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Abstract: This study explores Heron triangles, which are unique triangles characterized by integer side lengths and areas. It classifies 

various types, including Pythagorean, consecutive, isosceles, and integral Heron triangles, and examines their mathematical properties 

such as semiperimeters, inradii, circumscribed radii, and heights. By presenting definitions, illustrations, and detailed proofs of theorems, 

this paper aims to deepen understanding and provide a foundation for further mathematical applications. 
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1. Introduction 
 

1.1 Background of the Study 

 

A Heron triangle is triangle such that the lengths of its three 

sides as well as its area are integers. The name refers to the 

formula for the area of a triangle given the sides known as 

Heron’s formula. This remarkable formula is the square root 

of the product of the four factors, one of which is the 

semiperimeter of the triangle (that is, one-half the sum of the 

three sides), and the other three factors are obtained by 

subtracting each side from the semiperimeter. The simplest 

example of a Heron triangle is a right triangle.  

 

This research builds upon the study entitled ‘On Heron 

Triangle’ by J´osef S´andor of the Department of 

Mathematics, Babes-Bolyai University, Cludy Napoka, 

Romania 

 

1.2 Statement of the Problem 

 

In this paper, some properties of a triangle that satisfies the 

required conditions of a Heron triangle as well as its 

characteristics are identified. 

 

1.3 Objectives of the Study 

 

This paper aims to classify and analyze the properties of 

Heron triangles, contributing to the understanding of their 

unique characteristics and potential application in 

mathematical studies.  

 

1.4 Significance of the Study 

 

This study contributes to the field of geometry by providing a 

detailed exploration of Heron triangles, offering insights into 

their classifications and properties, and creating a basis for 

future research in both theoretical and applied mathematics. 

 

1.5 Methodology 

 

This paper is expository in nature. Definitions and concepts 

are being presented in order to support some results. Details 

of the proof of some results are supplied for clarification. 

Examples are also provided to verify the results for simple 

cases. 

 

2. Preliminary Notion and Results 
 

2.1 Basic Concepts  

 

Definition 2.1.1 Pythagorean triangle is a right triangle 

whose sides are of integral length. It is denoted as P-triangle. 

  

Theorem 2.1.2 (Pythagorean Theorem and its Converse) [4] 

In a right triangle, c is the length of the hypotenuse, a and b 

are the lengths of the legs if and only if c2 = a2 + b2 .  

 

Definition 2.1.3 Pythagorean numbers are numbers 

satisfying the equation 𝑐2  =  𝑎2 + 𝑏2 where 𝑎, 𝑏, and 𝑐 are 

the sides of the P-triangle. The set {𝑎, 𝑏, 𝑐} is the set of 

Pythagorean numbers. 

 

Example 2.1.4 The sets {3, 4, 5}, {5, 12, 13}, {6, 8, 10},      

{7, 24, 25}, {8, 15, 17}, {9, 12, 15} are sets of Pythagorean 

numbers. In fact,  

(1) {𝑛,
𝑛2−4

4
,

𝑛2+4

4
} 

when n is even is a set of Pythagorean numbers. Also,  

(2) {𝑛,
𝑛2−1

2
,

𝑛2+1

2
} 

when n is odd is also a set of Pythagorean numbers.  

 

Example 2.1.5 Consider 𝑛 = 12  in formula (1). Then the 

numbers 35 and 37 are the values of 
𝑛2−4

4
and

𝑛2+4

4
, 

respectively. That is, for 𝑛 = 12,  

     
𝑛2−4

4
=

122−4

4
=

144−4

4
=

140

4
= 35 and 

𝑛2+4

4
=

122+4

4
=

144+4

4
=

148

4
= 37. 

Now,  

122 +  352 =  372 

144 +  1225 =  1369 

               1369 =  1369 

Thus, the set {12, 35, 37} is a set of Pythagorean numbers. 

 

Example 2.1.6 Consider 𝑛 = 9 in formula (2). Then the 

numbers 40 and 41 are the values of  
𝑛2−1

2
  and 

𝑛2+1

2
, 

respectively. That is, for 𝑛 = 9,  
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𝑛2−1

2
=

92−1

2
=

81−1

2
=

80

2
= 40 and  

𝑛2+1

2
=

92+1

2
=

81+1

2
=

82

2
= 41.  

Now,   

92 +  402 =  412 

 81 +  1600 =  1681 

    1681 =  1681. 
Hence, the set {9, 40, 41} is a set of Pythagorean numbers.  

 

Definition 2.1.7 The semiperimeter p of a triangle is one-half 

of the triangle’s perimeter. That is, for a triangle with sides of 

lengths a, b, and c,  

p = 1

2
(a + b + c). 

