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Abstract: First Zagreb polynomial of a graph G with vertex set V(G) and edge set E(G) is defined as M1(G,x) =∑ 𝒙𝒅𝒖+ 𝒅𝒗
𝒖𝒗∈𝑬(𝑮)    and 

the first Zagreb index can be obtained from its polynomial as M1(G) = 
𝝏𝑴𝟏(𝑮,𝒙) 

𝝏𝒙
|𝒙=𝟏. In this paper some topological polynomials and 

their indices are obtained for line graph of wheel graph. 
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1. Introduction 
 

Let G be a simple, finite, connected graph with vertex set 

V(G) and edge set E(G). The degree of a vertex u ∈ V(G) is 

denoted by du and is the number of vertices adjacent to u. 

The edge connecting the vertices u and v is denoted by uv. 

A molecular graph is representation of the structural formula 

of a chemical compound in terms of graph theory whose 

vertices correspond to the atoms of compound and edges 

correspond to chemical bonds. A topological index is a 

numerical parameter mathematically derived from the graph 

structure; several such topological indices have been 

considered in theoretical chemistry and have found some 

applications in QSPR/QSAR study. 

 

The distance-counting  polynomials were studied for 

titanium dioxide nanotubes in [1].The k-distance degree-

based topological indices of molecular graphs were defined 

and computed in [2-4].First and second neighborhood 

Gourava indices using NM-polynomials for drug structures 

were investigated in [5].Many topological polynomials and 

indices were computed in many papers for example [6-

16].Sum degree-based topological indices of nanotubes were 

computed in [17].Leap reduced reciprocal Randic and leap 

reduced second Zagreb indices of some graphs were delved 

by F.Dayan et. al. [18]. Neighborhood degree-based 

topological indices for some graphs were studied in [19-20]. 

Closed and open neighborhood of a vertex are useful in 

discussing the degree of vertices and local properties of 

graphs. Open neighborhood of a vertex v, denoted by N(v) is 

the set of vertices that are adjacent to v, excluding itself, i.e. 

N(v) = u ∈ V|(v, u) ∈ E and deg(v) = |N(v)|. Closed 

neighborhood of a vertex v is denoted by N[v] is the set of 

vertices that are adjacent to v, including v itself i.e. N[v] = 
v∪ N(v). 
 

A wheel graph is a type of graph that consists of a central 

vertex connected to all vertices of a cycle. Wheel graphs are 

denoted by Wn, where n is the number of vertices in the 

cycle plus one for the central vertex. The wheel graph Wn 

with n+1, vertices are defined as the joining of K1 and Cn, 

where K1 is the complete graph with one vertex and Cn is the 

cycle graph with n vertices. The degree of the central vertex 

in a wheel graph is n, while each vertex in the cycle has a 

degree of 3.Line graph of the subdivision graph of wheel 

graph denoted by L(S(Wn)) has order 4n and size 
n2+9n

2
.The 

diameter of line graph of subdivision graph of wheel graph 

is 1 for n = 4 and 2 for n ≥ 5. In a graph of L(S(Wn)) there 

are 3n vertices of degree 3 and remaining n vertices of 

degree n [21-27].  

 

The first, second and hyper reverse Zagreb polynomials [28-

29] are defined as; 

CM1(G, x) =∑ x(cu+cv)
uv∈E(G)                (1) 

CM2(G, x) =∑ x(cu×cv)
uv∈E(G)              (2) 

CHM1(G, x) =∑ x(cu+cv)2
 uv∈E(G)             (3) 

CHM2(G, x) =∑ x(cu×cv)2

uv∈E(G)              (4) 

 

Where the reverse degree of a vertex v is cv =  ∆(G) −
dG(v) + 1. 
 

The first, second and hyper Revan polynomials [30] are 

defined as;  

R1(G, x) =∑ x(ru+rv)
uv∈E(G)   .  (5) 

R2(G, x) =∑ x(ru×rv)
uv∈E(G)   .  (6) 

HR1(G, x) =∑ x(ru+rv)2

uv∈E(G)   .  (7) 

HR2(G, x) =∑ x(ru×rv)2

uv∈E(G)   .  (8) 

 

Where Revan degree of a vertex u is rG(u)= ∆(G) + δ(G)-
 dG(u). 
 

