
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Efficient and Secure Transformation of Log Files

using ADLS GEN2 Architecture

Sheik Syed Sulaiman M

Abstract: Web server log encompasses a document where all the activities transpiring on a web server are carefully recorded. It captures

each request made to the server like request type, IP address of the device, what files where requested, date & time of request, name and

location of requested file, file size etc. These files are stored in their raw form for a long time for analysis and taking high quality decisions

which causes storage problem and security threat as data present in the log files are in raw format. This paper focuses on providing an

economical, secure and high - performance solution for the storage of large amount of raw log files. The proposed system includes Azure

Data Lake Storage Gen2 which allows large volumes of data to be stored in their raw form as well as they are subjected to transformation

and advanced analysis processes without the need of a structured writing scheme. This paper mainly provides solution that is affordable

and more accessible to perform web server log data ingestion, storage and transformation over Data Lake. This paper also proposes the

use of Azure Trigger Function that transforms the log files into parquet files which reduces the storage space compared to their original

size. A hierarchical data storage model has also been proposed for shared access to data over different layers in the Data Lake architecture,

on top of which Data Lifecycle Management rules have been proposed for storage cost efficiency. The aim is to maintain this data in the

long term to be used in future advanced analytics processes by cross - referencing with other organizational or external data which could

bring important benefits.

Keywords: Cloud Data Lake, Azure Data Lake Storage Gen2 (ADLS GEN2), Data Lake architecture, Web Server log, Azure Trigger

Function

1. Introduction

The Internet of Things paradigm involves the development of

diverse applications and solutions in various domains such as

smart homes, digital surveillance, industrial processes etc.

which needs to be constantly monitored and analyzed. Server

log files are a raw and unfiltered information related to

request made to the server. They’re text files stored on your

web server. Every time any browser or user - agent like

Google, requests any resource pages, images, Java script file

from the server, it adds a line in the log. High - scale analysis

of these logs brings a great deal of added insight to the

different business domain.

In [1] the authors have provided a systematic review of recent

literature on the different types of log files that are used in

research area. The importance of these log files is proven in

all fields of activity. Nowadays, identifying a powerful

storage and analysis environment is very imperative.

Web server log files store all events that occur as a result of

requests issued by online users accessing information

available on a server. Recording these events can lead to the

identification of user visiting behavior [2] over certain periods

of time, which can lead to a better understanding of customer

requests. Companies can then make smart, personalized

decisions to improve user experience. Servers keep these

records in different log files, namely, web server access log

files. By analyzing these log files, it is possible to discover

“visiting behaviors”, which can lead to major improvements

and allow the services offered to users to be perfectly

customized.

This paper proposes Data Lake Architecture to resolve the

existing problem of storing, processing and analyzing the web

server access log files at large scale. Analysis of web server

access log files along with the Data Lake design methodology

includes the procedure of transforming web server access log

files into parquet files using the azure trigger function written

in C#. In the current paper a hierarchical structuring model is

also included for the organization of web server access log

files data in order to serve the Extract Load Transform

pipelines specific to the Data Lake architecture. Web servers

are accessed by millions of users every day. Users leave

behind their visiting behavior by recording their activities

online in log files.

Servers keep these records in different files such as access

logs, error logs, piped logs, script logs etc. Log files are often

automatically deleted from servers due to their constant

increase in volume. There are various techniques for

analyzing web server access log files in the market [4], [5],

the main problem lies in storing them in their raw form in

order to allow various analysis processes to be run in the

future enabling information to be extracted for different

purposes. Transforming these logs into structured data for

later storage, using traditional methods involve high storage

costs. As a consequence, the explosion of these new data

types led to emergence and development of new concepts,

technologies and techniques for data management.

Data Lake is a revolutionary concept that has been in the

spotlight recently. Data Lake, as the name suggests can be

seen as a structure where absolutely all data can be stored in

its raw form [6]. Data Lifecycle management techniques are

used for cost optimization, data security mechanisms, data

redundancy aspects. Several important technical aspects have

been also highlighted and should be considered when building

a data lake in the cloud. Thus, this paper presents the design

and implementation of a Data Lake architecture in cloud for

web server access log files in long - term storage.