 

Definition 2.1.8 An integer b is said to be divisible by an 

integer 𝑎 ≠  0, in symbols 𝑎|𝑏, if there exists some integer c 

such that 𝑏 = 𝑎𝑐 . We write 𝑎 ∤ 𝑏  to indicate that 𝑏  is not 

divisible by 𝑎.  

 

Definition 2.1.9 Let 𝑎 and 𝑏 be given integers, with at least 

one of them different from zero. The greatest common 

divisor of a and b is the positive integer d denoted by 

(𝑎, 𝑏) = 𝑑, if the following are satisfied:  

(a) 𝑑|𝑎 and 𝑑|𝑏.  

(b) If 𝑐|𝑎 and 𝑐|𝑏, then 𝑐 ≤ 𝑑. 

 

Definition 2.1.10 Let 𝑎, 𝑏 ∈ 𝑍 , then 𝑎  and 𝑏  are relatively 

prime if in case (𝑎, 𝑏) = 1. Furthermore 𝑎1, 𝑎2, . . . , 𝑎𝑛  ∈  𝑍 

are relatively prime in case (𝑎1, 𝑎2, . . . , 𝑎𝑛)  =  1 . Thus, 

𝑎1, 𝑎2, . . . , 𝑎𝑛 are relatively prime in pairs in case (𝑎𝑖 , 𝑎𝑗)  =

 1 for all 𝑖 =  1, 2, . . . , 𝑛  and 𝑗 =  1, 2, . . . , 𝑛  with 𝑖 ≠  𝑗. If 
(𝑎, 𝑏) = 1, then 𝑎 and 𝑏 are coprime, or 𝑎 is coprime of 𝑏. 

 

Definition 2.1.11 If two integers are both odd or both even, 

they are said to have the same parity. If one is odd and the 

other is even, then they have different parities.  

 

Definition 2.1.12 An angle bisector is a line segment that cuts 

the angle into two congruent angles.  

 

Definition 2.1.13 A perpendicular bisector is a line that forms 

a right angle with one of the triangle’s sides and intersects 

that side at its midpoint.  

 

Definition 2.1.14 The inscribed circle or the incirle is the 

largest possible circle that can be drawn interior to a triangle 

of which each side of the triangle is tangent to the circle. The 

center of the inscribed circle can be found as the intersection 

of the three internal angle bisectors which is called the 

incenter. The radius of the inscribed circle is the inradius of 

the triangle. The inradius r is given by 𝑟 = 𝑝 − 𝑐 where p is 

the semiperimeter and c is the hypotenuse of the triangle or 𝑟 

= A/p where 𝐴 is the area and 𝑝 is the semiperimeter of the 

triangle. 

 

 
Figure 2.1: Inscribed circle of a triangle, the angle bisector 

(green), the in radius (r), and the incenter (O) 

 

Definition 2.1.15 The circumscribed circle or the 

circumcircle of the triangle is a circle that passes through all 

the vertices of the triangle. The center of this circle is called 

the circumcenter. The circumcenter of a triangle can be 

found as the intersection of the three perpendicular bisectors. 

The radius of the circumscribed circle is denoted by 𝑅 and 

given by 𝑅 =  1

2
𝑐  where 𝑐  is the diameter of the 

circumscribed circle and is the hypotenuse of the P-triangle 

or 𝑅 =  𝑎𝑏𝑐/𝐴 where 𝑎, 𝑏, and 𝑐 are the sides and 𝐴 is the 

area of the triangle. 

 

 
Figure 2.2: Circumference of a triangle (red) and the 

circumcenter (O) 

 

Definition 2.1.16 An exscribed circle of a triangle is a circle 

lying outside the triangle, tangent to one of its sides and 

tangent to the extensions of the other two sides. Every 

triangle has three sides’ distinct exscribed circles each 

tangent of one of the triangle’s sides. The center of the 

exscribed circle is the intersection of the internal bisector of 

one angle and the internal bisector of the other two. The 

radius of the exscribed circle with respect to side b is denoted 

by rb which is given by 𝑟𝑏  =  𝐴/(𝑝 −  𝑏) where 𝐴 is area 

and 𝑝 is semiperimeter of the triangle. 

