
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Terraform - Automating Infrastructure as a Service

Ponnarasan Krishnan

Abstract: Developing a software service requires a strict software development life cycle and process. This process demands

controlling all application code through source control management as well as a rigorous versioning and branching strategy. However,

the platform and infrastructure also benefit from this rigor. Software services must be deployed to a target run time environment and

provisioning that environment through manual user actions is tedious and error - prone. Provisioning manually also becomes

prohibitive as the number of resources grow and spread globally over multiple regions. The answer is to apply the same rigor to

provisioning the infrastructure as applied to developing the application software. Terraform provides a platform allowing infrastructure

resources to be defined in code. This code not only allows the automation of the infrastructure provisioning but also allows for a strict

development and review life cycle, same as the application software.

Keywords: cloud computing, terraform, infrastructure, provisioning

1. Introduction

Terraform is an Infrastructure As Code (IaC) client tool

developed by HashiCorp. It allows the user to define both

cloud and on premise compute resources in human -

readable configuration files. These files are created using the

HashiCorp Configuration Language (HCL). The syntax is

declarative with each block of code defining a resource to be

provisioned. Declarative definitions (versus imperative)

allow the user to define the desired state, rather than an

exhaustive list of all the interim steps required to achieve

that state. Section II discusses typical Terraform workflows

and how the tool is used. Section III digs more into the

structure of the HCL code. Various platforms that can run

the Terraform code are discussed in Section IV while the

provider plugins are expanded upon in Section V. Section VI

details the Cloud Development Kit interfacing

Terraform to multiple high - level programming languages.

The alternatives to Terraform are examined in Section VII.

Other related topics of research are discussed in VIII which

leads to a summary discussion in Section IX.

2. Basic Workflows

Figure 1 introduces the basic workflow for Terraform. The

development and implementation of IaC is broken into

write, plan and apply stages.

Figure 1: High - level workflow for Terraform covering

write, plan and apply stages.

a) Write

The write stage focuses on developing the code required to

drive the plan. The infrastructure resources are defined here

for the providers and services required. Multiple providers

may be included. The code is contained in configuration

files with a. tf extension. There is an additional option to

store the configuration in JavaScript Object Notation

(JSON) format which then requires the. tf. json extension.

The correct extension must be used in order for the

Terraform tool to detect the configuration file while

generating the plan. For example, a user wishes to create a

mini - cluster of virtual machines in Amazon Web Service

(AWS). Three virtual machines, a Virtual Private Cloud

(VPC) network, security group and a load balancer service

are required for this cluster. The Terraform configuration

code declares each of these resources separately with

corresponding parameters. Section III goes into more detail

of the configuration language.

b) Plan

Once the configuration code has been written, the next stage

is to run the Terraform tool to generate a plan. The tool is

run either through the local Command Line Interface (CLI)

or via other high - level language that can interface to the

Terraform framework via the Cloud Development Kit

(CDK). Section VI digs into further detail of the CDK.

Running the Terraform plan will scan local directories for

configuration files ending in. tf or. tf. json and process these

into a list of actions to be sent to the provider (s). This list is

called the execution plan and encompasses all create, update

and destroy actions needed to make the target infrastructure

match what is declared in the configuration code. The plan

generation additionally has a dependency on the existing

infrastructure that is represented in the state. The state

details all infrastructure resources that are currently present.

The state file exists either locally in the file system or

remotely. For example, the configuration contains an Elastic

Compute (EC2) virtual machine named “VirtualMachine1”.

Upon running Terraform to generate the plan, the current

state file is checked. If the VirtualMachine1 EC2 is already

existing, the plan does not create it. It will either be an

update action or no operation.

c) Apply

The final stage in the Terraform workflow is to apply.

Running the tool on a plan executes each action against the

corresponding provider. Figure 2 shows Terraform

Paper ID: SR24930224444 DOI: https://dx.doi.org/10.21275/SR24930224444 199

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

interacting with its provider plugin which subsequently calls

into the Application Programming Interface (API) of the

corresponding cloud provider (e. g. AWS). Provider

modules act as the abstraction between the configuration

code and unique API defined by each infrastructure

provider. The providers are further discussed in Section V.