The first, second and leap hyper Zagreb polynomials are 

defined as [31-32]; 

 
LM1

∗(G, x) = ∑ xd2(u)+d2(v)
uv∈E(G)       (9) 

LM2(G, x)=∑ xd2(u)×d2(v)
uv∈E(G)      (10) 

LHM1(G, x)=∑ x[d2(u)+d2(v)]2

uv∈E(G)     (11) 

LHM2(G, x)=∑ x[d2(u)×d2(v)]2

uv∈E(G)                (12) 

 

The M-polynomial correspond degree to degree-based 

indices, while the NM-polynomial parallels this for 

neighborhood degree-based indices [33-35]. M-polynomials 

for M1(G),M2(G),HM1(G) and HM2(G) are defined from the 
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formula of M-polynomial of graph. M-polynomial is defined 

as  

M(G;x,y) = ∑ mij(G)δ≤i≤j≤∆ xiyj,  (13) 

where δ = min{dv|v∈V(G)}, ∆ = max{dv|v∈V(G)}, and 

mij(G) is the edge vu ∈ E(G) such that 

i ≤ j, with Dx = x 
  ∂f(x,y) 

∂x
, Dy = y 

  ∂f(x,y) 

∂y
, Sx=∫

f(t,y)

t

x

0
dt,Sy = 

∫
f(x,t)

t

y

0
dt, J(f(x,y)) = f(x,x) and 

Qα(f(x,y)) = xα (f(x,y)). 
 

The first, second and hyper Zagreb indices can be computed 

from M-polynomial as; 

M1(G)=(Dx + Dy)(M(G; x, y))|x=y=1.  

    
M2(G)=(Dx × Dy)(M(G; x, y))|x=y=1. 

HM1(G)=(Dx + Dy)2(M(G; x, y))|x=y=1. 

HM2(G)=(Dx × Dy)2(M(G; x, y))|x=y=1. 

 

NM-polynomials for NM1(G),NM2(G),NHM1(G) and 
NHM2(G) can be defined on open neighborhood N(v) of a 
vertex. 

NM-polynomial of graph G is defined as [36-37]; 
NM(G;x,y) = ∑ mij(G)i≤j xiyj.  

 

Where mij is the total number of edges vu∈ E(G), such that 

{δu, δv} ={i, j} and δu, δv are used in the definition of 

neighborhood degree-based indices. 
 

The first Zagreb index can be calculated as derivative of first 

Zagreb polynomial at x = 1 [38], 

M1(G) = 
𝛛M1(G,x) 

𝛛𝐱
|𝑥=1.   (14) 

 

The edge partition for degree of end vertices in line graph of 

subdivision graph of wheel graph is; 

E(3,3) = {uv∈EG(L(S(Wn)))|du=3,dv=3},|E(3,3)| = 4n;  
E(3,n) = {uv∈EG(L(S(Wn)))|du=3,dv=n},|E(3,n)| = n;  

E(n,n) = {uv∈EG(L(S(Wn)))|du=n,dv=n},|E(n,n)| = 
n(n−1)

2
. 

 

Symbols and notations used in this paper are standard and 

mainly taken from standard books of graph theory [39-40]. 

In this paper reverse, Revan, leap degree-based first, second, 

hyper first and second Zagreb polynomials, M-polynomials 

and NM-polynomials and their indices are obtained for line 

graph of subdivision graph of wheel graph. 

 

2. Materials and Method 
 

A molecular graph is a graph such that its vertices 

correspond to the atoms and edges to the bonds. The line 

graph L(S(Wn)) of a graph G is a graph where each vertex in 

L(S(Wn)) represents an edge in G. Two vertices in L(S(Wn)) 
are adjacent if and only if their corresponding edges in G are 

adjacent. The molecular graphs of subdivision graph and 

line graph of subdivision graph of wheel graph are 

represented in figure (1). Revan, reverse degree of end 

vertices of line graph of subdivision graph of wheel graph 

are obtained from degree of vertices. In a line graph of 

wheel graph, the 2-distance degree of an edge corresponds to 

how many edges are two steps away. The leap degree edge 

partition of line graph of wheel graph is given in table (3). 

Differential operators used in M/NM-polynomials 

computation are obtained from equations (13). 

 

3. Results and Discussion 
 
Reverse polynomials and indices of line graph of wheel 

graph  

Theorem 1. First reverse Zagreb polynomial of L(S(Wn)) is 

4nx2(n-4) + nxn-5+
n(n−1)

2
 x-2. 

Proof. This theorem is proved by using equations (1) and 

(14). 