 

 
Figure 2.3: Exscribed circle of a triangle (blue circles), 

Inscribed circle (red lines) and external angle bisectors 

(green lines) 
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Definition 2.1.17 The equation 𝑥2 − 𝑑𝑦2 =  𝑁, with given 

integers 𝑑  and 𝑁  and unknowns 𝑥  and 𝑦 , is usually called 

Pell’s equation. If 𝑑 is negative, it can have a finite number 

of solutions. If 𝑑  is a perfect square, say 𝑑 = 𝑎2  , the 

equation reduces to (𝑥 −  𝑎𝑦)(𝑥 +  𝑎𝑦)  =  𝑁  and again 

there is only a finite number of solutions. 

 

Theorem 2.1.18 [1] All the solutions of the Pythagorean 

equation 𝑥2 +  𝑦2 = 𝑧2 , satisfying the conditions 

𝑔𝑐𝑑(𝑥, 𝑦, 𝑧) = 1, 2|𝑥, 𝑥 > 0, 𝑦 > 0, 𝑧 > 0,  are given by the 

formulas  𝑥 = 2𝑠𝑡 , 𝑦 = 𝑠2 − 𝑡2 , 𝑧 = 𝑠2 + 𝑡2  , for integers 

𝑠 > 𝑡 > 0 such that 𝑔𝑐𝑑(𝑠, 𝑡) = 1 and 𝑠 is not congruent to 

𝑡(𝑚𝑜𝑑 2).  

 

Theorem 2.1.19 [1] Let 𝑥1, 𝑦1 be the fundamental solution of 

𝑥2 − 𝑑𝑦2 =  𝑁. Then every pair of integers 𝑥𝑛 , 𝑦𝑛  defined 

by the condition 𝑥𝑛 + 𝑦𝑛√d = (𝑥1 + 𝑦1√d)
𝑛

, 𝑛 =  1, 2, 3, .. . 

is also a positive solution.  

 

Remark 2.1.20 From 𝑥2 − 𝑑𝑦2 =1 of Theorem 2.1.19, note 

that since (𝑥1, 𝑦1) = (2, 1) then 𝑥𝑛 + 𝑦𝑛√d = (𝑥1 + 𝑦1√d)
𝑛

, 

𝑛 =  1, 2, 3, . . ..  
 

2.2 Review of Related Literature 

 

Remark 2.2.1 The sum of two numbers of different parities is 

odd.  

 

Proof : Let 𝑥 and 𝑦 be the two numbers. Suppose 𝑥 is even 

and 𝑦 is odd, then 𝑥 = 2𝑎 and 𝑦 = 2𝑏 + 1 for some 𝑎, 𝑏, ∈
 𝑍 . Thus, 𝑥 + 𝑦 = 2𝑎 + 2𝑏 + 1 = 2(𝑎 + 𝑏) + 1 = 2𝑐 + 1 

where 𝑐 = 𝑎 + 𝑏 ∈ 𝑍. Thus, 𝑥 + 𝑦 = 2𝑐 + 1 which is odd.  

  

Remark 2.2.2 The square of an odd integer is odd and the 

square of an even integer is even.  

 

Proof : Let 𝑥 be an odd integer. Then 𝑥 = 2𝑎 + 1 for some 

a ∈  Z . Thus, 𝑥2 = (2𝑎 +  1)2 = 4𝑎2 + 4𝑎 + 1 =
 2(2𝑎2 +  2𝑎) + 1 = 2𝑏 + 1 where 𝑏 = 2𝑎2 + 2𝑎 ∈ 𝑍 . 

Thus, 𝑥2 = 2𝑏 + 1 which is odd. Similarly, let 𝑦 = 2𝑐  for 

some 𝑐 ∈ 𝑍. Then 𝑦2 = (2𝑐)2 = 4𝑐2 = 2(4𝑐2) = 2𝑑 where 

𝑑 = 2𝑐2 ∈ 𝑍. Hence, 𝑦2 = 2𝑑 which is even.  

 

Remark 2.2.3 Let 𝑎, 𝑏 be integers where one is odd and the 

other is even, then (𝑎, 𝑏) = 1.  

 

Proof : Without loss of generality, let 𝑥 be the even integer 

and 𝑦 be the odd integer. Suppose (𝑥, 𝑦) = 𝑑 then 𝑑|𝑥 and 

𝑑|𝑦. Since 𝑥 is even then d must also be even. Also, since 

𝑦 is odd then 𝑑 must also be odd. This implies that 𝑑 must be 

equal to 1.  

 

3. Results and Discussion 
 

3.1 Basic Concepts of Heron Triangle 

 

This section deals with the basic concepts needed to identify 

the properties of a triangle that satisfies the required 

condition of a Heron triangle.  

 

Definition 3.1.1 A Heron triangle, denoted by H-triangle, is a 

triangle such that the lengths of its three sides as well as its 

area are integers.  

