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Abstract: This study comprehensively analyzes Amazon Web Services (AWS) and Google Cloud in supporting real-time analytics and 

machine learning (ML) integration. We utilized transactional data from the Kaggle “Credit Card Fraud Detection” dataset. The 

experiment evaluates both platforms’ metrics: ingestion latency, data processing efficiency, ML inference latency, scalability, and cost-

effectiveness. AWS and Google Cloud were configured with identical virtualized hardware environments to ensure replicable results. 

Findings show that AWS consistently outperformed Google Cloud. It suppressed with an average ingestion latency of 116.1 ms compared 

to Google Cloud’s 125.2 ms and a 10.8% faster query processing time. AWS SageMaker also demonstrated a 15.8% reduction in ML 

inference latency over Google Cloud’s AI Platform. Scalability tests revealed that AWS maintained stable performance at ingestion rates 

exceeding 2,500 records per second. It surpassed Google Cloud’s limit of 2,000 records per second. Cost analysis further indicated AWS’s 

marginal cost advantage in data processing and ML inference. Results were validated against baseline metrics from existing literature. It 

confirms that AWS offers a more efficient, cost-effective solution for real-time, ML-integrated analytics, particularly in high-load 

environments. 
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1. Introduction 
 

The rapid expansion of digital technologies has driven a surge 

in data generation from diverse sources [1]. These include 

social media, Internet of Things (IoT) devices, and transaction 

systems [2]. As organizations aim to leverage this vast data 

pool, real-time analytics has emerged as a vital capability. 

This capability enables decision-making based on immediate, 

actionable insights. Real-time analytics allows organizations 

to respond dynamically to customer behaviors, market 

fluctuations, and operational demands. It positions data as a 

strategic asset. Cloud platforms, particularly AWS and 

Google Cloud, offer specialized tools for real-time data 

processing. They provide essential infrastructure for 

managing, analyzing, and visualizing data streams as they 

occur [3], [4]. 

 

With the increasing velocity of data, conventional batch 

processing analytics are often inadequate [5]. This is 

especially true for applications that demand immediate 

responses. Such applications include fraud detection in 

finance, patient monitoring in healthcare, and personalized 

customer interactions in e-commerce. Real-time analytics on 

cloud platforms enables organizations to act swiftly. This 

yields tangible benefits in operational efficiency and 

competitive advantage. Yet, selecting an optimal cloud 

solution that balances scalability, integration with ML, and 

cost-effectiveness remains challenging. Understanding the 

comparative strengths of AWS and Google Cloud is critical 

for organizations aiming to maximize the value of their real-

time analytics initiatives [6], [7]. 

 

The need for efficient, scalable, and cost-effective real-time 

analytics infrastructures has led organizations to adopt cloud 

based solutions [8]. However, despite significant investments 

in these platforms, many struggle to exploit AWS and Google 

Cloud’s potential fully. They face gaps in integration 

capabilities, real-time data streaming options, and 

comprehensive ML incorporation. This study addresses how 

AWS and Google Cloud differ in supporting real-time 

analytics and which platform provides a more effective 

foundation for data-driven decision-making in dynamic 

environments. 

 

Existing cloud solutions for real-time analytics offer services 

for data ingestion, storage, and analysis [9]. However, they 

vary in depth and flexibility. AWS and Google Cloud provide 

tools like Amazon Kinesis and Google Pub/Sub for streaming, 

alongside data warehousing options such as Amazon Redshift 

and BigQuery [10]. Although these services facilitate rapid 

data processing, they often lack streamlined integration with 

advanced analytics workflows and ML applications. 

Additionally, scalability and data interoperability limitations 

hinder the full utilization of real-time insights in complex 

multi-source data environments [11], [12]. 

 

This study proposes a comparative analysis of AWS and 

Google Cloud, focusing on their respective real-time analytics 

capabilities, ML integration, and infrastructure flexibility. 

Through an evaluative framework, this research identifies the 

strengths and limitations of each platform, emphasizing how 

a tailored approach can optimize real-time analytics 

implementations. By outlining key performance indicators, 

this study provides insights for organizations to enhance their 

data workflows and enable agile, data-informed decision-

making. 