The proposed system is based on the implementation of a DL

architecture in cloud using the Microsoft technology, namely

Azure Data Lake Storage Gen2. It is based on Apache Hadoop

and Apache YARN. It is a solution which does not require

installation of any hardware or software systems on the user’s

side. It is a cost - effective cloud service where you pay only

Paper ID: SR241118115433 DOI: https://dx.doi.org/10.21275/SR241118115433 1074

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

for the used storage space. These costs can be optimized as

needed through data lifecycle management. An ADLS Gen2

architecture with different levels of data processing is

presented.

Most servers generate web server access log files that can be

stored in different formats, such as Common Log Format or

Combined Log Format. A study on the content of these files

has led to the identification of the following categories of data

[7], [8], [9] such as requested resource file location, name, and

size; request time and date; request method; identity of client

device that made the request to the server; client browser

information; page from which the client left the site; server

response to client request; number of pages visited by client;

what search engine was used and search terms used; whether

it was a direct access by a user or a redirect from another site,

or part of an advertising campaign.

WSAL files are raw data files that are difficult to understand

without a proper log parsing tool. Another major problem is

storing these files, because they need a lot of storage space.

In a short period of time, depending on the frequency with

which the servers are accessed, huge numbers of data can be

generated and stored on them, which is why they are

automatically deleted after a period or after they exceed a

certain size [10]. It is estimated that 80% [11] of all

companies’ data is lost, because organizations cannot keep up

with the volume, speed, and variety of data. Inside

companies’ it is being estimated that 80% of data is

unstructured. On average, between 60% and 73% of all this

data is never analyzed [12]. This is so - called auxiliary data

or dark data, collected from various sources like data from

sensors, statistics on processes, social media, monitoring

services, log files, raw survey data, audio, and video, etc. [13].

There is a large percentage of lost unstructured data not being

analyzed inside a corporation, data from which valuable

information, that could lead to multi - level improvements

through advanced analysis processes, could be extracted.

The main advantages of the long - term analysis of WSAL

files are improved website security and structure; improved

web server performance; increased website traffic;

elimination of navigation errors on website; high - quality

marketing strategies based on customer preferences. Thus, it

becomes a necessity for most large companies to be able to

store and analyze these log files to ensure reliability, security,

and performance, especially for the financial benefits. For

small sites, there are already a variety of online or open -

source services on the market [14] that can extract various

reports based on standard analyzing techniques, but with

several limitations, either related to file size or to the type of

analyzing processes, which usually return specific reports and

statistics. As mentioned above, the major problem lies in

storing the log files on long term. One ideal candidate for

storing and analyzing large volumes of unstructured data in

their raw form is the latest technology: a DL with unlimited

storage space with auto scaling at low costs.

2. Proposed System

The examination of log files even after longer periods of time

is necessary. Companies do not store these logs as it requires

significant amount of storage capacities. Therefore, an

optimal solution for archiving these log files for long periods

of time may be to use on - premise or cloud Data Lakes.

The main advantages of saving log files in a Data Lake:

• As web server access log files are locally stored on servers

for limited periods of time, the use of a Data Lake offers

maximum flexibility in storing data for long periods of

time at affordable costs

• Control over hierarchically structured data within the DL

storage layer can be successfully managed by assigning

different access roles to each area;

• Existing web analytics tools rely on Java script codes or

cookies, which can cause delays in loading a web page and

are more susceptible to various technical problems. If the

user has scripts and cookies blocked in their personal

browser, then reports from services such as Google

Analytics may not be conclusive. Thus, storing log files in

a DL offers the possibility to implement dedicated analysis

processes to extract customized information and reports

without influencing the loading of a web page and without

depending on the client browser settings.

Hence, the implementation proposed in this paper based on

Data Lake technology in the cloud is a low - cost solution with

remarkable performance in terms of storing and analyzing

web server access log data to obtain valuable information

from web servers.

Figure 1: Proposed DL architecture and various Extract Load

Transform processes serving Web Server Access Log files.

