
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Cloud Computing: Software Server Architecture for

Distributed System

Binoy Kurikaparambil Revi

Independent Researcher, Tennessee, USA

Email: binoyrevi[at]live.com

Abstract: Software development of on - prem or cloud applications often encounter requirements where the application modules need

to be deployed on a distributed system or run as separate processes in a single server. This is done mainly to leverage the hardware

performances, keeping the software modules highly encapsulated and making the software highly scalable and configurable. Software

Server Architecture for Distributed Systems provides an excellent framework to develop software solutions for distributed systems or a

multi - process application on a single system.

Keywords: Distributed System, Kubernates, Cloud Computing, Software Servers

1. Introduction

Software Server Architecture for distributed systems uses the

processes running across multiple systems to communicate

with each other using secure communication services like

Restful Services. This means all the configurations, data,

messages, status etc. shall be exchanged between the

processes using Rest APIs. If the processes are running on a

single system, socket communication is an option, however

Restful Services are preferred to easily support the high - level

programming like JavaScript and can be enhanced to be more

secure. Restful services enable the application processes to

communicate with each other efficiently with a well - defined

protocol and JSON data model. The implementation of the

application doesn't necessarily depend on where the

application is expected to run. It can run on a single system,

or it can run on a distributed system depending on the

complexity and design of the application. This architecture

basically brings the idea “Write Once, Run Anywhere”.

2. High Level Architecture

Software Server Architecture can cater to single server design

or distributed system design. In both cases the system can use

on - prem servers or cloud servers depending on the system

requirements. The application is run using the software

processes running on these servers which are called as

Software Servers. [2] Name contains the term server as it can

accept HTTP requests and respond to these requests as part of

Restful services. The Software Servers also send the request

to other Software Servers that are an integral part of the

application. Data Model designed to exchange data between

the servers and manage internal data plays a critical role in

this architecture. A typical example of the Software Server

Architecture on a single server is given in figure 1.

Figure 1: Software Servers running on a single server

On a multi - server or distributed architecture, the software

servers run on different servers [2] and communicate with

each other using Restful Services. Figure 2 describes a high -

level architecture of software servers on distributed systems.

Figure 2: Software Servers running on distributed system

Paper ID: SR241128014436 DOI: https://dx.doi.org/10.21275/SR241128014436 1825

http://www.ijsr.net/
mailto:binoyrevi@live.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3. Cloud Application Design using Software

Servers

In the modern - day application deployments, dockerization

or containerization is considered as a preferred strategy as

there are less chances of surprises that come out during

deployment and execution of the application in production.

This is because the containerization provides the exact well -

defined environment in the production as in the development

for the application to run. The container virtually acts as the

complete system on which the application can run as it is

running on an expected hardware with an operating system.

[4] Docker has become the de facto standard for

containerization and Kubernetes which is an open - source

system that automates the management, scaling, and

deployment of containerized applications has become the

preferred model to manage the containers.

Software Servers Architecture can be implemented by

containerizing the software servers in multiple containers and

managing them using the Kubernetes services. Most of the

major cloud providers provide a wide range of tools and

services to deploy and manage the containers in their

Kubernetes service. [4] It is simple to understand how the

Software Server Architecture works in the container world.

Each application module runs on one container and uses its IP

address and specific port number to communicate with other

containers using restful services. However, it is also possible

to run more than one Software Servers in one server and

remaining Software Servers on other servers. Figure 3

provides a typical example of Software Servers Architecture

on cloud.

Figure 3: Cloud Software Server Architecture

4. Implementation of Software Servers Using

QT Framework

Figure 4 describes the implementation of Software Server

Architecture using the QT framework. The intention of

picking the QT framework to build the software servers using

C++ is because in most real - world applications the backend

core application that serves as the brain of the application is

mostly written in C++ or something similar. QT framework

provides QT libraries that can be used to add Restful services

to the C++ applications. This can be run as a software thread

in the C++ application and has proven very effective and

efficient.

