
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

UpdAgent: AI Agent Version Control Framework

for Real-Time Updation of Tools

Praneeth Vadlapati

University of Arizona

Tucson, USA

praneethv@arizona.edu

ORCID: 0009-0006-2592-2564

Abstract: Due to the growing usage of agents in artificial intelligence (AI), the versioning of the tools has become essential. New tools

or their versions are introduced regularly. Older versions eventually become obsolete. Servers often face maintenance downtime, which

obstructs APIs from being used. Version management is common in software development. Similarly, this paper introduces UpdAgent, a

version control system to manage the versions of tools used by AI-driven applications that are based on agents and Large Language

Models (LLMs). This centralized management system allows the tool providers to deliver real-time updates to add or improve

functionalities, resolve issues in existing tools, and immediately revert updates that generate new bugs or errors. The system is designed

to streamline real-time updates to tool functions and APIs, ensuring that the LLMs utilize new or updated tool functionalities and avoid

APIs that are under maintenance or obsolete. Automated testing is performed to automate the avoidance of tools that produce errors.

The management results in automated adaptation to updated tools and reduced delays in the AI-based applications to enhance system

reliability. The experiment was successful in setting up the tables and updating the tools using new data. The code is available at

github.com/Pro-GenAI/UpdAgent.

Keywords: Artificial Intelligence (AI), AI agents, agentic framework, agentic architecture, version control

1. Introduction

Agents in AI are programs or systems that are capable of

performing required tasks on their own by designing their

own workflow and utilizing the available tools (Xi et al.

2023; Anna Gutowska 2024). Agents are commonly included

in AI-driven systems to expand their capabilities (Sharma

and Ahlawat 2022; Xi et al. 2023; Kapoor et al. 2024). There

is increasing research and utilization of AI agents, which

utilize tools to automate numerous tasks efficiently (Kelly et

al. 2023; Chan et al. 2024; Huang et al. 2024). Agents utilize

tools for various use cases such as weather, travel, or

restaurant recommendations. Tools might utilize a source

code or an API URL, both of which face frequent updates

that might include feature releases and critical security

updates. The updates include feature introductions,

resolutions of bugs and errors, or removal of unused and

unmaintained features. Updates are crucial for maintaining

performance and usability (Vaniea and Rashidi 2016; Mathur

et al. 2018; Rajivan et al. 2020). A lack of updates could lead

to disruptions in LLM-agent interactions, potentially

degrading the experience of the end users. Functionality

updates are frequent for software (Fleischmann et al. 2016)

such as tools, and a regular manual updation of the tools

consumes an enormous amount of time for development and

testing.

2. Literature survey

Prior efforts exist in agent-based architectures that focus on

the integration of agents with LLM-based applications

(Arslan 2024; Guo et al. 2024; Wang et al. 2024) and API-

based agents in agentic AI environments (Shen et al. 2024).

Existing systems consider the dynamic nature of APIs in the

current digital landscape (Sun et al. 2022; Serbout and

Pautasso 2023). Current research on version management

focuses on source codes (Zolkifli et al. 2018; Deepa et al.

2020) and leaves a gap in the centralized management of the

different versions of numerous agent tools. Existing LLM

frameworks such as LangChain provide agent orchestration

(Rasal and Hauer 2024) but lack version management and

automated testing to manage dynamic updates.

3. Problem Statement

Despite the advancements in agentic AI frameworks and the

growing importance of agents in automating complex tasks,

the management of tool versions remains an unresolved

challenge. A research gap persists on centralized, real-time

solutions for automated tool version management. This

creates complexities such as manual updates of the source

code and increases downtime of agent-based systems during

updates, maintenance, or API depreciation. Structured

automated updates from the providers could ensure

continuous error-free functionality of applications

(Angermeir et al. 2024), including AI-based applications,

and eradicate the need for manual updation and testing.

During the downtime of an API-based tool, an alternative

tool could be used immediately to ensure the uninterrupted

functionality of AI-based applications.