 

First reverse Zagreb polynomial of line graph of wheel 

graph 

CM1(L(S(Wn,x))) = ∑ x(cu+cv  )
𝐮𝐯∈𝐄(𝐆)   

= |E(n-4,n-4)|x(n−4)+(n−4)+|E(n-4,-1)|x(n−4)+(−1) +|E(-1,-

1)|x(−1)+(−1) 

= 4nx2(n-4) + nxn-5 +
n(n−1)

2
 x-2.   

  

CM1(L(S(Wn))) = 
𝛛CM1(L(S(Wn,x))) 

𝛛𝐱
|x=1 = 

𝛛CM1(4nx2(n−4)+ nx(n−5)+
𝐧(𝐧−𝟏)

𝟐
x−2)

𝛛𝐱
|x=1  

= 4n(2n-9). 
 

Theorem 2. Second reverse Zagreb polynomial of L(S(Wn)) 

is 4nx(n−4)2
+ nx(4-n) +

n(n−1)

2
 x. 

 

Proof. This theorem is proved by using equations (2) and 

(14). 

 

Second reverse Zagreb polynomial of line graph of wheel 

graph 

CM2(L(S(Wn,x))) = ∑ x(cu×cv  )
𝐮𝐯∈𝐄(𝐆)   

= |E(n-4,n-4)|x(n−4)×(n−4)+|E(n-4,-1)|x(n−4)×(−1) +|E(-1,-

1)|x(−1)×(−1) 

= 4nx(n−4)2
+ nx(4-n) + 

n(n−1)

2
 x.   

   

CM2(L(S(Wn))) = 
∂CM2(L(S(Wn,x)))  

∂x
|x=1 = 

𝛛CM2(4nx(n−4)2
+nx(4−n)+

n(n−1)

2
 x)

𝛛𝐱
|x=1 = n(4n2 − 33n + 68 +

 
n−1

𝟐
). 

 

Theorem 3. First reverse hyper Zagreb polynomial of 

L(S(Wn)) is 4nx[2(n−4)]2
+nx(n−5)2

+
n(n−1)

2
 x4. 

 

Proof. First reverse hyper Zagreb polynomial of line graph 

of wheel graph 

CHM1(L(S(Wn,x))) = ∑ x(cu+cv  )
2

𝐮𝐯∈𝐄(𝐆)   

= |E(n-4,n-4)|x[(n−4)+(n−4)]2
+|E(n-4,-1)|x[(n−4)+(−1)]2

 +|E(-1,-

1)|x[(−1)+(−1)]2
 

= 4nx[2(n−4)]2
+nx(n−5)2

+
n(n−1)

2
 x4.  

   

CHM1(L(S(Wn))) = 
∂CHM1(L(S(Wn,x)))

∂x
|x=1  = 

∂CHM1(4nx[2(n−4)]2
+nx(n−5)2

+
n(n−1)

2
x4)

∂x
|x=1 

=n(17n²−136n+279). 
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Theorem 4. Second reverse hyper Zagreb polynomial of 

L(S(Wn)) is 4nx(n−4)4
+nx(n−4)2

+
n(n−1)

2
x. 

Proof. Second reverse hyper Zagreb polynomial of line 

graph of wheel graph  

CHM2(L(S(Wn,x))) = ∑ x(cu×cv )
2

uv∈E(G)   

= |E(n-4,n-4)|x[(n−4)×(n−4)]2
 +|E(n-4,-1)|x[(n−4)×(−1)]2

 +|E(-1,-

1)|x[(−1)×(−1)]2
 

= 4nx(n−4)4
+nx(4−n)2

+
n(n−1)

2
 x.   

  

CHM2(L(S(Wn))) = 
∂CHM2(L(S(Wn,x)))  

∂x
|x=1  = 

∂CHM2(4nx(n−4)4
+nx(4−n)2

+
n(n−1)

2
 x)

∂x
|x=1 

= n[4(n-4)4 + n2- 8n +
n−1

2
+16]. 

 

Revan polynomials and indices of line graph of wheel 

graph  

 

Theorem 5. First Revan polynomial of L(S(Wn)) is 4nx2(n-

2) + nxn-1+
n(n−1)

2
 x2. 

 

Proof. This theorem is proved by using equations (5) and 

(14). 