 

 
 

Theorem 3.1.2 If a triangle has sides of lengths a, b, c and if p 

= 1

2
(a+b+c), the “semiperimeter” of the triangle, then Heron’s 

formula says that the area A of the triangle is given by  

A = √p(p − a)(p − b)(p − c). 

 

 
 

Proof : Let 𝑎, 𝑏, and 𝑐 be the sides of ∆𝐴𝐵C and let 𝐶𝐷̅̅ ̅̅  be 

perpendicular to 𝐴𝐵̅̅ ̅̅   where |𝐶𝐷|  =  ℎ and |𝐷𝐵|  =  𝑥 (see 

Figure 3.2). Then 𝑎2 = 𝑥2 + ℎ2 and 𝑏2 = (𝑐 − 𝑥)2 + ℎ2 by 

the Pythagorean Theorem. Solving for ℎ2 in both equations, 

give  

ℎ2 = 𝑎2 − 𝑥2,                (3.1) 

from the first equation, and  

ℎ2 = 𝑏2 − (𝑐 − 𝑥)2 

ℎ2 = 𝑏2 − (𝑐2 − 2𝑐𝑥 + 𝑥2) 

ℎ2 = 𝑏2 − 𝑐2 + 2𝑐𝑥 − 𝑥2,           (3.2) 

from the second equation. 

 

Subtracting equation (3.1) from (3.2), yields to  

ℎ2 − ℎ2 = 𝑏2 − 𝑐2 + 2𝑐𝑥 − 𝑥2 −(𝑎2 − 𝑥2) 

0 = 𝑏2 − 𝑐2 + 2𝑐𝑥 − 𝑥2 − 𝑎2 + 𝑥2 

0 = 𝑏2 − 𝑐2 + 2𝑐𝑥 − 𝑎2. 

Solving for x gives  

2𝑐𝑥 = −𝑏2 + 𝑐2 + 𝑎2 

2𝑐𝑥

2𝑐
=

−𝑏2 + 𝑐2 + 𝑎2

2𝑐
 

𝑥 =
−𝑏2+𝑐2+𝑎2

2𝑐
. 

 

Now, the area of a triangle is A = 1

2
(base)(height), so A 

= 1
2
 𝑐ℎ.  

 

Solving for h,  

 𝐴 =  1

2
 𝑐ℎ 

2𝐴 =  𝑐ℎ 

ℎ =
2𝐴

𝑐
. 
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From ℎ2 = 𝑎2 − 𝑥2, substitute 𝑥 =
−𝑏2+𝑐2+𝑎2

2𝑐
 and ℎ =

2𝐴

𝑐
, 

to obtain 

 (
2𝑎

𝑐
)

2

= 𝑎2 − (
𝑎2−𝑏2+𝑐2

2𝑐
)

2

 

     
4𝐴2

𝑐2 = 𝑎2 −
(𝑎2−𝑏2+𝑐2)

2

4𝑐2  

     
4𝐴2

𝑐2 =
4𝑎2𝑐2−(𝑎2−𝑏2+𝑐2)

2

4𝑐2 . 

Multiplying by 4c2 , 

(
4𝐴2

𝑐2
) ∙ 4𝑐2 = (

4𝑎2𝑐2 − (𝑎2 − 𝑏2 + 𝑐2)2

4𝑐2
) ∙ 4𝑐2 

16A2 = 4𝑎2𝑐2 − (𝑎2 − 𝑏2 + 𝑐2)2 

16A2 = (2𝑎𝑐)2 − (𝑎2 − 𝑏2 + 𝑐2)2 

16A2 = (2𝑎𝑐 − 𝑎2 + 𝑏2 − 𝑐2)(2𝑎𝑐 + 𝑎2 − 𝑏2 + 𝑐2) 

16A2 = [𝑏2 − (𝑎2 − 2𝑎𝑐 + 𝑐2)][(𝑎2 + 2𝑎𝑐 + 𝑐2) − 𝑏2] 
16A2 = [𝑏2 − (𝑎 − 𝑐)2][(𝑎 + 𝑐)2 − 𝑏2] 
16A2 = (𝑏 − 𝑎 + 𝑐)(𝑏 + 𝑎 − 𝑐)(𝑎 + 𝑐 − 𝑏)(𝑎 + 𝑐 + 𝑏) 

Dividing by 16 gives 
16A2

16
=

(𝑏−𝑎+𝑐)(𝑏+𝑎−𝑐)(𝑎+𝑐−𝑏)(𝑎+𝑐+𝑏)

16
  

A2 = (
(𝑏−𝑎+𝑐)

2
) (

(𝑏+𝑎−𝑐)