3. Implementation of Data Lake Architecture

This paper addresses the usage of technique, cloud Data Lake

storage of Web Server Log data which is more accessible

without the need for hardware, software or engineering

resources that are not always affordable and available to

everyone and can be expensive as time consuming to

implement. Data Lake in the Cloud is a leading technology

for managing large data sets with advanced real - time data

analytics. With this new technology, the huge potential of

previously unanalyzed data is revealed. We present and

validate an original project implemented in Azure Cloud for

storing Web Server Log files without storage limits at low

costs, so that they can then undergo advanced analysis

processes. Thus, we propose a solution using Azure Data

Lake Servera Gen2 cloud storage, a service provided by

Microsoft that allows the customer to create and own a Data

Lake where large volumes of data can be stored, transformed,

and analyzed.

Paper ID: SR241118115433 DOI: https://dx.doi.org/10.21275/SR241118115433 1075

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Azure Data Lake Server Gen2 is a hyper - scalable system

which relies on archiving service to keep the cost of storing

unstructured Big Data as low as possible. It includes the

capabilities like hierarchical directory structure, ideal for big

data analytics workloads, optimized cost and performance,

storage Tiers, finer grain security model, massive scalability.

A strength of Azure Data Lake Server Gen2 concept is that it

allows data to be organized in a hierarchy of directories and

subdirectories for efficient data access (hierarchical

namespace). Until Azure Data Lake Server Gen2, data was

stored in flat namespace mode, this hierarchy is new and

comes with multiple advantages. As data volumes grow, the

hierarchy allows data to be maintained in a more organized

way and provides better performance for data analysis tasks.

The proposed system contains a Data Lake architecture for

the implementation of different processes within the ELT

pipeline, storage of Azure Data Lake Server files,

transformation and preparation of data for consumption, once

they have been submitted to different analysis processes. As

a result, we were able to design and propose a stable, reliable

and economical architecture shown in Figure 1.

The proposed architecture consists of 5 different layers. The

Store layer is the core level of the entire architecture. Above

this layer there are the Explore, Prepare & Train, and Model

& Serve layers, which serve different transformation,

enrichment, and processing steps that data undergo for

valuable information to be extracted with different advanced

analysis processes. Over the ingestion layer, fast processes are

running to load different types of raw data from various

external sources into the Data Lake. There is no data alteration

within this layer. Raw data can be ingested in real time or in

batch mode. Following ingestion, the data are saved into the

Data Lake storage layer to a dedicated raw data area. Thus,

the data are stored in their natural form within this area of the

Data Lake. In the exploration layer, transformation processes

are performed over the stored data, thus the data are cleaned

and standardized into proper data types. This is where raw

data are being transformed into more structured datasets that

are being placed into well - organized directories and

subdirectories into a different area in the storage layer.

Figure 2: ADLS Gen2 hierarchical structuring of web server

log data.

The Prepare & Train layer of the architecture is where

previously transformed data are prepared and modelled using

advanced analytics engines. A new area within the DL storage

layer is dedicated to the data derived out of these processes.

At the Model & Serve layer, data are accessed by users who

know the data and the needs of an organization. New

modelling processes are carried out using appropriate analysis

techniques in order to obtain information to be used for final

statistics and reports. Each of these layers is served by

different processes that can be implemented using either

integrated technologies provided by Microsoft, such as Azure

Data Factory, Azure Databricks or through ad - hoc developed

processes written in different programming languages that

can be easily integrated using Azure Logics or Azure

Functions.

This research paper focuses mainly on the ingestion layer, the

storage layer and the data transformation process, within the

Explore layer, leading to standardization and preparation of

data for further advanced analysis processes. The data

ingestion process in Azure Data Log Server Gen2 consists in

uploading the log files holding the raw data into the Data Lake

by implementing a batch process on the server that

automatically uploads the log files to the Data Lake at regular

intervals or using various built - in technologies provided by

Microsoft. Once data are saved in their raw form in the cloud

Data Lake, they undergo a transformation and standardization

process that transforms log files into Parquet files. This

process is fully automated with the use of Azure Blob Trigger,

which automatically launches into execution a function that

transforms log files into Parquet files. Once transformed, data

can be subjected to various cleaning and enrichment

processes to be prepared for the final analysis process that

serves the ultimate interests.

3.1. Hierarchical Data Structuring in the Data Lake

The data that are ingested into the Data Lake must be stored

in a well - organized way so that they can be easily managed.