First Revan polynomial of line graph of wheel graph is 

R1(L(S(Wn,x))) = ∑ x(ru+rv  )
𝐮𝐯∈𝐄(𝐆)   

= |E(n-2,n-2)|x(n−2)+(n−2)+|E(n-2,1)|x(n−2)+(1) +|E(1,1)|x(1)+(1) 

= 4nx2(n-2) + nxn-1+
n(n−1)

2
 x2.   

  

R1(L(S(Wn))) = 
𝛛R1(L(S(Wn,x)))  

𝛛𝐱
|x=1 = 

𝝏R1(4nx2(n−2)+ nxn−1x+
n(n−1)

2
x2)

𝝏𝒙
|𝑥=1 =2n(5n-9). 

 

Theorem 6. Second Revan polynomial of L(S(Wn)) is 

4nx(n−2)2
+ nxn-1+

n(n−1)

2
x. 

 

Proof. This theorem is proved by using equations (6) and 

(14). 

R2(L(S(Wn,x))) = ∑ x(ru×rv  )
𝐮𝐯∈𝐄(𝐆)   

= |E(n-2,n-2)|x(n−2)×(n−2)+|E(n-2,1)|x(n−1)×(1) +|E(1,1)|x(1)×(1) 

= 4nx(n−2)2
+ nxn-1+

n(n−1)

2
 x.   

  

R2(L(S(Wn))) = 
𝛛R2(L(S(Wn,x))) 

𝛛𝐱
|x=1 = 

𝝏R2(4nx(n−2)2
+nxn−1+

n(n−1)

2
 x)

𝝏𝒙
|𝑥=1  

=4n5 − 20n4 + 32n3 −
31n2+𝑛

2
. 

 

Theorem 7. First Revan hyper polynomial of L(S(Wn)) is 

4nx[2(n−2)]2
+ nx(n−1)2

+
n(n−1)

2
 x4. 

 

Proof. This theorem is proved by using equations (7) and 

(14). 

HR1(L(S(Wn,x))) =∑ x(ru+rv)2

u∈E(G)    

= |E(n-2,n-2)|x[(n−2)+(𝑛−2)]2
+|E(n-2,1)|x[(n−2)+1]2

 

+|E(1,1)|x(1+1)2
 

= 4nx[2(n−2)]2
+ nx(n−1)2

+
n(n−1)

2
x4.  

    

HR1(L(S(Wn))) = 
𝛛𝐇R1(L(S(Wn,x)))

𝛛𝐱
|x=1 = 

𝝏HR1(4nx[2(n−2)]2
+nx(n−1)2

+
n(n−1)

2
x4)

𝝏𝒙
|𝑥=1 

= n(17x2-64n+63). 
 

Theorem 8. Second Revan hyper polynomial of L(S(Wn)) is 

4nx(n−2)4
+ nx(n−2)2

+
n(n−1)

2
 x. 

 

Proof. This theorem is proved by using equations (8) and 

(14). 

HR2(L(S(Wn,x))) =∑ x(ru×rv)2

u∈E(G)    

= |E(n-2,n-2)|x[(n−2)×(𝑛−2)]2
+|E(n-

2,1)|x[(n−2)×1]2
+|E(1,1)|x(1×1)2

 

= 4nx(n−2)4
+ nx(n−2)2

+
n(n−1)

2
 x.  

HR2(L(S(Wn))) = 
𝛛𝐇R2(L(S(Wn,x))) 

𝛛𝐱
|x=1 = 

𝛛HR2(4nx(n−2)4
+nx(n−2)2

+
n(n−1)

2
x)

𝛛𝐱
|x=1 

= n[4(n-2)4+n2-4n+4+
n−1

2
]. 

 

Leap polynomials and indices of line graph of wheel 

graph  

 

Theorem 9. First leap Zagreb polynomial of L(S(Wn)) is 

4nx8(n−1) + nx7n−5+
n(n−1)

2
 x6n-2. 

 

Proof. This theorem is proved by using equations (9) and 

(14). 

LM1
∗(L(S(Wn,x))) =∑ x[d2(u)+d2(v)]

u∈E(G)    

= |E(4(n-1),4(n-1)|x[4(n−1)+4(n−1)]+|E(4(n-1),(3n-

1)|x[4(n−1)+(3n−1)] +|E((3n-1,3n-1)|x[(3n−1)+(3n−1)] 

= 4nx8(n−1) + nx7n−5+
n(n−1)

2
 x6n-2.  