2
) (

(𝑎+𝑐−𝑏)

2
) (

(𝑎+𝑐+𝑏)

2
)    

𝐴2 = (
(𝑏−𝑎+𝑐)

2
+ 𝑎 − 𝑎) (

(𝑏+𝑎−𝑐)

2
+ 𝑐 − 𝑐)  

(
(𝑎+𝑐−𝑏)

2
+ 𝑏 − 𝑏) (

(𝑎+𝑐+𝑏)

2
)  

𝐴2 =

(
𝑏−𝑎+𝑐+2𝑎−2𝑎

2
) (

𝑏+𝑎−𝑐+2𝑐−2𝑐

2
) (

𝑎+𝑐−𝑏+2𝑏−2𝑏

2
) (

(𝑎+𝑐+𝑏)

2
)  

𝐴2 = (
𝑎+𝑏+𝑐

2
− 𝑎) (

𝑎+𝑏+𝑐

2
− 𝑐) (

𝑎+𝑏+𝑐

2
− 𝑏) (

(𝑎+𝑐+𝑏)

2
)  

𝐴2 = (𝑝 − 𝑎)(𝑝 − 𝑐)(𝑝 − 𝑏)𝑝,  where  𝑝 =
𝑎+𝑏+𝑐

2
. 

So  

𝐴 =  √𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐).                  
 

Lemma 3.1.4 The general solution of the equation 𝑎2 + 𝑏2 =
𝑐2  are given by 𝑎 =  𝜆(𝑚2 − 𝑛2) , 𝑏 =  2𝜆𝑚𝑛  and 𝑐 =
 𝜆(𝑚2 + 𝑛2) (if 𝑏 is even) where 𝜆 is an arbitrary positive 

integer, while 𝑚 >  𝑛  are relatively prime of different 

parities (that is, (𝑚, 𝑛)  =  1 and 𝑚  and 𝑛  cannot be both 

odd or even).  

 

Proof : It is just sufficient to check that if 𝑎 = 𝜆(𝑚2 − 𝑛2), 

𝑏 = 2𝜆𝑚𝑛 , and 𝑐 = 𝜆(𝑚2 + 𝑛2)  then 𝑎2 + 𝑏2 = 𝑐2 is 

satisfied. Thus,  

𝑎2 + 𝑏2 = 𝜆2(𝑚2 − 𝑛2)2 + (2𝜆𝑚𝑛)2 

=  𝜆2(𝑚4 − 2𝑚2𝑛2 + 𝑛2) + 4𝜆2𝑚2𝑛2 

=  𝜆2𝑚4 − 2𝜆2𝑚2𝑛2 + 𝜆2𝑛2 + 4𝜆2𝑚2𝑛2 

=  𝜆2(𝑚4 + 2𝑚2𝑛2 + 𝑛2) 

=  𝜆2(𝑚2 + 𝑛2)2 

=  [𝜆(𝑚2 + 𝑛2)]2 

=  𝑐2 

Hence, the numbers 𝑎 = 𝜆(𝑚2 − 𝑛2), 𝑏 = 2𝜆𝑚𝑛, and 𝑐 =
 𝜆(𝑚2 + 𝑛2) which are the general solution of 𝑎2 + 𝑏2 = 𝑐2 

are considered as Pythagorean numbers.        □ 

        

3.2 Charaterization of a Heron Triangle 

 

This section deals with the types of triangles classified as 

Heron. These are as follows: the simplest example of a Heron 

triangle, the P-triangle; the consecutive Heron triangle; an 

isosceles triangle; and the integral triangle. 

 

 

3.2.1 The Pythagorean Triangle  

Theorem 3.2.1 Let 𝑎 = 𝜆(𝑚2 − 𝑛2) , 𝑏 = 2𝜆𝑚𝑛 , and 𝑐 =
𝜆(𝑚2 + 𝑛2) be the length of the sides of a P-triangle ABC 

where 𝐴𝐵̅̅ ̅̅  is the hypotenuse and 𝜆 is an arbitrary positive 

integer, while 𝑚 > 𝑛 are relatively prime of different parities 

(that is, (𝑚, 𝑛) = 1 and 𝑚 and 𝑛 cannot be both odd or even). 

Then ∆ABC is a Heron triangle. 