The data should not be randomly thrown into the Data Lake

Store layer, but should be organized in a structured way. Each

area of this structure serves different processing layers. In

Figure 2, we show the design of a data structuring model to

serve the entire Azure Data Log Server Gen2 architecture

throughout the various layers. Thus, into the Store layer, we

have the following areas:

The Raw area is the area where raw data are loaded directly

from the server source, with restricted access. This area

provides storage for raw data obtained during the ingestion

process. This area can be organized using a hierarchy of

directories based on the frequency with which log files are

generated. All ingestion processes dedicated to different data

sources, in case the data comes from different servers, have

write - only access to the directory associated with the data

source. In our case we have only one source so we designed

under Raw folder only one dedicated directory, labeled

weblog.

The Enriched area stores data that have undergone a

transformation and standardization process and have

subsequently been saved in Enriched area as Parquet files.

Thus, original raw data remain in the Raw area, which, to

minimize storage costs, can be transferred to a cooler or

archive tier for long - term archiving. In addition, in the

Enriched area, there is a folder named logerrparsing, where

text files containing error log lines that could not be

successfully transformed are uploaded. This is the area

Paper ID: SR241118115433 DOI: https://dx.doi.org/10.21275/SR241118115433 1076

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

serving the Explore layer within the proposed DL

architecture.

The Curated area stores data from the enriched area that have

been cleaned to make them ready for exploration. This area

serves the processes running on Prep & Train layer in the

proposed architecture. Different cleaning methods can be

applied to the same dataset to serve different analysis

techniques, depending on the purpose. In this area, data

undergo a change in the storage hierarchy, which can serve

different purposes. In our case study we move from a

hierarchy organized according to the date on which the logs

were generated to a hierarchy dedicated to different segments

of interest, like clients, search engine scans, system errors,

etc.

The Workspace area is the data exploration area serving the

Model & Serve layer of the proposed architecture. The data

in this area is organized by project and can be accessed by

data engineers, data scientists, and data analysts who

understand the data and business needs. Here, the data are

structured into projects with dedicated access for different

teams. Data organized hierarchically into directories and sub

- directories are given different access rights as needed to

maintain their integrity as recommended in Figure 2.

3.2. Log Data Transformation Process

After loading the data into the DL, a process of transforming

raw, unstructured data into structured data is automatically

triggered. Thus, log files, once loaded into the DL, undergo

an automatic process of transformation into Parquet files. The

transformation process is achieved by developing an Azure

Function Trigger written in C# using the Visual Studio Code

development environment. Azure Function is a serverless

compute service that enables user to build and debug

functions locally, deploy and operate at scale in the cloud, and

integrate services using triggers and bindings.

A collection of directories and files are automatically

generated locally. Before creating a new project, it is

important that in VS Code the connection to the Azure

account to be already established, so that when the files for

the new project are being generated, the Azure storage

connection parameters are automatically inherited and

therefore the access to the cloud resources will be granted.

The function. json file defines the inputs and outputs for the

main function that performs the data transformation process,

therefore there are defined an input blob Trigger and two

output blobs. The main function expects three parameters:

one input blob Trigger and two output blobs.

Algorithm: Blob Trigger Function to Transform Log Files

into Parquet Files

Input: inputvalue

Output: outputvalue; textoutvalue

 Begin main function

regex =<define regular expression>

columns =<define parquet columns>

inputvalue=<read inputvalue bytes>

mytxt_obj =<convert bytes to Unicode object in order to

perform line by line reading>

 array_log_lines =<initialize array containing valid log lines>

 For each log line

 Begin

 If (check for regex format)

 Append valid log lines to array_log_lines else

 Append non valid log lines into ASCII text error file

 End for

 df_log_line=<put array_log_lines into a data frame>

 call to_parquet function to convert data frame into parquet

file

 (Pushing the transformed data to the output blobs)

 outputvalue =<set outputvalue with the new parquet file>

 textoutvalue =<set textoutvalue with the text file containing

the transformation errors>

End main function

The main transformation function automatically runs when a

new file is uploaded to DL in the raw/ directory which is being

monitored by the trigger. This function performs the

transformation of log files into Parquet files. This Algorithm

conceptually shows how to transform log files into parquet

files.

