Tiwari¹, Brijesh Kumar Maurya², C. P. Maurya³

Abstract: We have considered the conformal β - change of the Finsler metric is given by $\overline{L} = e^{\sigma} f(L,\beta)$, where σ is a function of x, $\beta(x,y) = b_i(x)y^i$ is a 1-form on the underlying Manifold M^n and $f(L,\beta)$ is a homogeneous function of degree one in L and β . In this paper we have studied some properties of hypersurface of a Conformal β - change.

Keywords: Conformal β - change, Hypersurface, Unit normal vector, Finsler space.

Subject Classification: 53B40, 53C60

1. Introduction

Let $F^n = (M^n, L)$ be an n-dimensional Finsler space on the differentiable manifold M^n equipped with the fundamental function L(x,y), B. N. Prasad, Bindu Kumari and C. Shibata [1], [2] have studied the β -change that is $\overline{L} = f(L,\beta)$, where f is positively homogeneous function of degree one in L and β and β is given by $\beta(x,y) = b_i(x)y^i$ is a 1-form on M^n .

The conformal theory of Finsler space was initiated by M.S.Knebelman [7] in 1929 and has been investigated in detail by many authors C Hashiguchi [8], Izumi [3], [4] and Kitayama [10].

The Conformal change is defined as $\overline{L}(x, y) = e^{\sigma(x)}L(x, y)$, where σ is a function of position only and known as Conformal factor. The β -change of special Finsler space has been studied by H. S. Shukla, O. P. Pandey and Khageshwar Mandal [7]. In 2018, H.S.Shukla and Neelam Mishra had studied the some properties of conformal β – change [5].

The conformal β – change of the Finsler metric is defined by

$$\bar{L} = e^{\sigma} f(L,\beta) \tag{1.1}$$

Where, $\beta(x,y) = b_i(x)y^i$ and b_i is 1 - form. We have called this change as conformal β – change of Finsler metric.

In this paper we investigate some properties of hypersurface of a conformal β -change. The Finsler space equipped with the metric \overline{L} given by (1.1) will be denoted by \overline{F}^n .Throughout the paper the quantites corresponding to \bar{F}^n will be denoted by putting bar on the top of them . We shall denote the partial derivatives with respect x^i and y^i by ∂_i and $\dot{\partial}_i$ respectively.

The homogeneity off gives

$$\mathcal{L}f_1 + \beta f_2 = \mathbf{f} \tag{1.2}$$

Where subscripts 1 and 2 denotes the partial derivatives with respect to L and β respectively.

Differentiating (1.2) with respect to L and β respectively, we get

$$Lf_{11} + \beta f_{12} = 0 \text{ and } Lf_{12} + \beta f_{22} = 0$$
(1.3)

Hence we have

which gives

$$\frac{f_{11}}{\beta^2} = -\frac{f_{12}}{L\beta} = \frac{f_{22}}{L^2} ,$$

f. .

$$f_{11} = \beta^2 \omega$$
, $f_{12} = -L\beta \omega$, $f_{22} = L^2 \omega$ (1.4)

faa

where Weierstrass function ω is positively homogeneous function of degree - 3 in L and β .

Therefore

$$L\omega_1 + \beta\omega_2 + 3\omega = 0 \quad (1.5)$$

Again ω_1 and ω_2 are positively homogeneous function of degree -4 in L and β , so that

- (a) $L \omega_{11} + \beta \omega_{12} + 4\omega_1 = 0$, (1.6)
- (b) $L\omega_{21} + \beta\omega_{22} + 4\omega_2 = 0$.

Throughout the paper we frequently use equations (1.2) to (1.7) without quoting them.