LM1
∗(L(S(Wn))) = 

𝛛LM1
∗ (L(S(Wn,x))) 

𝛛𝐱
|x=1 = 

𝝏LM1
∗ (4nx8(n−1)+nx7n−5+

n(n−1)

2
x6n−2)

𝝏𝒙
|𝑥=1 

=n(35n-36+3n2). 
 

Theorem 10. Second leap Zagreb polynomial of L(S(Wn)) 

is 4nx[4(n−1)]² + nx[4(n−1)(3n−1)]+
n(n−1)

2
 x(3n-1)². 

 

Proof. This theorem is proved by using equations (10) and 

(14). 

LM2 (L(S(Wn,x))) =∑ x[d2(u)×d2(v)]
u∈E(G)    

= |E(4(n-1),4(n-1)|x[4(n−1)×4(n−1)] +|E(4(n-1),(3n-

1)|x[4(n−1)×(3n−1)] + |E((3n-1,3n-1)|x[(3n−1)×(3n−1)] 

= 4nx[4(n−1)]² + nx[4(n−1)(3n−1)]+
n(n−1)

2
 x(3n-1)². 

  

LM2(L(S(Wn))) = 
𝛛LM2(L(S(Wn,x))) 

𝛛𝐱
|x=1 = 

𝝏LM2(4nx[4(n−1)]2
+nx[4(n−1)(3n−1)]+

n(n−1)

2
x(3n−1)2

)

𝝏𝒙
|𝑥=1 

=
9n4+137n3−281n2+135n

2
. 

 

Theorem 11. First leap hyper Zagreb polynomial of 

L(S(Wn)) is 4nx[8(n−1)]² + nx(7n−5)²+
n(n−1)

2
 x[2(3n-1)]². 
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Proof. This theorem is proved by using equations (11) and 

(14). 

LHM1
∗(L(S(Wn,x))) =∑ x[d2(u)+d2(v)]2

u∈E(G)    

= |E(4(n-1),4(n-1))|x[4(n−1)+4(n−1)]² +|E(4(n-1),(3n-

1))|x[4(n−1)+(3n−1)]² + |E(3n-1,3n-1)|x[(3n−1)+(3n−1)]² 

= 4nx[8(n−1)]² + nx(7n−5)²+
n(n−1)

2
 x[2(3n-1)]².   

LHM1
∗(L(S(Wn))) = 

𝝏LHM1
∗ (L(S(Wn,x))) 

𝝏𝒙
|𝑥=1 = 

𝛛LHM1
∗ (4nx[8(n−1)]2

+nx(7n−5)2
+

n(n−1)

2
x[2(3n−1)]2

)

𝛛𝐱
|x=1 

=n(275n2-568n+279+18 n3). 
 

Theorem 12. Second leap hyper Zagreb polynomial of 

L(S(Wn)) is 4nx[4(n−1)]4
+

nx[4(n−1)×(3n−1)]²+
n(n−1)

2
x(3n−1)4

. 

 
Proof. This theorem is proved by using equations (12) and 

(14). 

LHM2(L(S(Wn,x))) =∑ x[d2(u)×d2(v)]²
u∈E(G)    

= |E(4(n-1),4(n-1)|x[4(n−1)×4(n−1)]² +|E(4(n-1),(3n-1)|x[4(n−1)×(3n−1)]² 

+ |E((3n-1,3n-1)|x[(3n−1)×(3n−1)]² 

= 4nx[4(n−1)]4
+ nx[4(n−1)×(3n−1)]²+

n(n−1)

2
x(3n−1)4

. 

  

LHM2(L(S(Wn))) = 
𝛛LHM2(L(S(Wn,x)))  

𝛛𝐱
|x=1 = 

𝛛LHM2(4nx[4(n−1)]4
+nx[4(n−1)×(3n−1)]2

+
n(n−1)

2
x(3n−1)4

)

𝛛𝐱
|x=1 

=n(1024(n-1)4+144n4 + 352n2 + 16 − 384n3 − 128n + 
81n5−108n4+54n3−12n2+n−(3n−1)4

2
). 

 

M-polynomials and indices of line graph of wheel graph  

 

Theorem 13.M1-polynomial of L(S(Wn)) is 24nx3y3 +
(3n + n2)x3yn + n2(n − 1)xnyn. 
 

Proof. This theorem is proved by using equations (13). 

M-polynomial of line graph of wheel graph 

M(G;x,y) = 4nx3y3 + nx3yn +
n(n−1)

2
xnyn. 