This paper proposes UpdAgent, a centralized version

management framework designed to solve the challenges

with various updates to the tools. Tools are systematically

cataloged in the system with relevant details in a structured

form. During the update of versions, the details of the tool

can be updated according to the new version. The method

additionally handles the changes in API keys that might be

updated due to expiry or security reasons. UpdAgent

addresses dynamic updates to agents using a centralized

system upon creation or updation of agent tools and

integrates real-time validation upon creation or updation.

Paper ID: SR241106070538 DOI: https://dx.doi.org/10.21275/SR241106070538 628

http://www.ijsr.net/
mailto:praneethv@arizona.edu
https://orcid.org/0009-0006-2592-2564

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4. Methods

4.1. Creating a tool table

A tool table is created to serve as a central table for tool

details such as tool ID, tool name, description, status,

version, release notes, timestamp of the last update or

creation, API URL (if any), request method, API key,

payload description, example values, and source code (if

any). The tool ID is unique to each row. The description of a

tool allows LLMs to select only the latest available tool for

each task. The table is structured to contain the required

information about a tool in a structured way, allowing the

system to use a tool by utilizing the latest configurations and

capabilities.

4.2. Creating a version log table

To manage version history and record changes, all tool

versions are stored in a version archive table. On new

updates to an agent, a copy of its data is saved, allowing the

system to maintain a complete history of changes and revert

if necessary. The logs of version history support developer

activities (Cândido et al. 2021; Gu et al. 2023), such as

tracking change history, debugging, troubleshooting the

system, user feedback correlation of the complaints,

correlation of error logs with version logs, auditing, and

source code package dependency management.

4.3. Creation of tools

Creating a new tool involves the creator incorporating the

tool data into the UpdAgent system. This step allows

developers to add new functionalities into the agentic system

for consideration and utilization by the LLM. The required

tool details are provided during the experiment and must be

provided for the creation. The system records the tool data in

the tool table and the archival data in the version log table.

This process enables the expansion of the toolset to enhance

the capabilities of agentic systems. The storage of each tool

in the version log table allows unaltered versions for future

reference, which allows the system to maintain records of all

tools from their introduction to the system to offer

comprehensive logs of the versions.

4.4. Updation and archival of tools

Updations of tools are the crucial components of the system

to modify existing tool details and store a new version in

both tables. Changes may include altering any value other

than the tool ID. In this method, the details of a tool in the

tool table are updated with new details to ensure the AI-

driven system accesses the latest details of only active tools.

A tool can be marked as down for maintenance by changing

the status to “Maintenance.” Archival of a tool is performed

by changing the status to “Archived.” Tools that possess no

active status are saved in the version log table and not in the

tool table. The archival of a tool is essential in cases of

unavailability, deprecation, or replacement by a provider

with a better alternative tool.

{

 'toolID': 'weathr1',

 'tool_name': 'Weather API',

 'tool_desc': 'Provides weather information',

 'status': 'Active',

 'version': 'v1.1.0',

 'updated_at': '2024-07-01 00:00:00',

 'URL': 'example.com/v1.1/weather',

 'request_method': 'GET',

 'API_key': '<API key here>',

 'payload_desc': {

 'location': 'should be a string in format "city, country"' },

 'sample_values': { 'location': 'New York, US' },

 'release_notes': 'Added support for multiple languages and updated API

function',

 'python_function': '''

 import requests # Added import statement

 def get_weather() -> str:

 location = '{location}'

 weather_data = {{ 'New York, US': 'Sunny',

 'Paris, France': 'Cloudy' }}

 if location in weather_data:

 return weather_data[location]

 else:

 raise ValueError('Location not found')

 get_weather()

'''

}

Figure 1: Data to update a tool

4.5. Automated testing of a tool

Automated testing of a new or updated tool is performed as

soon as a tool is created or updated in the database. The

sample value added during the creation of a tool is utilized to

test the tool automatically. This facilitates the identification

of various issues in the source code that arise due to

differences in the architectures, differences in software or

Paper ID: SR241106070538 DOI: https://dx.doi.org/10.21275/SR241106070538 629

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

package versions, or lack of installation of a package in the

system environment. This allows early detection and

mitigation of errors with APIs or source code at the time of

creation or updation of a tool. This process allows for testing

the compatibility and functionality of a tool within the

system and verifying whether the tool performs as expected.