2. Fundamental quantities of (M^n, \overline{L}) :

To find the relation between the fundamental quantites of (M^n, L) and (M^n, \overline{L}) , we use the following results :

$$\hat{\partial}_i \beta = b_i$$
, $\hat{\partial}_i L = l_i$, $\hat{\partial}_j l_i = L^{-1} h_{ij}$ (2.1)
where h_{ij} are components of angular metric tensor of (M^n, L) given by

$$h_{ii} = g_{ii} - l_i l_i = L \dot{\partial}_i \dot{\partial}_i L$$

The successive derivatives of (1.1) with respect to y^i and y^j gives,

$$\bar{l}_{i} = e^{\sigma} (f_{1} + \tau f_{2}) l_{i} + e^{\sigma} f_{2} m_{i} \quad (2.2)$$
$$\bar{h}_{ij} = \frac{e^{2\sigma} f f_{1}}{L} h_{ij} + e^{2\sigma} f L^{2} \omega m_{i} m_{j} \quad (2.3)$$

where $m_i = b_i - \tau l_i$ and $\tau = \frac{\beta}{l}$.

From (2.2) and (2.3), we get the following relation between the metric tensors of (M^n, L) and (M^n, \overline{L}) $\bar{g}_{ij} = q_{-1}g_{ij} + q_{-2}l_il_j + q_{-3}(l_im_j + l_jm_i) + q_{-4}m_im_j$ (2.4)

Volume 13 Issue 10, October 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

I

where

$$\begin{split} q_{-1} &= \frac{e^{2\sigma} f_{f_1}}{L} \quad , \qquad q_{-2} = e^{2\sigma} \big(f L^2 \omega + f_2^{\ 2} \big) \tau^2 \quad , \ q_{-3} = \\ e^{2\sigma} f_2 \big(f_1 + \tau f_2 \big) \, , q_{-4} = e^{2\sigma} \big(f L^2 \omega + f_2^{\ 2} \big) \, . \end{split}$$

The contravariant components \bar{g}^{ij} of the metric tensor of (M^n, \bar{L}) will be derived from (2.4) as follows:

$$g^{-ij} = p_{-1}g^{ij} + p_{-2}l^i l^j + p_{-3}(l^i m^j + m^i l^j) + p_{-4}m^i m^j, (2.5)$$

where,

$$\begin{split} p_{-1} &= \frac{1}{q_{-1}} \quad , \\ p_{-2} &= \frac{L^2}{e^{2\sigma}f^2 f_1 t} \left[pLf^2 \left(\frac{f\beta}{L^2} - \Delta f_2 \right) - f\omega\beta^2 - 2p\tau \right] \quad , \\ p_{-3} &= -\frac{L^2 f_2}{e^{2\sigma}f^2 t} \quad , \\ p_{-4} &= -\frac{L^4 \omega}{e^{2\sigma}f f_1 t} \quad , \\ l^i &= g^{ij} l_j \quad , \ b^2 &= g_{ij} b_i b_j \; . \end{split}$$

 $p = f_1 f_2 - f L \beta \omega, t = f_1 + L^3 \omega \Delta, \Delta = b^2 - \tau^2, q = 3f_2 \omega + f \omega_2 . (2.6)$

(a)
$$\dot{\partial}_i f = \frac{e^{\sigma_f}}{L} l_i + e^{\sigma} f_2 m_i$$
 (2.7)

(b)
$$\dot{\partial}_i f_1 = -e^{\sigma} L \beta \omega m_i$$

(c)
$$\dot{\partial}_i f_2 = e^{\sigma} L^2 \omega m_i$$
,

(d)
$$\dot{\partial}_i \omega = -\frac{3\omega l_i}{L} + \omega_2 m_i$$

(e)
$$\dot{\partial}_i b^2 = -2C_{ii}$$

(f)
$$\dot{\partial}_i \Delta = -2C_{..i} - 2\frac{\beta}{L^2}m_i$$
.

(a)
$$\dot{\partial}_i p = -L\beta q m_i$$
 (2.8)

(b) $\dot{\partial}_i t = -2L^3\omega C_{..i} + (L^3\Delta\omega_2 - 3L\beta\omega)m_i$,

(c)
$$\dot{\partial}_i q = -\frac{3q}{L} l_i + (4f_2\omega_2 + 3L^2\omega^2 + f\omega_{22})m_i$$
,

Where, denotes the contraction with b^i viz. $C_{..i} = C_{jki} b^j b^k$.