 

This study aims to evaluate and compare the real-time 

analytics capabilities of AWS and Google Cloud. It seeks to 

determine which platform offers superior support for agile 

decision-making. The research objectives are as follows: 

 

• To examine the real-time data ingestion, storage, and 

processing capabilities of AWS and Google Cloud. 

• To analyze the integration of ML within each platform’s 

real-time analytics workflow. 

Paper ID: SR241105211600 DOI: https://dx.doi.org/10.21275/SR241105211600 302 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 11, November 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

• To assess the scalability and cost-effectiveness of AWS and 

Google Cloud in handling dynamic, high-velocity data 

streams. 

 

The remainder of this paper is structured as follows. The next 

section comprehensively reviews relevant literature on real-

time analytics and cloud computing. The subsequent section 

describes the methodology used for the comparative analysis. 

The analysis section presents the results and discussion, 

detailing each platform’s strengths and weaknesses. The 

concluding section offers implications and suggestions for 

future research. 

 

2. Literature Review 
 

The proliferation of cloud computing has transformed how 

organizations manage and analyze large volumes of data. 

Cloud platforms provide scalability and flexibility, allowing 

organizations to process big data more effectively than 

traditional infrastructure. Yilmaz et al. [13] discuss the core 

advantages of cloud computing for big data analytics, 

focusing on the ability to handle vast datasets through 

distributed storage and processing capabilities. Cloud 

platforms offer cost efficiency and ease of integration with 

diverse data sources, enabling organizations to harness data-

driven insights without significant infrastructure investments. 

Similarly, Darius et al. [14] provide a comprehensive review 

of cloud-based big data tools, emphasizing how platforms like 

AWS and Google Cloud facilitate efficient data management 

through optimized largescale analytics tools. However, as 

cloud platforms evolve, challenges remain in identifying the 

platform that best supports diverse, real-time analytics 

requirements. 

 

Cloud computing’s role in customer behavior analysis and 

personalization highlights its critical application in retail. 

Sathupadi [15] explores cloud-based systems enabling 

AIdriven analysis for marketing optimization, customer churn 

prediction, and personalized experiences. These systems 

allow retailers to analyze real-time interactions, enhancing 

customer engagement and loyalty. Yet, the reliance on 

platform-specific tools often limits the integration of 

advanced, cross-platform analytics. Kanchepu [16] further 

highlights cloud computing’s potential in data science, 

highlighting cloud platforms’ role in deploying advanced 

algorithms at scale, which is crucial in dynamic environments 

needing real-time insights. Despite this, research lacks a 

comprehensive analysis of which cloud provider offers the 

most efficient, scalable support for real-time AI-driven data 

streams across multiple business applications. 

 

Cloud platforms are also central to data-driven intelligent 

systems that incorporate AI services. Naveen et al. [17] 

emphasize how cloud platforms enhance intelligent 

applications through seamless data processing and AI 

integration. This integration allows businesses to dynamically 

analyze real-time data streams, responding to customer needs 

and market changes. However, while services like AWS 

SageMaker and Google Cloud AI Platform support such 

workflows, their comparative effectiveness in supporting 

high-velocity, continuous data analysis is poorly understood. 

Kanchetti et al. [18] emphasize integrating ML with cloud 

platforms, especially in real-time scenarios where predictive 

insights are essential. However, a gap remains in 

understanding which platform provides better, more flexible 

integration for ML in real-time data scenarios, particularly in 

multi-source data environments. Many recent studies focus on 

AWS’s specific offerings for ML and analytics. 

Ravindranathan et al. [19] provides an overview of AWS 

services tailored for ML, such as SageMaker, for model 

development and deployment at scale. Bayazitov et al. [20] 

explore AWS’s cloud storage and AI integration, noting its 

flexibility for AI-driven applications. Although AWS has 

established itself as a leader in cloud-based data science 

infrastructure, the comparative strength of AWS versus 

Google Cloud in handling complex, multi-dimensional real-

time analytics and ML remains insufficiently addressed in 

current research. 