4. Experimental Results

Once the trigger function is created, it can be run locally and

then upload a new log file to the Azure DL in the folder

monitored by the trigger. Once the upload to the server is

successfully completed, a sequence of messages appears in

the VS Code terminal confirming that the trigger has detected

a new file that has successfully uploaded to the DL, which

triggers the execution of the function that performs the

transformation process. The log file underwent a line - by -

line read process for a regex check on each line.

The conversion time varies greatly depending on the machine

on which the process is performed. In this case, for a 1.0 GB

log file, the transformation time was about 76s from the time

the trigger found a load at the selected directory level. In the

transformation process, a delay time of about 8 ÷ 10 min can

be encountered from the moment the upload finishes until the

trigger confirms that a successfully uploaded file has been

detected, because trigger functions rely on logs to scan for

new/changed blobs; this can cause delays, which can be

improved, according to [17]. After the transformation

process, a 108.39 MiB access - weblog1. parquet Parquet file

and a 102.02 KiB erroraccess - weblog1. txt text file was

obtained from the 1.0 GB log file. The file was reduced from

1.0 GB to 108.39 MiB, that is, 10.8 % of its initial size.

Following the tests carried out in Azure Portal, we obtained

in each of the two areas, raw and enriched, the four files

corresponding to each area.

The Parquet files containing the data transformed and saved

in columnar format were greatly reduced in size compared

with the initial size. In the text files, we captured log lines that

could not be transformed because they did not respect the

constraints imposed by the regex. The nature of the errors

should be evaluated, and the regex should be adapted in order

to obtain as few error lines as possible. At a first analysis of

the lines returned as errors by the regex process, they appear

to be lines that, from an analytics point of view, are irrelevant

and can easily be ignored. If, however, they are still of interest

and must exist in the Parquet files for further analysis, then

Paper ID: SR241118115433 DOI: https://dx.doi.org/10.21275/SR241118115433 1077

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

the regex in the main function must be adjusted. Thus, in this

paper, the results of the Blob Trigger Function and the related

results of the DL transformation are presented.

Once the log files from the raw area have been converted to

Parquet files, one can then move the log files to a cooler tier

for long - term archiving and for significantly reducing

storage costs. During the creation phase of a standard Azure

account, one can choose between the three different types of

tiers in order to minimize the costs applied to data storage,

processing, and consumption. Hot tier is optimized for storing

data that are accessed or changed frequently. It has the highest

storage costs but the lowest access costs.

Data Lake datasets have different lifecycles. For example, at

the beginning of the data lifecycle, the data are accessed

frequently, but the need for access often decreases drastically

as the data age. Some data are accessed frequently while other

data remain inactive in the cloud and are rarely accessed.

Some datasets expire within days or months of creation, while

other datasets are actively read and modified throughout their

lifetime.

Azure Data Lake Server Gen2 is a cost - effective storage

environment with no upfront costs. Data lifecycle

management in the cloud is an important process that can be

achieved using Data Lifecycle Management policies. Azure

storage offers rules - based management policies that can be

used to manage the right types of data access.

We proposed a hierarchical storage model to serve the

different levels within the DL architecture. Thus, the raw data

area, following the ingestion process, stores the data in its raw

form. The enriched data area stores data from the raw area

that has undergone an automatic transformation and

standardization process, whereby the raw unstructured data is

transformed into structured data and stored in parquet files. In

this area are also stored in a separate directory called

logerrparsing the log lines that could not be transformed

according to the required criteria. The curated data area stores

preprocessed data ready for consumption according to

purpose. On the last level we have the workspace data area

with fully transformed and aggregated data that can be

accessed by the various work teams who understand the needs

of the organization.

Following the ingestion process the data is stored in its raw

form without transformation. Since WSAL in its raw form is

data that is difficult to analyze and interpret, it was proposed

to transform it into parquet files.

To automatically transform data from log files to parquet

files, we made an Azure Blob Trigger function written in

Python. This trigger function monitors the raw area of the data

lake. When it detects that a new log file has been successfully

loaded, the trigger launches the transform function into

execution. Various tests have been performed on loading the

raw data into the DL with the aim of adjusting the

transformation criteria so that we have as few non -

conforming log lines as possible ending up in the

logerrparsing directory.