Differentiating (2.4) with respect to y^k and using (2.1) and (2.7), we get

$$\bar{C}_{ijk} = q_{-1}C_{ijk} + U_{ijk} , (2.9)$$

$$U_{ijk} = U_{-1}(h_{ij}m_k + h_{jk}m_i + h_{ki}m_j) + U_{-2}m_im_jm_k,$$
where $U_{-1} = \frac{p}{2L}, U_{-2} = \frac{qL^2}{2}$

3. Hypersurface of a conformal β-change

The hypersurface $F^{n-1} = (M^{n-1}, \underline{L}(u, v))$ of the finsler space $F^n = (M^n, L)$ is given by the equation $x^i = x^i(u^{\alpha})$, where $\alpha = 1, 2, 3, \dots, n-1$. The supporting element y^i at a point $u = u^{\alpha}$ of M^{n-1} is assumed to be tangent to M^{n-1}

$$y^i = B^i_\alpha(u) v^\alpha \qquad (3.1)$$

where $B_{\alpha}^{i} = \frac{\partial x^{i}}{\partial u^{\alpha}}$ is the matrix of projection factors of rank n-1 can be assumed as the components of linearly independent vectors that are tangent to F^{n-1} . At every point of $u^{\alpha} of F^{n-1}$, a unit normal vector B^{i} is defined as [9],

$$g_{ij}B^{i}B^{j} = 1$$
 and $g_{ij}B^{j}B^{i}_{\alpha} = 0$. (3.2)

The induced metric tensor $g_{\alpha\beta}$ and induced Cartan tensor $C_{\alpha\beta\gamma}$ of F^{n-1} are given as follows [9],

(a)
$$g_{\alpha\beta} = g_{ij}B^i_{\alpha}B^j_{\beta}$$
 (3.3)

and (b) $C_{\alpha\beta\gamma} = C_{ijk}B^i_{\alpha}B^j_{\beta}B^k_{\gamma}$

Now we obtain the condition under which the hyperurface of the transformed Finsler space \overline{F}^n to be the normal vector.

Let $\overline{F}^{n-1} = (M^{n-1}, \underline{L}(u, v))$ be a Finslerian hypersurface of the transformed Finsler space \overline{F}^n .

The unit normal vector $\overline{B}^{i}(u, v)$ of \overline{F}^{n-1} is uniquely identified as

$$\bar{g}_{ij}B^i_{\alpha}\bar{B}^j = 0$$
 and $\bar{g}_{ij}\bar{B}^i\bar{B}^j = 1$.(3.4)

The \bar{B}^{α}_i is the inverse projection factor of \bar{B}^i_{α} , is uniquely defined by

$$\bar{B}_i^{\alpha} = g_{ij} \bar{g}^{\alpha\beta} B_{\beta}^j \quad (3.5)$$

where $\bar{g}^{\alpha\beta}$ is the inverse metric tensor of the metric tensor $\bar{g}_{\alpha\beta}$ along \bar{F}^{n-1} .

In view of equations (3.4) and (3.5) it follows that

$$\bar{B}^{i}_{\alpha}\bar{B}^{\beta}_{i} = \delta^{\beta}_{\alpha} , \quad \bar{B}^{i}_{\alpha}\bar{B}_{i} = 0 , \\ \bar{B}^{i}\bar{B}^{\alpha}_{i} = 0 , \\ \bar{B}^{i}\bar{B}_{i} = 1$$
(3.6)

Transvecting the equation (3.2) by v^{α} and using $B^{i}_{\alpha}v^{\alpha} = y^{i}$, we get

 $B_j y^j = 0 \qquad (3.7)$

Contracting the equation (2.4) by $B^i B^j$ and using (3.3) and (3.6), we obtain

$$\frac{\bar{g}_{ij}B^iB^j}{\sqrt{q_{-1}+q_{-4}(B^im_i)^2}} = q_{-1} + q_{-4}(B^im_i)^2 (3.8)$$

which demonstrate that $\frac{B^i}{\sqrt{q_{-1}+q_{-4}(B^im_i)^2}}$ is a unit normal vector.