DxM(L(S(Wn; x, y)))

= 12𝑛x3y3 + 3nx3yn +
n2(𝑛 − 1)

2
xnyn. 

DyM(L(S(Wn; x, y)))

= 12𝑛x3y3+n2x3yn +
n2(𝑛 − 1)

2
xnyn. 

(Dx + Dy)M(L(S(Wn; x, y))) = M1(L(S(Wn; x, y)))

= 24nx3y3 + (3n + n2)x3yn + n2(n
− 1)xnyn. 

M1(L(S(Wn))) =M1(L(S(Wn; x, y)))|x=y=1=27n + n3. 

 

Theorem 14.M2-polynomial of L(S(Wn)) is 36nx3y3 +

3n2x3yn +
n3(n−1)

2
xnyn.  

 

Proof. This theorem is proved by using equations (13). 

M-polynomial of line graph of wheel graph M(G;x,y) = 

4nx3y3 + nx3yn +
n(n−1)

2
xnyn. 

DxM(L(S(Wn; x, y)))

= 12nx3y3 + 3nx3yn +
n2(n − 1)

2
xnyn. 

DyM(L(S(Wn; x, y)))

= 12nx3y3+n2x3yn +
n2(n − 1)

2
xnyn. 

(Dx × Dy)M(L(S(Wn; x, y))) = M2(L(S(Wn; x, y)))

= 36nx3y3 + 3n2x3yn

+
n3(n − 1)

2
xnyn.  

M2(L(S(Wn))) = M2(L(S(Wn; x, y)))|x=y=1= n(36 + 3n +
n3−n2

2
). 

 

Theorem 15. HM1-polynomial of L(S(Wn)) is 144nx3y3 +

(n3 + 6n2 + 9n)x3yn + [2n3(n − 1) +
n3(n−1)

2
]xnyn.  

 

Proof. This theorem is proved by using equations (13). 

M(L(S(Wn;x,y))) = 4𝑛x3y3 + nx3yn +
n(n−1)

2
xnyn. 

DxM(L(S(Wn; x, y)))

= 12𝑛x3y3 + 3nx3yn +
n2(n − 1)

2
xnyn. 

DyM(L(S(Wn; x, y)))

= 12𝑛x3y3+n2x3yn +
n2(n − 1)

2
xnyn. 

(Dx × Dy)M(L(S(Wn; x, y)))

= 36nx3y3 + 3n2x3yn +
n3(n − 1)

2
xnyn. 

Dx 
2 M(L(S(Wn; x, y)))

= 36nx3y3 + 9nx3yn +
n3(n − 1)

2
xnyn. 

Dy 
2 M(L(S(Wn; x, y)))

= 36𝑛x3y3+n3x3yn +
n3(n − 1)

2
xnyn. 

(Dx + Dy)2HM(L(S(Wn;x,y)))=HM1(L(S(Wn; x, y))) =

144nx3y3 + (n3 + 6n2 + 9n)x3yn + [2n3(n − 1) +
n3(n−1)

2
]xnyn.  

HM1(L(S(Wn)))  = HM1(L(S(Wn; x, y)))|x=y=1 

=n (153 − n2 + 6n + 2n3 +
n3−n2

𝟐
). 

 

Theorem 16. HM2-polynomial of L(S(Wn)) is 

324nx3y3+3n3x3yn +
n5(𝐧−𝟏)

𝟐
xnyn. 

 

Proof. This theorem is proved by using equations (13). 

M(L(S(Wn;x,y))) = 4nx3y3 + nx3yn +
n(n−1)

2
xnyn. 

DxM(L(S(Wn; x, y)))

= 12nx3y3 + 3nx3yn +
n2(n − 1)

2
xnyn. 

DyM(L(S(Wn; x, y)))

= 12nx3y3+n2x3yn +
n2(n − 1)

2
xnyn. 

Dx 
2 M(L(S(Wn; x, y)))

= 36nx3y3 + 3nx3yn +
n3(n − 1)

2
xnyn. 

(Dx × Dy)2M(L(S(Wn; x, y))) = HM2(L(S(Wn; x, y)))

= 324nx3y3+3n3x3yn +
n5(n − 1)

2
xnyn. 