The early testing approach reduces the risk of runtime errors

that arise when an end-user expects a response and waits for

it. Automated alerts about errors could allow tool creators

and system developers to resolve configuration issues,

improve overall system reliability, and ensure that the tools

function as expected, which is crucial when deployed in a

large AI-driven application.

5. Results

5.1 Creating tool table and storing data

An initial setup of the tool table allowed a structured storage

of tool information that includes tool ID, description, status,

and more columns. This setup facilitated rapid access to the

latest details of each tool, enabling LLMs to interact with the

most current version of any tool seamlessly.

Table 1: Summary of the tool table structure

tool ID tool name tool_desc status version URL payload_desc

weathr1 Weather API
Provides weather

information
Active v1.0.0

example.com/

weather

{'location': 'should be a string in format "city,

country"'}

rstrnt2 Restaurant API
Provides restaurant

information
Active v1.0.0

example.com/

restaurants

{'cuisine': 'should be a string', 'location':

'should be a string in format "city, country"'}

travel3 Travel API
Provides travel

information
Maintenance v1.0.0

example.com/

travel

{'origin': 'should be a string in format "city,

country"', 'destination': 'should be a string in

format "city, country"'}

5.2 Creating version log table and storing data

Establishing a version log with the complete history of the

versions has established an efficient mechanism for tracking

changes to each tool throughout its life cycle. Each update to

a tool is stored as a separate entry in this archive, which

allows the system to maintain a record of tool versions. The

structure of the version log table is initially the same as the

structure of the tool table, as mentioned above.

5.3 Updating the version of a tool

The ability to update tool versions has been tested by

updating existing tool details with new data. The changes

were reflected in the tool table, while the historical data with

the details of both the new and old versions were preserved

and archived successfully in the version log table. This

process allowed the system to maintain the latest

configurations in real-time while preserving the complete

update history of each tool.

Table 2: Updated row in tool table

tool ID tool name tool_desc status version URL payload_desc

weathr1 Weather API
Provides weather

information
Active v1.1.0

example.com/v1.

1/weather

{'location': 'should be a string in format

"city, country"'}

Table 3: Updated structure of version log table

Tool ID tool name tool_desc status version URL payload_desc

weathr1
Weather

API
Provides weather information Active v1.0.0

example.com/

weather

{'location': 'should be a string in format

"city, country"'}

rstrnt2
Restaurant

API

Provides restaurant

information
Active v1.0.0

example.com/

restaurants

{'cuisine': 'should be a string', 'location':

'should be a string in format "city,

country"'}

travel3 Travel API Provides travel information Maintenance v1.0.0
example.com/

travel

{'origin': 'should be a string in format

"city, country"', 'destination': 'should be a

string in format "city, country"'}

weathr1
Weather

API
Provides weather information Active v1.1.0

example.com/

v1.1/weather

{'location': 'should be a string in format

"city, country"'}

5.4 Discussion

The implementation of the UpdAgent framework introduces

a structured approach to managing AI agent tool updates

similar to how software updates are processed. The

centralized tool table empowers LLMs to select the latest

versions of tools to utilize for each task. The dual-table

approach of the framework is proven to be effective in

performing real-time updates while maintaining the records

with a history. The automated updates to the tools replace the

manual updation process and enhance the overall reliability

of the AI-driven applications that utilize the framework.

Furthermore, retaining the records of changes supports the

transparency of the system to monitor and analyze in the

future. However, the scalability of the system remains a

concern since a huge number of tools could be created

considering the current landscape of research on agents.