Again contracting (2.4) by $B^i_{\alpha}B^j$ and using (3.3), (3.6) we get

$$\bar{g}_{ij}B^i_{\alpha}B^j = (q_{-3}l_i + q_{-4}m_i)B^i_{\alpha}(B^jm_j) \ (3.9)$$

Which demonstrates that the vector B^{j} normal to \overline{F}^{n-1} if and only if

$$(q_{-3}l_i + q_{-4}m_i) B^i_{\alpha} (B^j m_j) = 0 \quad (3.10)$$

Volume 13 Issue 10, October 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

This shows that at least one of the following conditions is correct

(a) $(q_{-3}l_i + q_{-4}m_i)B^i_{\alpha} = 0$ (3.11) (b) $B^jm_j = 0$.

Transvecting condition (3.11) (a) by v^{α} gives L=0 which is not possible.

Therefore condition (3.11) (b) holds i.e.,

$$B^j m_i = 0 \tag{3.12}$$

In view of (3.7), the equation (3.12) can be equivalently written as

$$B^j b_i = 0 \qquad (3.13)$$

According to the equation (3.8), (3.9) and (3.13), we get

$$\bar{B}^i = \frac{B^i}{\sqrt{(q_{-1})}},$$
 (3.14)

which gives

$$\overline{B}_{i} = \overline{g}_{ij}\overline{B}^{j} = \sqrt{(q_{-1})}B_{i} \quad (3.15)$$

Thus, we have

Theorem: If \overline{F}^{n-1} is the hypersurface of the space \overline{F}^n then the vector b_i is tangential to the hypersurface F^{n-1} if and only if each vector normal to F^{n-1} is also normal to \overline{F}^{n-1} .

References

- B. N. Prasad and Bindu Kumari: The β-change of Finsler metric and imbedding classes of their tangent spaces, Tensor N.S. 74, (2010), 48-59.
- [2] C. Shibata: On invariant tensor of β-change of Finsler metric, J. Math Kyoto University, 24 (1984), 163-18.
- [3] H. Izumi: Conformal transformation of Finsler spaces I, Tensor N.S., 31 (1977), 33-41.
- [4] H: Izumi: Conformal transformation of Finsler space II. An h-conformally Flat Finsler Space, Tensor N.S., 33 (1980), 337-369.
- [5] H. S. Shukla, O. P. Pandey and Khageswar Mandal: The β-change of Special Finsler spaces, International J. Math. Combin. 1(2017), 78-87.
- [6] H. S. Shukla and Neelam Mishra: Some properties of Conformal β-change, International J.Math. Combin. Vol.2 (2018), 13-23.
- [7] M. S. Knebelman: Conformal geometry of generalized metric spaces, Proc. Nat. Academy Science, USA., 15(1929), 376-379.
- [8] M. Hashiguchi: On conformal transformation of Finsler metric, J. Math, Kyoto University 16(1976), 25-50.
- [9] M. Matsumoto: The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry. J. Math. Kyoto Univ., 25(3), (1985), 107-144.
- [10] M. Kitayama: Geometry of transformation of Finsler metrices, Hokkaido University of Education, Kushiro Campus Japan, 2000.

Author Profile

S. K. Tiwari, Professor and Head, Department of Mathematics, K.S.S.P.G. College Ayodhya, Uttar Pradesh, India, Email: sktiwarisaket[at]yahoomail.com

C. P. Maurya, Adarsh Inter College, Gopalpur Basti, India, Email: chandraprakashmaurya74[at]gmail.com

Brijesh Kumar Maurya, K.S.S.P.G. College Ayodhya, Uttar Pradesh, India, Email: bksir2022[at]gmail.com