 

Real-time data integration has become crucial for timely, 

data-driven decisions. Ambasht [21] highlights real-time 

analytics’ impact on decision-making by enabling immediate 

data processing. This is vital in industries where timely 

insights influence business outcomes significantly. Borra [22] 

discusses cloud data warehousing solutions such as AWS 

Redshift, Google BigQuery, and Azure Synapse, highlighting 

their highspeed data querying capabilities. Yet, studies seldom 

examine which of these platforms provides the most robust 

support for real-time data ingestion and processing across 

diverse sectors and multi-source environments. This research 

will address the gap by systematically evaluating AWS and 

Google Cloud’s real-time data handling and ML integration, 

which remain under-explored in comparative studies. 

 

The literature illustrates that while AWS and Google Cloud 

offer extensive data analytics and ML support, gaps persist in 

understanding their comparative efficacy for real-time, cross 

platform data workflows. AWS and Google Cloud excel in 

certain areas, but current research lacks a nuanced view of 

how these platforms meet real-time analytics needs, 

especially for AI integration in high-velocity, multi-source 

data contexts. This study addresses this gap, providing 

organizations with insights into optimizing cloud-based, real-

time analytics and informing platform selection based on 

detailed performance metrics. 

 

3. Proposed Methodology 
 

This study develops a detailed framework for evaluating the 

real-time analytics capabilities of AWS and Google Cloud, 

focusing on their integration with ML models. Our 

methodology consists of three stages: data ingestion and 

preparation, real-time data processing, ML inference, and 

performance benchmarking. Each stage is designed with 

mathematical formulations to ensure objective and replicable 

results, emphasizing ML model deployment and integration 

within real-time analytics workflows. Metrics include 

ingestion rate, processing load, latency, scalability, model 

inference efficiency, and cost-effectiveness. 

 

A. Data Ingestion and Preparation 

 

In this stage, we define a high-velocity data stream with 

ingestion rate λ, where λ = {d1,d2,...,dn} represents discrete 

data entries over time. For AWS, data is ingested using 

Amazon Kinesis (Kaws), and for Google Cloud, Cloud 
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Pub/Sub (Pgcp) is used. Both platforms ingest data at rate λ to 

ensure comparability: 

 

  (1) 

 

where Tingest,aws and Tingest,gcp represent the ingestion 

times for AWS and Google Cloud, respectively. Both 

platforms are configured to maintain λaws = λgcp, ensuring 

consistent data input rates. 

 

Data preparation uses AWS Glue on AWS and Dataflow on 

Google Cloud, standardizing the dataset into a uniform 

schema S. Each entry di is transformed into d′
i = f(di,S), where 

f represents the schema transformation function: 

 

  Transform(di,S) (2) 

 

This step allows both platforms to handle identical datasets, 

ensuring ML model training and inference comparability. 

 

B. Real-Time Data Processing and ML Inference 

 

This stage involves both real-time data processing and ML 

model deployment. Each platform’s data processing 

capabilities are tested with SQL-based queries, with 

additional steps to support real-time ML model integration for 

predictive analytics. AWS Redshift and QuickSight 

represented as Raws and Qaws, and Google BigQuery and 

Looker, represented as Rgcp and Qgcp, process the data. For 

SQL-based queries Q, execution times Tprocess are given by: 

 

 
 

where m denotes the number of queries. 

 

For ML integration, we deploy pre-trained models Maws on 

AWS SageMaker and Mgcp on Google Cloud AI Platform to 

generate predictions yˆ in real-time. For a dataset 

 

 , each model produces predictions yˆi = 

M(d′
i), with the inference time Tinference computed as: 

 

  (4) 

  (5) 

 

This measures how quickly each platform processes new data 

entries to generate real-time predictions, which is critical for 

applications like fraud detection and recommendation 

systems. 

 

C. ML Model Training and Deployment 

 

We evaluate each platform’s ML training time Ttrain and 

deployment time Tdeploy to ensure a complete comparison. 

Training is performed on a sample dataset {Dtrain}, with the 

total training time calculated as: 

 

(6) 

 

(7) 

 

where k represents the training iterations required to reach 

model convergence. Deployment time Tdeploy for both 

platforms captures the time from model training completion 

to active real-time integration: 

 

Tdeploy,aws = f(Maws,Kaws) (8) 

Tdeploy,gcp = f(Mgcp,Pgcp) (9) 

 

where f denotes the setup and configuration process for real-

time integration with the data stream. 