As part of apply, the state is updated to represent the

changes in the target infrastructure

Figure 2: Terraform actions go through a provider module

to translate into API calls specific to that provider

3. Configuration Language

Terraform scans configuration files and generates a

corresponding plan. The configuration files are written in the

HashiCorp Configuration Language (HCL). This language is

declarative. Declarative offers an advantage over imperative

in that the desired state of the infrastructure can be directly

coded. An imperative language requires defining all the

interim steps to arrive at the desired state. The main purpose

of HCL is to define resources. The code is written in blocks

with each block representing an infrastructure object. A

Terraform configuration is a complete document in HCL

telling Terraform how to manage a given collection of

infrastructure resources. Figure 3 shows example code that

declares the required provider plugin as well as a VPC and

corresponding subnet. The purpose of the block is defined

by the block type. A variable block type is used as a

parameter in other blocks. A provider defines what provider

plugin is used to translate the resource block into API calls

to the infrastructure provider. The resource block is used to

define a concrete resource in the provider’s infrastructure.

Resources blocks are translated into create, update or delete

API calls to the provider’s target infrastructure service.

Figure 3: An HCL example declaring the required provider,

a VPC and subnet

4. Framework Environment

Environments that can run Terraform are the CLI, Terraform

Cloud, Terraform Enterprise and CDK. The CLI is the most

common. Pre - built binaries can be downloaded or the

Golang source code1 can be cloned and built. The Terraform

tool runs on a local set of configuration files. These files can

be organized into subdirectories which Terraform will

automatically traverse. The state file is typically generated in

the same directory that the tool runs from. However, there is

a remote option which generates state files in a remote,

central location such that multiple Terraform clients may

apply their plans and still synchronize their view of the

existing infrastructure. Terraform Cloud is a Terraform

environment hosted by HashiCorp. As a hosted service,

users log in to generate and apply plans. The Terraform tool

- chain itself is maintained by Hashi Corp while the state

files are centrally stored such that all users are running

against the same current infrastructure state. Terraform

Enterprise is a self - hosted version of Terraform Cloud. If

offers the same cloud - based feature set but is designed to

be deployed within an enterprise’s private cloud. Another

version of the CLI or local environment is the Cloud

Development Kit (CDK). Rather than running the CLI tool

directly, CDK permits five supported high - level languages

to generate and apply Terraform plans. Code in these

supported languages is able to call in to the Terraform

Paper ID: SR24930224444 DOI: https://dx.doi.org/10.21275/SR24930224444 200

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

framework, replacing the Terraform CLI. Section VI

provides further details on CDK

5. Providers

Terraform relies on plugins called providers to interact and

abstract the various infrastructure providers. Each provider

must be declared in the configuration using the “provider”

block type. Once a provider has been declared, the

corresponding plugin is included while generating the plan.

Declared resources utilize the provider’s underlying API to

perform create, update and delete actions needed to ensure

the resource ends up in the desired state. Providers come

from a publicly available registry of known plugins 2. The

list is extensive and covers all known cloud, Software as a

Service (SaaS) and other APIs. These provider plugins allow

the resource and data source blocks to be declared without

needing details on the specific provider’s API. Each

provider maintains documentation on the Terraform blocks

it supports along with the corresponding parameters.

6. Cloud Development Kit

The Cloud Development Kit (CDK) for Terraform allows

the use of other programming language to define and

provision infrastructure. CDK gives access to the entire

Terraform ecosystem without requiring development in

HashiCorp Configuration Language (HCL) and running it

via the CLI tool. Additionally, a user can more easily

integrate with an existing tool - chain for testing and

dependency management. The following languages are

currently supported:

• Typescript

• Python

• Java

• C#

• Go

Figure 4 shows the various input pathways to Terraform.

CDK may be invoked from its five supported languages

while configuration code in HCL or JSON require the

Terraform CLI. Kubernetes’ Custom Resource Definitions

(CRDS) are another possibility but will not be covered here.

Figure 4: CDK and other pathways to define configuration,

input to Terraform and provision infrastructure through

multiple providers. Configuration input may be through

CDK, CRDS, HCL or JSON

7. Alternatives

Terraform provides an abstraction of providers and their

resources. It can represent physical hardware, virtual

machines, containers, network configurations, email and

Domain Name Service (DNS) providers. Given the breadth

of resources and providers, Terraform does overlap with

other tools. Some of these tools will be discussed here.

a) Chef and Puppet

Chef3 and Puppet4 are configuration management tools.