HM2(L(S(Wn))) =  HM2(L(S(Wn; x, y)))|x=y=1 =

n(324n+3n2 +
n5−n4

2
). 
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NM-polynomials and indices of line graph of wheel 

graph  

 

Theorem 17. NM1-polynomial of L(S(Wn)) is  

2(n − 1)(2n + 8)x(2n+8)y(2n+8) + 2(n − 1)[(2n + 8)

+ n(n − 2) + 8]x(2n+8)yn(n−2)+8 

+ (n − 1)(n − 2)[n(n − 2)

+ 8]xn(n−2)+8 yn(n−2)+8 . 
Proof. This theorem is proved by using equations (13). 

NM(L(S(Wn;x,y)))=(𝑛 − 1)x(2n+8)y(2n+8) + 2(n −

1)x(2n+8)yn(n−2)+8 +
(n−1)(n−2)

2
xn(n−2)+8 yn(n−2)+8 . 

DxNM(L(S(Wn; x, y)))

= (𝑛 − 1)(2𝑛 + 8)x(2n+8)y(2n+8) + 2(n

− 1)(2𝑛 + 8)x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
2[n(n − 2)

+ 8]xn(n−2)+8yn(n−2)+8 . 
DyNM(L(S(Wn; x, y)))

= (n − 1)(2n + 8)x(2n+8)y(2n+8) + 2(n

− 1)(n(n − 2) + 8 )x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
2[n(n − 2)

+ 8]xn(n−2)+8 yn(n−2)+8  
(Dx + Dy)NM(L(S(Wn; x, y))) = NM1(L(S(Wn; x, y)))

= 2(n − 1)(2n + 8)x(2n+8)y(2n+8) + 2(n
− 1)[(2n + 8) + n(n − 2)

+ 8]x(2n+8)yn(n−2)+8

+ (n − 1)(n − 2)2[n(n − 2)

+ 8]xn(n−2)+8 yn(n−2)+8 . 
NM1(L(S(Wn)))=NM1(L(S(Wn; x, y)))|x=y=1=(𝑛 −

1)(8 + 14𝑛 + n3 − 3n2). 
 

Theorem 18. NM2-polynomial of L(S(Wn)) is  

(𝑛 − 1)(2n + 8)2x(2n+8)y(2n+8) + 2(n − 1)(2n

+ 8)2(n(n − 2) + 8)2x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
(n(n − 2)

+ 8)2xn(n−2)+8 yn(n−2)+8 . 
 

Proof. This theorem is proved by using equations (13). 

NM(L(S(Wn;x,y)))=(𝑛 − 1)x(2n+8)y(2n+8) + 2(n −

1)x(2n+8)yn(n−2)+8 +
(𝑛−1)(𝑛−2)

2
xn(n−2)+8 yn(n−2)+8 . 

DxNM(L(S(Wn; x, y)))

= (𝑛 − 1)(2𝑛 + 8)x(2n+8)y(2n+8) + 2(n

− 1)(2𝑛 + 8)x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
2[n(n − 2)

+ 8]xn(n−2)+8yn(n−2)+8 . 
DyNM(L(S(Wn; x, y)))

= (n − 1)(2n + 8)x(2n+8)y(2n+8) + 2(n

− 1)(n(n − 2) + 8 )x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
2[n(n − 2)

+ 8]xn(n−2)+8 yn(n−2)+8  

(Dx × Dy)NM(L(S(Wn; x, y))) = NM2(L(S(Wn; x, y)))

= (𝑛 − 1)(2n + 8)2x(2n+8)y(2n+8) + 2(n
− 1)(2𝑛

+ 8)2(n(n − 2) + 8)2x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
(n(n − 2)

+ 8)2xn(n−2)+8 yn(n−2)+8 . 
NM2(L(S(Wn))) =
NM2(L(S(Wn; x, y)))|x=y=1=
n6−8n5+48n4−112n3+312n2−64n−128

2
. 

Theorem 19. NHM1-polynomial of L(S(Wn)) is  
(𝑛 − 1)[2(2𝑛 + 8)]2x(2n+8)y(2n+8) + 2(n − 1)[(2𝑛 + 8)

+ n(n − 2) + 8]2x(2n+8)yn(n−2)+8 

+ (n − 1)(n − 2)[n(n − 2)

+ 8]2xn(n−2)+8 yn(n−2)+8 . 
 

Proof. This theorem is proved by using equations (13). 

NM(L(S(Wn;x,y)))=(𝑛 − 1)x(2n+8)y(2n+8) + 2(n −

1)x(2n+8)yn(n−2)+8 +
(n−1)(n−2)

2
xn(n−2)+8 yn(n−2)+8 . 