Paper ID: SR241128014436 DOI: https://dx.doi.org/10.21275/SR241128014436 1826

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 4: Implementation of Software Servers

Using the QT framework, the Software Server is built by

attaching each application module with

QNetworkAccessManger and QHttpServer classes.

QHttpServer helps build HTTP server functionality into an

application. This allows the Software Server to receive

Restful requests over HTTP and respond to the request. The

QNetworkAccessManager class allows the application to

send network requests and receive replies allowing Software

Servers to send Restful requests to other Software Servers and

receive responses. All the asynchronous functionalities

provided by these classes are managed by QT Signal Slot

mechanism that enables non - blocking execution of the

application modules. Each Software Server can run as a

separate process in the machine or in the container

environment and communicate with other Software Servers

using the Restful Service using the QNetworkAccessManger

and QHttpServer classes. QJsonObject is another class that

comes in handy to manage and process the JSON data. JSON

Data model is the preferred data model for the Software

Server Architecture as it is more easy to use with built in

libraries from QT, serves as a standard data model for latest

JavaScript frameworks like React and Vue Js and it is more

secure than traditional XML.

5. Overhead of Software Server Architecture

The Sections above talk about the idea, design and

implementation of the Software Server Architecture, however

it is also important to analyse the implementation overhead

that comes with this architecture. This architecture is best

suited to relatively highly complex and large software

solutions where the solution requires multiple software

modules to solve a complex problem. Architecture may not

be the best choice for a single major software module

application. Other overheads that come during the

implementation are described below:

1) QNetworkAccessManger and QHttpServer classes -

These classes are added to every Software Servers to

enable communication.

2) Application Health Management Server [1] - This is one

of the main and common use cases when designing the

application using Software Server Architecture. The

Health Management Server runs as a Software Server

itself, is responsible for the initialization of other software

servers and responsible for checking the health and status

of all Software Servers.

6. Conclusion

Software Server Architecture provides a framework to design

big and complex software solutions as independent modular

solutions which can be efficiently built, maintained and

scaled irrespective of the technology or programming

language that is used to build each module. This framework

enables different teams to work on their area of expertise to

build the software servers that can serve a part of the complete

solution without knowing anything inside other modules.

Only dependency is the data model that is agreed for the

communication between Software Servers.

References

[1] M. Sloman, J. Magee, K. Twidle and J. Kramer, "An

architecture for managing distributed systems, " 1993

Paper ID: SR241128014436 DOI: https://dx.doi.org/10.21275/SR241128014436 1827

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 11, November 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4th Workshop on Future Trends of Distributed

Computing Systems, Lisbon, Portugal, 1993, pp.40 - 46,

doi: 10.1109/FTDCS.1993.344178.

[2] H. Gomaa, "Advances in Software Design Methods for

Concurrent, Real - Time and Distributed Applications,

" 2008 The Third International Conference on Software

Engineering Advances, Sliema, Malta, 2008, pp.451 -

456, doi: 10.1109/ICSEA.2008.78.

[3] M. S. A. Muthanna and A. Tselykh, "Development of

Docker and Kubernetes Orchestration Platforms for

Industrial Internet of Things Service Migration, " 2022

International Conference on Modern Network

Technologies (MoNeTec), Moscow, Russian

Federation, 2022, pp.1 - 6, doi:

10.1109/MoNeTec55448.2022.9960769.

Author Profile

Binoy Kurikaparambil Revi received a bachelor’s

degree (BTech) in Electronics and Communication

Engineering from Cochin University of Science and

Technology in 2004. He received a Master of Science

(MS) in Computer Science with concentration in Cybersecurity from

University of Tennessee, Knoxville in 2024. He has 19 years of

experience in software development in various domains that include

Aerospace, Medical Devices, Industrial Electronics and Energy

Solution. Currently he works as a Senior Software Engineer at

PXiSE Energy Solution, San Diego, California.

Paper ID: SR241128014436 DOI: https://dx.doi.org/10.21275/SR241128014436 1828

http://www.ijsr.net/