 

D. Performance Benchmarking and Constraints 

 

Performance benchmarking involves latency, scalability, 

model inference efficiency, and cost-effectiveness metrics. 

These metrics allow us to evaluate each platform’s suitability 

for high-frequency, ML-integrated analytics environments. 

 

1) Latency: Latency, L, measures the delay from data 

ingestion to final output generation (i.e., ML predictions). 

Average latency Lavg for each platform is calculated as: 

 

 
 

Lower latency values indicate faster, more responsive 

platforms for real-time analytics. 

 

2) Scalability: Scalability, σ, assesses how each 

platform performs as data volume λ increases. We measure 

scalability as the ratio of performance degradation ∆T in 

processing and inference times to the initial time T0: 

 

  (12) 

 

A lower σ indicates better scalability, showing how well each 

platform adapts to growing data volumes. 

 

3) Model Inference Efficiency: Model inference 

efficiency, Ie, assesses the real-time responsiveness of ML 

predictions under high-volume data conditions. We define Ie 

based on the ratio of inference output rate OM to ingestion rate 

λ: 

  

 (13) 
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If Ie ≈ 1, the platform maintains real-time inference without 

bottlenecks; if Ie < 1, the model lags behind ingestion, 

indicating delays. 

 

4) Cost-Effectiveness: Cost-effectiveness, C, evaluates 

the cost per data unit processed and prediction generated. 

Each platform’s unit cost cunit for processing and ML 

integration is: 

 

 
 

Lower C values indicate more cost-effective real-time 

analytics and ML integration platforms. 

 

E. Constraints and Control Variables 

 

Control variables ensure consistency in data rates λ, data 

structure S, and ML model architectures M. Each platform 

processes a fixed data volume of 106 entries, uses identical 

data schemas, and deploys models with equivalent 

architectures. This control framework provides a standardized 

comparison, allowing reliable performance assessments of 

AWS and Google Cloud for real-time, ML-integrated 

analytics workflows. 

 

4. Experiment Setting 
 

To achieve realistic conditions, the experiment uses publicly 

available transactional data from the Kaggle “Credit Card 

Fraud Detection” dataset [23]. This dataset consists of 

anonymized transactions labeled for fraudulent and 

nonfraudulent activity, providing a high-velocity data source 

typical of financial services applications. The data stream is 

ingested into both cloud platforms at a controlled rate of 1,000 

records per second, with each record retaining the original 

structure, including features indicative of fraud. 

 

Data ingestion is handled on AWS via Amazon Kinesis and 

Google Cloud through Cloud Pub/Sub, configured to ingest 

data at the same rate. Ingestion rates are monitored and 

adjusted as needed to ensure stability. Post-ingestion, SQL-

based queries assess each platform’s real-time analytics 

capacity, focusing on fraud probability calculation, 

transaction pattern summarization, and high-risk transaction 

filtering. Amazon Redshift processes AWS data, while 

Google BigQuery does so for Google Cloud, running 

identical queries on real-time streams. Each query type runs 

100 times, and the average latency from execution to result 

generation is recorded. 

 

ML integration involves training and deploying a binary 

classification model for fraud detection using logistic 

regression for real-time predictions. Training occurs 

separately on each platform’s ML services - AWS SageMaker 

and Google Cloud AI Platform—to assess training efficiency 

and deployment latency. Once trained, the model operates in 

realtime inference mode, generating predictions for each 

ingested record within seconds. Inference latency is measured 

from data ingestion to prediction output, maintaining a one-

to-one ratio between incoming records and predictions. 

 

Performance is evaluated on four key metrics: latency, 

scalability, model inference efficiency, and cost-effectiveness. 

Latency measures the average delay from data ingestion to 

output, indicating platform responsiveness. Scalability is 

tested by increasing data rates beyond 1,000 records per 

second and observing processing time impacts. Model 

inference efficiency assesses each platform’s ability to 

maintain real-time predictions under high load, calculated as 

the ratio of predictions to records ingested. Cost-effectiveness 

is determined by the cost per 1,000 records, including data 

processing, storage, and ML service fees. 