After transforming the log files to parquet files, a reduction in

storage space of about 90% from the original size was

observed. This transformation thus comes with 2 major

advantages: a significant reduction in storage costs and the

transformation of the data into structured data that is easy to

retrieve.

By achieving the objectives, we have demonstrated the

capability and performance of a DL [21], which in the near

future will become one of the most widely used storage media

for diverse data types. DLs can store all types of data within

an organization, in one central location, without the need to

impose a schema upfront as with Data Warehouses. Unlike

most databases and data warehouses, DLs can process all

types of data that are essential for advanced analysis processes

[22], [23]. The main purpose of a DL is to make all

organizational data, from different sources, accessible to end

users: Business Analysts, Data Engineers, Data Scientists,

Product Managers, Executives, etc. Their access to these

varied sources of data can maximize the information gained

from them in a cost - effective way in order to improve an

organization’s performance [24], [25].

5. Conclusion

This research project demonstrates the importance of using

the new Data Lake technology in the cloud to store large

volumes of unstructured data. The new trend is to move and

deploy a Data Lake in the cloud, which offers comprehensive

services for the entire process of data ingestion, storage,

processing, and analysis with a high level of security services

that are being constantly improved by cloud service

providers.

In this paper, we present a detailed theoretical description of

the new cloud technology and report the practical

implementation of an economical and reliable cloud Data

Lake architecture in order to provide an optimal

implementation for storing Web Server Access Log data that

can then be subjected to various advanced analysis processes.

A major advantage of storing in Azure Data Lake Server

Gen2 is that it enables hierarchical data storage. Azure Data

Lake Server Gen2, through its hierarchical namespace

system, supports atomic operations which eliminates the risk

of data loss encountered with flat storage. There are a number

of important differences between flat storage and hierarchical

storage in terms of performance and security, among which

we can list:

• query performance, with a hierarchical file system it is

possible to scan only certain partitions to obtain the data

searched that improves the data query processes.

• performance moving data, in a hierarchical system

renaming or moving files from one directory to another is

done almost instantaneously.

• data consistency and atomic operations, which implicitly

eliminates the risk of data loss if an error occurs during a

move or rename operation, as with object - based storage.

References

[1] L. Korzeniowski and K. Goczyla, ‘‘Landscape of

automated log analysis: A systematic literature review

and mapping study, ’’ IEEE Access, vol.10, pp.21892–

21913, 2022, doi: 10.1109/ACCESS.2022.3152549.

Paper ID: SR241118115433 DOI: https://dx.doi.org/10.21275/SR241118115433 1078

http://www.ijsr.net/
http://dx.doi.org/10.1109/ACCESS.2022.3152549

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[2] S. Hernandez, P. Alvarez, J. Fabra, and J. Ezpeleta,

‘‘Analysis of users behavior in structured e - commerce

websites, ’’ IEEE Access, vol.5, pp.11941–11958,

2017, doi: 10.1109/ACCESS.2017.2707600.

[3] E. Zagan and M. Danubianu, ‘‘ADLS Gen 2 for web

server log data analysis, ’’ in Proc. Int. Conf. Develop.

Appl. Syst. (DAS), Suceava, Romania, 2022, pp.161–

166, doi: 10.1109/DAS54948.2022.9786071.

[4] J. M. P. Jeba, M. S. Bhuvaneswari, and K.

Muneeswaran, ‘‘Extracting usage patterns from web

server log, ’’ in Proc.2nd Int. Conf. Green High

Perform. Comput. (ICGHPC), Nagercoil, India,

Feb.2016, pp.1–7, doi:

10.1109/ICGHPC.2016.7508074.

[5] P. Ghavare and P. Ahire, ‘‘Big data classification of

users navigation and behavior using web server logs, ’’

in Proc.4th Int. Conf. Comput. Commun. Control

Autom. (ICCUBEA), Pune, India, Aug.2018, pp.1–6,

doi: 10.1109/ICCUBEA.2018.8697606.

[6] Nambiar and D. Mundra, ‘‘An overview of data

warehouse and data lake in modern enterprise data

management, ’’ Big Data Cognit. Comput., vol.6, no.4,

p.132, Nov.2022, doi: 10.3390/bdcc6040132.