They are designed to install and manage software on

compute resources that already exist. Terraform instead

focuses on the bootstrapping and initializing of those

compute resources. It works well in conjunction with

configuration management.

b) Cloud Formation and Heat

CloudFormation5 and Heat6 are both tools that represent

infrastructure as code, just like Terraform. The configuration

files allow the infrastructure to be elastically created,

modified and destroyed. The big advantage which Terraform

provides is it is provider - agnostic. Cloud Formation is an

Amazon Web Service (AWS) tool and only works with

provisioning other AWS resources. Heat similarly operates

only on an OpenStack API. Terraform not only supports

multiple providers but can also combine resources from each

into a single plan. Thus, it introduces multi - cloud

provisioning. Another feature which Terraform has over

Cloud Formation and Heat is the separation of the plan and

execution. Terraform has the distinct stage to generate a plan

which also takes into account the existing state of the

infrastructure. The plan is then optionally reviewed and

approved before the apply stage executes each plan action.

Terraform also has a graph feature which displays the plan

actions ordered by dependency

c) Boto and Fog

Boto7 and Fog8 are similar to provider plugins in Terraform.

They abstract the API to a particular infrastructure provider.

Both still require some high level programming language to

declare the resources and call in to their respective libraries.

In contrast, Terraform abstracts this functionality as an

extensive set of plugins and providers the high - level

configuration language to allow declaring the resources in a

provider - agnostic manner.

8. Related Work

The Organization for the Advancement of Structured

Information Standards (OASIS) 9 was founded in 1993 as a

non - profit consortium that works on the development,

convergence and adoption of open standards for

cybersecurity, cloud computing and related areas [2]. The

two standards that are relevant to this paper are Topology

and Orchestration Specification for Cloud Applications

(TOSCA) and Cloud Application Management for Platforms

(CAMP).

a) TOSCA

TOSCA is an open standard that describes a topology of

cloud - based web services, their components, relationships

and the processes that manage them. Version 1.0 was

Paper ID: SR24930224444 DOI: https://dx.doi.org/10.21275/SR24930224444 201

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

approved 16 January 2014 by OASIS. The standard enables

portability and automated management across cloud

providers regardless of the underlying infrastructure. This

standard improves reliability and reduces cost while

facilitating the continuous delivery of applications across

their entire lifecycle. Version 2.0 is the current and was

approved 28 October 2020 [3]. The core specification

provides a language for describing service components and

their relationships using a service topology, and it provides

for specifying the lifecycle management procedures that

allow for creation or modification of services using

orchestration processes. A TOSCA Service Template, as

shown in Figure 5, combines topology and orchestration

needed in different environments to enable automated

deployment of services and their management throughout

the complete service lifecycle. The TOSCA language has the

ability to automate lifecycle management for the following:

Infrastructure as a Service deployments for multiple cloud

providers (i. e. OpenStack, AWS, Microsoft Azure).

• Deploy containerized applications to existing

orchestrators (i. e. Kubernetes).

• Define the management of Virtual Network Functions.

• Support on - demand creation of network services.

Figure 5: Structural Elements of a TOSCA Service

Template and its Relations

• Define Functions as a Service applications that can run

without any corresponding deployment.

• Deploy services to Internet of Things (IoT) and Edge

devices while minimizing latency.

• Support open and interoperable process control

architectures

Implementations of the TOSCA standard can take the form

of:

• Source code: a Yet - Another - Markup - Language

(YAML) document which defines the Service Template.

• Processor: a tool or engine to parse the Service Template

document.

• Orchestrator: a tool or engine that processes the Service

Template in order to deploy and manage an application

• Translator: a tool to translate the Service Template into

another language such as Helm Charts or Amazon Cloud

Formation templates

• Generator: a tool to generate a Service Template.

• Archive: Cloud Service Archive (CSAR), a package

containing the Service Template and other artifacts

needed for deployment.