 

To ensure objective comparison, control variables are applied 

across the experiment. These include identical hardware 

configurations, such as 16 vCPUs and 64 GB RAM on 

virtualized cloud instances for both platforms, as well as 

identical data schemas and query types. By controlling these 

variables, the experiment isolates performance differences 

resulting from AWS’s and Google Cloud’s inherent 

capabilities, providing a fair and reliable assessment. This 

experimental setting comprehensively evaluates each 

platform’s strengths and limitations for real-time, ML-

integrated analytics, equipping organizations with critical 

insights for selecting a cloud provider in high frequency data 

environments. 

 

5. Results and Analysis 
 

The experiment yielded various results across metrics, 

including ingestion latency, processing time, ML inference 

latency, scalability, and cost-effectiveness. Each metric is 

carefully analyzed below to provide insights into the real-time 

analytics capabilities and ML integration of AWS and Google 

Cloud. Detailed tables and figures accompany each analysis 

to illustrate performance variations and highlight platform 

specific strengths and weaknesses. 

 

To begin, Table I presents the average ingestion latency for 

AWS and Google Cloud over 1,000 records per second, 

showing consistent performance across ten test runs. 

 

Table I: Average Ingestion Latency (MS) at 1,000 Records 

Per Second 

Run AWS Ingestion 

Latency 

Google Cloud Ingestion 

Latency 

1 120 130 

2 118 128 

3 115 127 

4 116 125 

5 117 123 

6 119 124 

7 118 126 

8 116 122 

9 117 124 

10 115 123 

Average 116.1 125.2 

 

From Table I, AWS exhibits slightly lower ingestion latency 

than Google Cloud, with an average latency of 116.1 ms 

versus 125.2 ms. While seemingly small, this marginal 

difference is a noticeable advantage in high-frequency 

environments where milliseconds are critical. AWS’s 
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ingestion latency advantage suggests a marginally more 

efficient stream handling mechanism in Amazon Kinesis than 

Google Cloud Pub/Sub, especially valuable in applications 

requiring rapid responses. 

 

Next, Table II shows the average SQL query processing times 

for both platforms based on 100 query executions across three 

query types: aggregation, filtering, and join operations. 

 

Table II: Average Query Processing Times (MS) for Real-

Time Analytics 

Query Type AWS 

(ms) 

Google Cloud 

(ms) 

Difference 

(%) 

Aggregation 150 170 -13.3 

Filtering 145 160 -9.4 

Join 200 225 -11.1 

Average 165 185 -10.8 

 

In Table II, AWS consistently outperforms Google Cloud 

across all query types, with an average processing time 10.8% 

lower than Google Cloud’s. AWS achieves 150 ms on average 

for aggregation queries versus Google Cloud’s 170 ms. 

Filtering and join queries show similar trends, where AWS 

maintains quicker response times. This difference suggests 

that Amazon Redshift may have more optimized query 

handling capabilities than Google BigQuery under real-time 

workloads, benefiting users needing rapid analytics. 

 

The following evaluation focuses on ML inference latency, 

with results shown in Table III. 

  

Table III: Average ML Inference Latency (MS) for Fraud 

Detection Model 

Run AWS SageMaker 

Latency 

Google Cloud 

Latency 

1 75 90 

2 78 92 

3 74 88 

4 76 89 

5 77 91 

6 73 87 

7 75 89 

8 76 90 

9 74 88 

10 77 92 

Average 75.5 89.6 

 

In Table III, AWS SageMaker consistently demonstrates 

lower inference latency, averaging 75.5 ms compared to 

Google Cloud’s 89.6 ms. This indicates that AWS can provide 

faster real-time predictions for ML-integrated applications, 

which is especially beneficial in time-sensitive applications 

such as fraud detection. The inference efficiency advantage 

suggests a more streamlined ML integration process within 

SageMaker. 

 

Scalability is evaluated by increasing the data ingestion rate 

in increments of 500 records per second, recording the 

corresponding processing times as shown in Figure 1. The 

graph reveals each platform’s ability to handle growing data 

loads. 