[7] G. Turkington and G. Modena, ‘‘Big data con Hadoop,

’’ Apogeo, 2015. [Online]. Available: https:

//www.unilibro. it/libro/turkington - garry - modena -

gabriele/big - data - con - hadoop/9788850333431

[8] Load Data Into Azure Data Lake Storage Gen2 With

Azure Data Factory. Accessed: Jan.2022. [Online].

Available: https: //docs. microsoft. com/en -

us/azure/data - factory/load - azure - data - lake - storage

- gen2

[9] D. Sarramia, A. Claude, F. Ogereau, J. Mezhoud, and

G. Mailhot, ‘‘CEBA: A data lake for data sharing and

environmental monitoring, ’’ Sensors, vol.22, no.7,

p.2733, Apr.2022, doi: 10.3390/s22072733.

[10] S. Kundu and L. Garg, ‘‘Web log analyzer tools: A

comparative study to analyze user behavior, ’’ in

Proc.7th Int. Conf. Cloud Comput., Data Sci. Eng.,

Jan.2017, pp.17–24, doi:

10.1109/CONFLUENCE.2017.7943117.

[11] B. Plejic, B. Vujnovic, and R. Penco, ‘‘Transforming

unstructured data from scattered sources into

knowledge, ’’ in Proc. IEEE Int. Symp. Knowl.

Acquisition Model. Workshop, Wuhan, China,

Dec.2008, pp.924–927, doi:

10.1109/KAMW.2008.4810643.

[12] Hadoop is Data’s Darling for a Reason. Accessed:

Nov.2022. [Online]. Available: https: //www.forrester.

com/blogs/hadoop - is - datas - darling - for - a - reason/

[13] The Unseen Data Conundrum. Accessed: Nov.2022.

[Online]. Available: https: //www.forbes.

com/sites/forbestechcouncil/2022/02/03/the - unseen -

data - conundrum/?sh=4a07b7ac7fcc

[14] J. Sun, G. Gui, H. Sari, H. Gacanin, and F. Adachi,

‘‘Aviation data lake: Using side information to enhance

future air - ground vehicle networks, ’’ IEEE Veh.

Technol. Mag., vol.16, no.1, pp.40–48, Mar.2021, doi:

10.1109/MVT.2020.3014598.

[15] Ingestion and Processing Layers in Azure Data

Lakehouse. Accessed: Dec.2021. [Online]. Available:

https: //www.mssqltips. com/ sqlservertip/7037/azure -

data - lakehouse - ingestion - processing - options/

[16] Z. Farzin. (2019). Online Shopping Store—Web Server

Logs. Accessed: Sep.2021. [Online]. Available: https:

//dataverse. harvard. edu/ dataset.

xhtml?persistentId=doi: 10.7910/DVN/3QBYB5

[17] Azure Blob Storage Bindings for Azure Functions

Overview. Accessed: Jan.2022. [Online]. Available:

https: //learn. microsoft. com/en - us/azure/azure -

functions/functions - bindings - storage - blob?tabs=in -

process%2C

functionsv2%2Cextensionv3&pivots=programming -

language - python# trigger—polling

[18] Azure Data Lake Storage Pricing. Accessed: Feb.2023.

[Online]. Available: https: //azure. microsoft. com/en -

us/pricing/details/storage/data - lake/

[19] Configure a Lifecycle Management PolicyAccessed:

Oct.2021. [Online]. Available: https: //docs. microsoft.

com/en - us/azure/storage/blobs/lifecycle - management

- policy - configure?tabs=azure - portal

[20] Optimize Costs by Automatically Managing the Data

Lifecycle. Accessed: Oct.2021. [Online]. Available:

https: //docs. microsoft. com/en -

us/azure/storage/blobs/lifecycle - management -

overview

[21] S. Villarroya, J. R. R. Viqueira, J. M. Cotos, and J. A.

Taboada, ‘‘Enabling efficient distributed spatial join on

large scale vector - raster data lakes, ’’ IEEE Access,

vol.10, pp.29406–29418, 2022, doi:

10.1109/ACCESS.2022.3157405.