6. Conclusion

UpdAgent offers a robust version control solution for tools

used by AI agents in the current LLM environments. This

addresses the challenges of regular updates in the current

surge in the research, utilization, and demand of AI agents.

Additionally, the system stores the current and historical

Paper ID: SR241106070538 DOI: https://dx.doi.org/10.21275/SR241106070538 630

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

versions for future analytics. The centralized storage of tools

and structured version logs support efficient debugging,

transparent audits, and flexible tool management. This

approach mitigates issues related to the unavailability of

APIs or bugs and errors in the existing source code. The

centralized database ensures that only the latest available

error-free versions of the tools are selected, which ensures

uninterrupted responses are maintained. The central database

allows transparent and efficient debugging of the system,

transparent audits for analytics, and a management active

and archived tool. The avoidance of disruptions in the

operations of AI-driven systems could create a strong

foundation for future scalability and adaptability of agent-

driven AI applications. Automated testing allows the system

to utilize only error-free tools. The dual-table approach of the

system enables a reliable framework that creates a way for

enhanced and resilient agent-based architectures.

7. Future Scope

As the number of agents and the usage of agents surge,

future iterations of the system could require optimizations to

improve performance when handling a high volume of tools.

The system should ensure scalability without compromising

the performance. Another significant area for improvement is

to incorporate data security and privacy measures when

interacting with external APIs. The system can be made to

analyze the input data required by APIs to detect whether the

API providers collect the personal data of the users and avoid

such tools from being added to the system. The automated

testing process could be made to test diverse real-world

scenarios.

References

[1] Xi Z, Chen W, Guo X, He W, Ding Y, Hong B, et al.

“The Rise and Potential of Large Language Model

Based Agents: A Survey” [Online]. 2023. Available

from: http://arxiv.org/abs/2309.07864

[2] Anna Gutowska. “What are AI agents?” [Online]. IBM.

2024. Available from:

https://www.ibm.com/think/topics/ai-agents

[3] Sharma S, Ahlawat A. “Architecture and Types of

Intelligent Agent and Uses of Various Technologies”.

In: 2022 3rd International Conference on Issues and

Challenges in Intelligent Computing Techniques

(ICICT). 2022. p. 1–5.

[4] Kapoor S, Stroebl B, Siegel ZS, Nadgir N, Narayanan

A. “AI Agents That Matter” [Online]. 2024. Available

from: http://arxiv.org/abs/2407.01502

[5] Kelly S, Kaye SA, Oviedo-Trespalacios O. “What

factors contribute to the acceptance of artificial

intelligence? A systematic review”. Telematics and

Informatics [Online]. 2023 Feb 1;77:101925. Available

from:

https://www.sciencedirect.com/science/article/pii/S073

6585322001587

[6] Chan A, Ezell C, Kaufmann M, Wei K, Hammond L,

Bradley H, et al. “Visibility into AI Agents”. In:

Proceedings of the 2024 ACM Conference on Fairness,

Accountability, and Transparency [Online]. New York,

NY, USA: Association for Computing Machinery;

2024. p. 958–973. (FAccT ’24). Available from:

https://doi.org/10.1145/3630106.3658948

[7] Huang Q, Wake N, Sarkar B, Durante Z, Gong R, Taori

R, et al. “Position Paper: Agent AI Towards a Holistic

Intelligence” [Online]. 2024. Available from:

http://arxiv.org/abs/2403.00833

[8] Vaniea K, Rashidi Y. “Tales of Software Updates: The

process of updating software”. In: Proceedings of the

2016 CHI Conference on Human Factors in Computing

Systems [Online]. New York, NY, USA: Association

for Computing Machinery; 2016. p. 3215–3226. (CHI

’16). Available from:

https://doi.org/10.1145/2858036.2858303

[9] Mathur A, Malkin N, Harbach M, Peer E, Egelman S.

“Quantifying Users’ Beliefs about Software Updates”.