From Figure 1, AWS and Google Cloud show initial linear 

scalability. However, as ingestion rates exceed 2,500 records 

per second, Google Cloud’s processing time increases steeper 

than AWS, indicating that AWS scales more efficiently under 

high-load conditions. This scalability advantage is likely due 

to AWS’s auto-scaling mechanisms within Amazon Kinesis 

and Redshift, which adapt dynamically to increased data 

loads. In contrast, Google Cloud Pub/Sub and BigQuery 

encounter bottlenecks at higher ingestion rates. 

 
Figure 1: Scalability Analysis: Processing Time vs. 

Ingestion Rate 

 

Finally, Table IV compares cost-effectiveness, measured as 

the cost per 1,000 records processed and predictions 

generated. 

 

Table IV: Cost Per 1,000 Records Processed and Predictions 

Generated (USD) 

Platform Processing Cost 

(USD) 

ML Inference Cost 

(USD) 

AWS 0.015 0.020 

Google 

Cloud 

0.017 0.022 

 

As shown in Table IV, AWS exhibits a slight cost advantage 

in processing and ML inference, with 0.015 USD per 1,000 

records for processing compared to Google Cloud’s 0.017 

USD. Similarly, ML inference costs are marginally lower for 

AWS at 0.020 USD versus Google Cloud’s 0.022 USD. While 

these differences are minimal, they highlight AWS’s ability to 

offer a cost-effective solution in large-scale, real-time ML 

applications. 

 
Figure 2: Cost-Effectiveness Comparison: Cost per 1,000 

Records Processed and Predictions 
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The results indicate that AWS demonstrates superior 

performance across multiple dimensions, including ingestion 

latency, query processing, ML inference latency, scalability, 

and cost-effectiveness. AWS’s consistent advantage in 

ingestion and processing latency, along with lower ML 

inference times, suggests that it is better suited for 

applications requiring fast, real-time analytics and high-

frequency ML predictions. Furthermore, AWS’s scalability 

results indicate it can handle larger data loads with minimal 

performance degradation, making it preferable for rapidly 

growing data environments. Although Google Cloud provides 

competitive performance, especially in lower-load conditions, 

it exhibits higher latencies and reduced scalability at higher 

ingestion rates, which may limit its suitability for highly 

demanding applications. 

 

A. Comparison with Baseline Models and Literature 

 

The experimental results are compared with baseline 

performance metrics from previously published studies on 

cloud based real-time analytics and ML integration to 

contextualize the findings further. This comparison validates 

the observed differences in AWS and Google Cloud’s 

capabilities and places the results within the broader research 

landscape. 

 

Baseline data is derived from existing literature focusing on 

cloud performance in real-time data processing and ML 

inference. Specifically, Yilmaz et al. [13], and Darius et al. 

[14] provide foundational metrics for ingestion and 

processing latencies, as well as scalability constraints on 

platforms like AWS, Google Cloud, and Azure. Sathupadi 

[15] and Kanchetti et al. [18] detail latency benchmarks for 

ML inference and real-time data analytics, which serve as 

additional baselines. 

 

Table V compares the experimental results with baseline 

values reported in these studies. Metrics include ingestion 

latency, processing latency, ML inference latency, and 

scalability. 

 

As seen in Table V, the experimental results align closely with 

the baseline metrics provided in previous studies, with 

notable improvements in certain areas. AWS demonstrated an 

average ingestion latency of 116.1 ms in this study, 

outperforming the 130 ms baseline reported by Yilmaz et al. 

[13]. This suggests enhancements in Amazon Kinesis’s 

efficiency for handling high-frequency data, reflecting AWS’s 

continuous optimizations in its ingestion pipeline. Similarly, 

Google Cloud’s ingestion latency was recorded at 125.2 ms, 

marginally better than the baseline of 140 ms reported by 

Sathupadi [15]. These findings validate the experimental 

setup, confirming that ingestion latency improvements are 

achievable under optimized conditions. 

 

AWS and Google Cloud performed close to baseline values 

for processing latency but showed slight improvements. AWS 

had an average processing latency of 165 ms, while the 

baseline recorded by Darius et al. [14] was 175 ms. This 

performance gain may be attributed to Amazon Redshift’s 

query handling optimizations, particularly for high-frequency 

environments. Google Cloud, on the other hand, exhibited a 

processing latency of 185 ms, closely matching its baseline of 

190 ms reported by Kanchetti et al. [18]. This consistency in 

processing latency aligns with Google BigQuery’s design for 

scalable real-time querying but highlights AWS’s slight edge 

in query efficiency. 