[22] Cuzzocrea, ‘‘Big data lakes: Models, frameworks, and

techniques, ’’ in Proc. IEEE Int. Conf. Big Data Smart

Comput. (BigComp), Jeju Island, Korea (South),

Jan.2021, pp.1–4, doi: 10.1109/Big -

Comp51126.2021.00010.

[23] H. Fang, ‘‘Managing data lakes in big data era: What’s

a data lake and why has it became popular in data

management ecosystem, ’’ in Proc. IEEE Int. Conf.

Cyber Technol. Autom., Control, Intell. Syst.

(CYBER), Shenyang, China, Jun.2015, pp.820–824,

doi: 10.1109/CYBER.2015.7288049.

[24] J. C. Couto and D. D. Ruiz, ‘‘An overview about data

integration in data lakes, ’’ in Proc.17th Iberian Conf.

Inf. Syst. Technol. (CISTI), Jun.2022, pp.1–7, doi:

10.23919/CISTI54924.2022.9820576.

[25] F. Nargesian, K. Pu, B. Ghadiri - Bashardoost, E. Zhu,

and R. J. Miller, ‘‘Data lake organization, ’’ IEEE

Trans. Knowl. Data Eng., vol.35, no.1, pp.237–250,

Jan.2023, doi: 10.1109/TKDE.2021.3091101.

[26] T. A. Al - Asadi and A. J. Obaid, ‘‘Discovering similar

user navigation behavior in web log data, ’’ Int. J. Appl.

Eng. Res., vol.11, no.16, pp.8797–8805, 2016.

[27] R. Hai, S. Geisler, and C. Quix, ‘‘Constance: An

intelligent data lake system, ’’ in Proc. Int. Conf.

Manag. Data, Jun.2016, pp.2097–2100.

[28] Gorelik, The Enterprise Big Data Lake: Delivering the

Promise of Big Data and Data Science. Sebastopol, CA,

USA: O’Reilly, 2019.

[29] S. Park, B. Cha, and J. Kim, ‘‘Design and

implementation of con - nected DataLake system for

reliable data transmission, ’’ in Proc.23rd Int. Comput.

Sci. Eng. Conf. (ICSEC), Oct.2019, pp.141–144, doi:

10.1109/ICSEC47112.2019.8974823.

Paper ID: SR241118115433 DOI: https://dx.doi.org/10.21275/SR241118115433 1079

http://www.ijsr.net/
http://dx.doi.org/10.1109/ACCESS.2017.2707600
http://dx.doi.org/10.1109/DAS54948.2022.9786071
http://dx.doi.org/10.1109/ICGHPC.2016.7508074
http://dx.doi.org/10.1109/ICCUBEA.2018.8697606
http://dx.doi.org/10.3390/bdcc6040132
https://www.unilibro.it/libro/turkington-garry-%20modena-gabriele/big-data-con-hadoop/9788850333431
https://www.unilibro.it/libro/turkington-garry-%20modena-gabriele/big-data-con-hadoop/9788850333431
https://www.unilibro.it/libro/turkington-garry-%20modena-gabriele/big-data-con-hadoop/9788850333431
http://dx.doi.org/10.3390/s22072733
http://dx.doi.org/10.1109/CONFLUENCE.2017.7943117
http://dx.doi.org/10.1109/KAMW.2008.4810643
http://www.forrester.com/blogs/hadoop-is-datas-darling-for-a-
http://www.forrester.com/blogs/hadoop-is-datas-darling-for-a-
http://www.forbes.com/sites/forbestechcouncil/2022/02/03/the-unseen-
http://www.forbes.com/sites/forbestechcouncil/2022/02/03/the-unseen-
http://dx.doi.org/10.1109/MVT.2020.3014598
http://www.mssqltips.com/
http://dx.doi.org/10.1109/ACCESS.2022.3157405
http://dx.doi.org/10.1109/BigComp51126.2021.00010
http://dx.doi.org/10.1109/BigComp51126.2021.00010
http://dx.doi.org/10.1109/CYBER.2015.7288049
http://dx.doi.org/10.23919/CISTI54924.2022.9820576
http://dx.doi.org/10.1109/TKDE.2021.3091101
http://dx.doi.org/10.1109/ICSEC47112.2019.8974823