In: Proceedings 2018 Workshop on Usable Security

[Online]. 2018. Available from: https://www.ndss-

symposium.org/wp-

content/uploads/2018/07/usec2018_02-

3_Mather_paper.pdf

[10] Rajivan P, Aharonov-Majar E, Gonzalez C. “Update

now or later? Effects of experience, cost, and risk

preference on update decisions”. Journal of

Cybersecurity [Online]. 2020 Mar;6(1):tyaa002.

Available from:

https://academic.oup.com/cybersecurity/article-

pdf/6/1/tyaa002/32817264/tyaa002.pdf

[11] Fleischmann M, Amirpur M, Grupp T, Benlian A, Hess

T. “The role of software updates in information systems

continuance — An experimental study from a user

perspective”. Decision Support Systems [Online]. 2016

Mar 1;83:83–96. Available from:

https://www.sciencedirect.com/science/article/pii/S016

7923616000026

[12] Arslan A. “Exploring LLM-based Agents: An

Architectural Overview”. Current Trends in Computer

Sciences & Applications [Online]. 2024 Jun;3(3):405–

411. Available from:

https://lupinepublishers.com/computer-science-

journal/pdf/CTCSA.MS.ID.000162.pdf

[13] Guo T, Chen X, Wang Y, Chang R, Pei S, Chawla NV,

et al. “Large Language Model based Multi-Agents: A

Survey of Progress and Challenges”. 2024.

[14] Wang L, Ma C, Feng X, Zhang Z, Yang H, Zhang J, et

al. “A survey on large language model based

autonomous agents”. Front Comput Sci [Online]. 2024

Mar;18(6). Available from:

https://doi.org/10.1007/s11704-024-40231-1

[15] Shen H, Li Y, Meng D, Cai D, Qi S, Zhang L, et al.

“ShortcutsBench: A Large-Scale Real-world

Benchmark for API-based Agents” [Online]. 2024.

Available from: http://arxiv.org/abs/2407.00132

[16] Sun R, Wang Q, Guo L. “Research Towards Key Issues

of API Security”. In: Lu W, Zhang Y, Wen W, Yan H,

Li C, editors. Cyber Security. Singapore: Springer

Nature Singapore; 2022. p. 179–92.

[17] Serbout S, Pautasso C. “An Empirical Study of Web

API Versioning Practices”. In: Garrigós I, Murillo

Rodríguez JM, Wimmer M, editors. Web Engineering.

Cham: Springer Nature Switzerland; 2023. p. 303–18.

[18] Zolkifli NN, Ngah A, Deraman A. “Version Control

System: A Review”. Procedia Computer Science

[Online]. 2018 Jan 1; 135:408–15. Available from:

Paper ID: SR241106070538 DOI: https://dx.doi.org/10.21275/SR241106070538 631

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

https://www.sciencedirect.com/science/article/pii/S187

7050918314819

[19] Deepa N, Prabadevi B, Krithika LB, Deepa B. “An

analysis on Version Control Systems”. In: 2020

International Conference on Emerging Trends in

Information Technology and Engineering (ic-ETITE).

2020. p. 1–9.

[20] Rasal S, Hauer EJ. “Navigating Complexity:

Orchestrated Problem Solving with Multi-Agent

LLMs” [Online]. 2024. Available from:

http://arxiv.org/abs/2402.16713

[21] Angermeir F, Fischbach J, Moyón F, Mendez D.

“Towards Automated Continuous Security

Compliance” [Online]. 2024. Available from:

http://arxiv.org/abs/2407.21494

[22] Cândido J, Aniche M, van Deursen A. “Log-based

software monitoring: a systematic mapping study”.

PeerJ Computer Science. 2021;7:e489.

[23] Gu S, Rong G, Zhang H, Shen H. “Logging Practices in

Software Engineering: A Systematic Mapping Study”.

IEEE Transactions on Software Engineering.

2023;49(2):902–23.

Paper ID: SR241106070538 DOI: https://dx.doi.org/10.21275/SR241106070538 632

http://www.ijsr.net/