 

 
 

Proof: Clearly 𝑎, 𝑏, and 𝑐 are integers since they are sides of 

a P-triangle. To show that 𝐴 is an integer: 

 

𝐴 =
𝑏ℎ

2
=

𝑎𝑏

2
 , where 𝑎 = ℎ 

𝐴 =
𝜆(𝑚2 − 𝑛2)(2𝜆𝑚𝑛)

2
=

2𝜆2𝑚𝑛(𝑚2 − 𝑛2)

2
 

𝐴 = 𝜆2𝑚𝑛(𝑚2 − 𝑛2) 

The result follows.               □  

             

Consider other characteristics of a Heron triangle. From 

Theorem 3.1.2, the following corollaries will follow:  

 

Corollary 3.2.2 Let 𝑝  be the semiperimeter and 𝑟  be the 

inradius of a Heron triangle where 𝑝 =
𝑎+𝑏+𝑐

2
, 𝑟 = 𝑝 − 𝑐 , 

then 𝑝 and 𝑟 are integers.  

 

Proof : Let 𝑝 be the semiperimeter of the ∆ABC in Figure 3.3. 

Then 

𝑝 =
𝑎 + 𝑏 + 𝑐

2
 

𝑝 =
𝜆(𝑚2 − 𝑛2) + 2𝜆𝑚𝑛 +  𝜆(𝑚2 + 𝑛2)

2
 

𝑝 =
𝜆𝑚2 − 𝜆𝑛2 + 2𝜆𝑚𝑛 +  𝜆𝑚2 + 𝜆𝑛2

2
 

𝑝 =
2𝜆𝑚2+2𝜆𝑚𝑛

2
=

2𝜆(𝑚2+𝑚𝑛)

2
= 𝜆(𝑚2 + 𝑚𝑛), 

Implying that 𝑝 is an integer. 

 

Let 𝑟 be the inradius of ∆ABC. Then  

𝑟 = 𝑝 − 𝑐 

𝑟 = 𝜆(𝑚2 + 𝑚𝑛) − 𝜆(𝑚2 + 𝑛2)  

𝑟 = 𝜆𝑚2 + 𝜆𝑚𝑛 − 𝜆𝑚2 − 𝜆𝑛2  

𝑟 = 𝜆𝑚𝑛 − 𝜆𝑛2 = 𝜆(𝑚𝑛 − 𝑛2),  

implying that 𝑟 is always an integer.           

      

Since the area A of ∆ABC in Figure 3.3 is an integer then it is 

a Heron triangle. Consider another consequence of Theorem 

3.2.1.  

 

Corollary 3.2.3 Let 𝑅  be the radius of the circumscribed 

circle and ℎ𝑎 , ℎ𝑏 , ℎ𝑐  be the heights of a Heron ∆ABC in 
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Figure 3.3, where 𝑅 =
1

2
𝑐  and ℎ𝑎 =

2𝐴

𝑎
, ℎ𝑏 =

2𝐵

𝑎
, ℎ𝑐 =

2𝐶

𝑎
. 

Then 𝑅 is an integer if 𝜆 is even and the heights ℎ𝑎, ℎ𝑏 , ℎ𝑐  are 

all integers if 𝑐|𝑎𝑏.  
 

Proof : Let 𝑅 be the radius of the circumscribed circle. Then  

𝑅 =
1

2
𝑐    (where 𝑐 is the diameter of the circumscribed circle 

and is the hypotenuse of the P-triangle)  

𝑅 =
𝜆(𝑚2+𝑛2)

2
  which is an integer when λ is even. 

 

Now, since ℎ𝑎 =
2𝐴

𝑎
, ℎ𝑏 =

2𝐵

𝑎
, ℎ𝑐 =

2𝐶

𝑎
 are the heights of a 

P-triangle, then  

ℎ𝑎 (height with respect to side a)  

= 
2𝐴

𝑎
= (

2

𝑎
) (

𝑎𝑏

2
) = 𝑏 = 2𝜆𝑚𝑛,  

ℎ𝑏 (height with respect to side b)  

= 
2𝐴

𝑏
= (

2

𝑏
) (

𝑎𝑏

2
) = 𝑎 = 𝜆(𝑚2 − 𝑛2),   

ℎ𝑐 (height with respect to side c)  

  =  
2𝐴

𝑎
= (

2

𝑐
) (

𝑎𝑏

2
) =

𝑎𝑏

𝑐
=

2𝜆𝑚𝑛(𝑚2−𝑛2)

𝑚2+𝑛2  . 