 

ML inference latency was another key metric where the 

experimental results offered insights beyond baseline values. 

AWS SageMaker recorded an average ML inference latency 

of 75.5 ms, lower than the baseline of 80 ms reported by 

Kanchetti et al. [18]. This 5.6% improvement indicates 

SageMaker’s ability to integrate ML models efficiently, 

especially for real-time applications. In comparison, Google 

Cloud’s inference latency was 89.6 ms, closely aligned with 

the baseline of 90 ms reported by Sathupadi [15]. These 

results affirm SageMaker’s relative advantage in maintaining 

lower inference latency, making it more suitable for 

applications that require immediate responses, such as fraud 

detection. 

 

Scalability tests revealed that AWS can handle ingestion rates 

exceeding 2,500 records per second without performance 

degradation, surpassing the baseline scalability of 2,300 

records per second reported by Yilmaz et al. [13]. Google 

Cloud demonstrated stable performance up to 2,000 records 

per second, slightly above the 1,800 records per second 

baseline established by Darius et al. [14]. These results 

suggest that AWS’s auto-scaling capabilities in Amazon 

Kinesis and Redshift enhance the ability to accommodate 

higher data volumes. Google Cloud’s scalability, while 

competitive, shows a sharper increase in processing latency at 

higher ingestion rates, highlighting potential bottlenecks in 

Cloud Pub/Sub under load-intensive conditions. 

 

6. Conclusion 
 

This study compared AWS and Google Cloud to assess their 

capabilities in real-time analytics and ML integration using 

high-velocity transactional data from a real-world dataset. 

Through systematic experimentation, this research analyzed 

key metrics across both platforms, including ingestion 

latency, data processing time, ML inference latency, 

scalability, and cost-effectiveness. The results consistently 

showed that AWS outperformed Google Cloud in critical 

performance areas, highlighting AWS as a more efficient 

choice for high frequency, ML-driven analytics 

environments. 

 

AWS demonstrated an average ingestion latency of 116.1 ms, 

lower than Google Cloud’s 125.2 ms, and achieved a 10.8% 

advantage in query processing times across various SQL-

based queries. AWS SageMaker also proved to be faster in 

ML inference latency, averaging 75.5 ms compared to Google 

Cloud AI Platform’s 89.6 ms. This difference in inference 

speed is significant for real-time applications where 

immediate predictions, such as fraud detection or 

recommendation systems, are essential. Additionally, 

scalability tests revealed that AWS maintained stable 

performance at ingestion rates exceeding 2,500 records per 

second, surpassing Google Cloud’s upper threshold of 

approximately 2,000 records per second. This finding 

highlights AWS’s superior capacity to handle larger data 

volumes, particularly in rapidly growing data requirements 

scenarios. 

Paper ID: SR241105211600 DOI: https://dx.doi.org/10.21275/SR241105211600 307 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 11, November 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Table V: Comparison with Baseline Metrics from Literature 

Metric AWS (Experiment) Google Cloud (Experiment) Baseline (AWS) Baseline (Google Cloud) 

Ingestion Latency (ms) 116.1 125.2 130 [13] 140 [15] 

Processing Latency (ms) 165 185 175 [14] 190 [18] 

ML Inference Latency (ms) 75.5 89.6 80 [18] 90 [15] 

Scalability (records/sec) 2,500+ 2,000+ 2,300 [13] 1,800 [14] 

 

The cost-effectiveness analysis further reinforced AWS’s 

advantage, showing slightly lower costs per 1,000 records 

processed and per prediction generated in ML inference. 

These results suggest that AWS provides a better balance of 

performance and price, which is essential for organizations 

aiming to optimize operational efficiency without 

compromising budget constraints. Baseline comparisons with 

existing literature validated these findings, aligning AWS’s 

performance improvements with previously observed trends 

and confirming its advantage in real-time, ML-integrated data 

environments. 
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