DxNM(L(S(Wn; x, y)))

= (n − 1)(2n + 8)x(2n+8)y(2n+8) + 2(n

− 1)(2n + 8)x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
(n(n − 2)

+ 8)xn(n−2)+8 yn(n−2)+8 . 
DyNM(L(S(Wn; x, y)))

= (n − 1)(2n + 8)x(2n+8)y(2n+8) + 2(n

− 1)[n(n − 2) + 8 ]x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
(n(n − 2)

+ 8)xn(n−2)+8 yn(n−2)+8 . 
(Dx + Dy)2NM(L(S(Wn; x, y))) = NHM1(L(S(Wn; x, y)))

= 4(n − 1)(2n + 8)(5

+ n)x(2n+8)y(2n+8) + 2(n − 1)(160

+ 26x(2n+8)yn(n−2)+8 

+ (n − 1)(n − 2)[n(n − 2)

+ 8]2xn(n−2)+8 yn(n−2)+8 . 
 
NHM1(L(S(Wn))) =NHM1(L(S(Wn; x, y)))|x=y=1 

=(n − 1)(8n2 + 256n + 640 + n5 + 28n3 − 4n4). 
 

Theorem 20. NHM2-polynomial of L(S(Wn)) is  

 (n − 1)(2n + 8)4x(2n+8)y(2n+8) + 2(n − 1)[(2n +

8)(n(n − 2)) + 8]2x(2n+8)yn(n−2)+8 +
(n−1)(n−2)

2
[n(n −

2) + 8]44xn(n−2)+8 yn(n−2)+8 . 
 

Proof. This theorem is proved by using equations (13). 

NM(L(S(Wn;x,y)))=(𝑛 − 1)x(2n+8)y(2n+8) + 2(n −

1)x(2n+8)yn(n−2)+8 +
(n−1)(n−2)

2
xn(n−2)+8 yn(n−2)+8 . 

 
DxNM(L(S(Wn; x, y)))

= (𝑛 − 1)(2𝑛 + 8)x(2n+8)y(2n+8) + 2(n

− 1)(2𝑛 + 8)x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
[n(n − 2)

+ 8]xn(n−2)+8 yn(n−2)+8 . 
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DyNM(L(S(Wn; x, y)))

= (𝑛 − 1)(2𝑛 + 8)x(2n+8)y(2n+8) + 2(n

− 1)[n(n − 2) + 8 ]x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
[n(n − 2)

+ 8]xn(n−2)+8 yn(n−2)+8 . 
(Dx × Dy)2NM(L(S(Wn; x, y))) = NHM2(L(S(Wn; x, y)))

= (n − 1)(2n + 8)4x(2n+8)y(2n+8) + 2(n
− 1)[(2n + 8)(n(n − 2))

+ 8]2x(2n+8)yn(n−2)+8 

+
(n − 1)(n − 2)

2
[n(n − 2)

+ 8]44xn(n−2)+8 yn(n−2)+8 . 
NHM2(L(S(Wn))) =NHM2(L(S(Wn; x, y)))|x=y=1 

=(n − 1)(2n + 8)4 + 2(n − 1)((2n + 8)n(n − 2) + 8)2 +
(n−1)(n−2)

2
(n(n − 2) + 8)4. 

 

 
Figure 1: The subdivision graph of the wheel Wn and 

the line graph of subdivision graph of the wheel 

L(S(Wn)). 

 

Table 1: The reverse degree edge partition of L(S(Wn)). 
Reverse degree (n-4, n-4) (n-4, -1)  (-1, -1)  

Number of edges 4n n n(n − 1)

2
 

 

Table 2: The Revan degree edge partition of L(S(Wn)). 
Revan degree (n-2, n-2) (n-2,1) (1,1) 

Number of edges 4n n n(n − 1)

2
 

 

Table 3: The leap degree edge partition of L(S(Wn)) 
Degree (d2(3), d2(3)) (d2(3), d2(n)) (d2(n), d2(n)) 

Leap degree (4(n-1), 4(n-1)) (4(n-1), 3n-1) (3n-1, 3n-1) 

Number of  

edges 

4n n n(n − 1)

2
 

 

4. Conclusion 
 

Reverse, Revan, leap polynomials, hyper-polynomials, M-

polynomials, NM-polynomials and their indices are studied 

for line graph of subdivision graph of wheel graph. 
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