Therefore all heights are integers only if 𝑐|𝑎𝑏.         □         

 

Theorem 3.2.4 In a P-triangle with sides 𝑎, 𝑏 , and 𝑐 , the 

quantities 𝐴, ℎ𝑎 , ℎ𝑏 , ℎ𝑐, 𝑟 and 𝑅 are integers at the same time 

if and only if 𝑎, 𝑏, 𝑐  are given by 𝑎 = 2𝑑(𝑚4 − 𝑛4), 𝑏 =
 4𝑑𝑚𝑛(𝑚2 + 𝑛2) , 𝑐 = 2𝑑(𝑚2 + 𝑛2)2  where 𝜆  is even, 

(𝑚, 𝑛)  = 1 , and 𝑚  and 𝑛  with 𝑚 >  𝑛  are of different 

parities. 

  

Proof: (⇐)Assume that 𝑎 = 2𝑑(𝑚4 − 𝑛4),                          𝑏 =
4𝑑𝑚𝑛(𝑚2 + 𝑛2), and 𝑐 = 2𝑑(𝑚2 + 𝑛2)2 . Then  

 

𝐴 =
𝑎𝑏

2
=

2𝑑(𝑚4 − 𝑛4) ∙ 4𝑑𝑚𝑛(𝑚2 + 𝑛2)

2
 

    = 4𝑑2𝑚𝑛(𝑚4 − 𝑛4)(𝑚2 + 𝑛2) 

ℎ𝑎 =
2𝐴

𝑎
=

8𝑑𝑚𝑛(𝑚4−𝑛4)(𝑚2+𝑛2)

2𝑑(𝑚4−𝑛4)
= 4𝑚𝑛(𝑚2 + 𝑛2)  

ℎ𝑏 =
2𝐴

𝑏
=

8𝑑𝑚𝑛(𝑚4−𝑛4)(𝑚2+𝑛2)

4𝑑𝑚𝑛(𝑚2+𝑛2)
= 2(𝑚4 − 𝑛4)   

ℎ𝑐 =
2𝐴

𝑐
=

8𝑑𝑚𝑛(𝑚4−𝑛4)(𝑚2+𝑛2)

2𝑑(𝑚2+𝑛2)2   

 =
8𝑑𝑚𝑛(𝑚2+𝑛2)(𝑚2−𝑛2)(𝑚2+𝑛2)

2𝑑(𝑚2+𝑛2)2 = 4𝑚𝑛(𝑚2 − 𝑛2)  

𝑟 = 𝑝 − 𝑐 

   =
2𝑑(𝑚4−𝑛4)+4𝑑𝑚𝑛(𝑚2+𝑛2)+2𝑑(𝑚2+𝑛2)2

2
− 2𝑑(𝑚2 + 𝑛2)2  

   = 2𝑑(𝑚4 − 𝑛4) + 2𝑑𝑚𝑛(𝑚2 + 𝑛2) + 𝑑(𝑚2 + 𝑛2)2  

−2𝑑(𝑚2 + 𝑛2)2   
   = 2𝑑(𝑚4 − 𝑛4) + 2𝑑𝑚𝑛(𝑚2 + 𝑛2) − 𝑑(𝑚2 + 𝑛2)2   

𝑅 =
𝑐

2
=

2𝑑(𝑚2+𝑛2)2 

2
= 𝑑(𝑚2 + 𝑛2)2. 

Thus, 𝐴, ℎ𝑎, ℎ𝑏 , ℎ𝑐 , 𝑟, 𝑅 are integers at the same time.  

 

(⇒) Assume that 𝐴 , ℎ𝑎, ℎ𝑏 , ℎ𝑐 , 𝑟 , 𝑅  are all integers. It 

suffices to show only that 𝑎2 + 𝑏2 = 𝑐2  is satisfied by 𝑎 =
 2𝑑(𝑚4  −  𝑛4 ), 𝑏 = 4𝑑𝑚𝑛(𝑚2 + 𝑛2), 𝑐 = 2𝑑(𝑚2 + 𝑛2)2 . 

 

𝑎2 + 𝑏2 = 4𝑑2(𝑚4 −  𝑛4)2 + 16𝑑2𝑚2𝑛2(𝑚2 + 𝑛2)2 

  = 4𝑑2(𝑚8 − 2𝑚4𝑛4 + 𝑛8) 

     +16𝑑2𝑚2𝑛2(𝑚4 + 2𝑚2𝑛2 + 𝑛4)  

  = 4𝑑2𝑚8 − 8𝑑2𝑚4𝑛4 + 4𝑑2𝑛8 

     +16𝑑2𝑚6𝑛2 + 32𝑑2𝑚4𝑛4 + 16𝑑2𝑚2𝑛6 

 = 4𝑑2(𝑚8 + 6𝑚4𝑛4 + 𝑛8 + 4𝑚6𝑛2 + 4𝑚2𝑛6)  

  

 = 4𝑑2(𝑚8 + 4𝑚6𝑛2 + 6𝑚4𝑛4 + 4𝑚2𝑛6 + 𝑛8)     
 = 4𝑑2(𝑚4 + 2𝑚2𝑛2+𝑛4)2 = 4𝑑2[(𝑚2 + 𝑛2)2]2 

 = [2𝑑(𝑚2 + 𝑛2)2]2 = 𝑐2. 