Links to all known TOSCA implementations are listed in the

oasis - open repository in GitHub10. Also, a full list of

TOSCA technical committee members may be viewed at the

oasis - open membership page11

b) CAMP

The Cloud Application Management for Platforms (CAMP)

is another standard to come from the OASIS consortium. Its

technical committee published version 1.0 in August 2012

and was a collaboration between Cloud Bees, Cloud soft

Corporation, Huawei, Oracle, Rackspace, Red Hat, and

Software AG [4]. The technical committee was closed by

OASIS on 23 April 2021 and is no longer active. As CAMP

is referenced frequently in cloud computing research, we

will include it here for completeness

The CAMP technical committee’s goal advances an

interoperable protocol that packages and deploys cloud -

hosted applications. The standard defines models,

mechanisms and protocols for the management of a Platform

as a Service (PaaS) environment. PaaS describes a service

where the users manage the platform that applications are

hosted on. In contrast, the TOSCA standard focuses on

Infrastructure as a Service (IaaS). PaaS exists a level above

IaaS and thus CAMP and TOSCA are complementary

standards rather than overlapping.

9. Conclusion and Discussion

In this paper, we discuss Terraform as an Infrastructure as

Code (IaC) tool. Its framework allows the user to declare

infrastructure resources through code, generate an execution

plan from that code and finally apply the plan. Applying

works through provider plugin modules which translate the

execution actions into API calls specific to the provider. Not

only is the infrastructure created in a programmatic manner,

it is agnostic of the underlying provider (i. e. AWS, private

cloud, VMWare, Microsoft Azure). This abstraction avoids

vendor lock - in and increases portability between vendors.

The Terraform configuration language is discussed as well

as the possible environments that can interpret and run the

corresponding code. These environments range from local

execution to both cloud and private hosted services. Provider

modules allow interfacing to almost any third - party

infrastructure vendor or service while the Cloud

Development Kit (CDK) enables a user to integrate with the

Terraform framework from five popular high - level

programming languages. Configuration management tools

such as Chef, Ansible and Puppet focus more on automating

the software and configurations within an infrastructure

resource and thus, do not directly compete with Terraform.

Amazon’s Cloud Formation and OpenStack’s Heat do

compete. However, their framework only supports their own

infrastructure and cannot provision resources from other

providers. As of this writing, Terraform focuses on the

provisioning of infrastructure and services. The building and

deployment of software applications to that infrastructure

requires additional tool - chains and automation. A product

that overseas an entire operation from multi - cloud

infrastructure provisioning, application deployment and

runtime orchestration does not exist at this time. One

promising possibility is Topology and Orchestration

Specification for Cloud Applications (TOSCA). TOSCA is a

standard developed by the Organization for the

Advancement of Structured Information Standards (OASIS)

Paper ID: SR24930224444 DOI: https://dx.doi.org/10.21275/SR24930224444 202

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 10, October 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

consortium. Part of the standard is a specification language

that allows users to create YAML - based Service

Templates. These templates declare nodes, workflows and

relationships such that a more complete picture may be

specified for the total operation of an application and its

required infrastructure. TOSCA implementations include

template code interpreters, orchestrators, translators and

archive tools. OpenStack Heat is an example of a TOSCA -

compatible framework but is still limited in its breadth and

focuses mostly on the provisioning. Further research in

TOSCA is required, both to expand and mature the standard

as well as bring a new suite of framework tools into the

mainstream that implement it.

References

[1] HashiCorp, Terraform Documentation. Accessed: May

2, 2022. [Online]. Available: https: //www.terraform.

io/docs

[2] Wikipedia, OASIS (organization). Accessed: May 6,

2022. [Online]. Available: https: //en. wikipedia.

org/wiki/OASIS (organization)

[3] Oasis Open, TOSCA Version 2.0. Accessed: May 7,

2022. [Online]. Available: https: //docs. oasis - open.

org/tosca/TOSCA/v2.0/TOSCAv2.0. html

[4] Oasis Open, CAMP Charter. Accessed: May 7, 2022.

[Online]. Available: https: //www.oasis - open.

org/committees/camp/charter. php

Paper ID: SR24930224444 DOI: https://dx.doi.org/10.21275/SR24930224444 203

https://www.ijsr.net/
https://www.terraform.io/docs
https://www.terraform.io/docs
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCAv2.0.html
https://docs.oasis-open.org/tosca/TOSCA/v2.0/TOSCAv2.0.html
https://www.oasis-open.org/committees/camp/charter.php
https://www.oasis-open.org/committees/camp/charter.php