Therefore, the result follows.           □   

                 

3.2.2 Consecutive Heron Triangle  

 

Definition 3.2.5 A consecutive Heron triangle, denoted by 

CH-triangle, is a Heron triangle whose sides are consecutive 

integers. 

 

Theorem 3.2.6 Let 2𝑦 −  1, 2𝑦, 2𝑦 +  1 be the sides of a 

triangle ABC where 𝑦 is a positive integer. Then ∆ABC is a 

Heron triangle specifically known as CH-triangle. 

 

 
 

Proof : To show that 𝐴 is an integer in order for ∆ABC to be 

H-triangle. Let 2𝑦 −  1, 2𝑦 𝑎𝑛𝑑 2𝑦 +  1  be the sides of 

∆ABC. Then  

𝑝 =
(2𝑦 − 1) + (2𝑦) + (2𝑦 + 1)

2
=

2𝑦 − 1+2𝑦+2𝑦+1

2
=

6𝑦

2
= 3𝑦  

Thus,  

𝑝 − 𝑎 = 3𝑦 − (2𝑦 − 1) = 3𝑦 − 2𝑦 + 1 = 𝑦 + 1,  

𝑝 − 𝑏 = 3𝑦 − 2𝑦 = 𝑦,  

𝑝 − 𝑐 = 3𝑦 − 2𝑦 + 1 = 𝑦 − 1.  

 

By Theorem 3.1.2,  

𝐴 = √𝑝(𝑝 −  𝑎)(𝑝 −  𝑏)(𝑝 −  𝑐)   

𝐴 = √3𝑦(𝑦 + 1)(𝑦)(𝑦 − 1) = √3y2(y2 − 1) 

A = y√3(y2 − 1)  . 

 

Thus for 𝐴 to be integer, √3(𝑦2 − 1)  must be an integer. 

Hence, √3(𝑦2 − 1) = √𝑡2 , where 𝑡 = 3(𝑦2 − 1). That is, 

𝐴 = 𝑦√𝑡2 = 𝑦𝑡. Therefore, ∆ABC is Heron if 3(𝑦2  −  1) =
𝑡2 .                        □ 

 

Theorem 3.2.7 A CH-triangle ABC has sides 2𝑦𝑛  −  1, 2𝑦𝑛 , 
and 2𝑦𝑛  + 1.  

 

Proof : From the proof of Theorem 3.2.6, 3(𝑦2 − 1) = 𝑡2 

where 𝑦 is a positive integer. Thus, the prime 3|𝑡2. It follows 

that 𝑡2 = 3𝑘, for some integer 𝑘. Hence, 𝑘 = 3𝑖  for some 

integer 𝑖 ≥ 1 and 𝑖 is odd. This implies that  

𝑡2 = 3 · 3𝑖 = 3𝑖+1 = 32 · 3𝑖−1 = 32 · 32𝑙+1−1 , 
for some 𝑙 ∈ 𝑍. Hence,  

𝑡 = 3√32𝑙 = 3 · 3𝑙 . 

Thus, 3|𝑡. Let 𝑡 = 3𝑢. Then  

 

3(𝑦2  −  1) = 𝑡2  
   3𝑦2  −  3 = (3𝑢)2   
   3𝑦2  −  3 = 9𝑢2 

 
 3𝑦2

3
 −

3

3
 =

9𝑢2

3
 

       𝑦2  −  1 = 3𝑢2 
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    𝑦2 − 3𝑢2 = 1 

𝑦2  − √3𝑢2 = 1 

     (𝑦 − √3𝑢)(𝑦 + √3𝑢) = 1. 

 

By Theorem 2.1.19, taking 𝑥𝑛 = 𝑦𝑛+1,  𝑦𝑛 = 𝑢𝑛+1, x1 = 2 

and y1 = 1,  

𝑦𝑛+1+ 𝑢𝑛+1√3 = (2 + √3)
𝑛+1

 

       = (2 +  √3)𝑛(2 +  √3)  

= ( 𝑦𝑛 +  𝑢𝑛 √3)(2 +  √3)  

= 2 𝑦𝑛 + √3 𝑦𝑛 + 2√3 𝑢𝑛 + 3 𝑢𝑛 

= (2 𝑦𝑛 + 3 𝑢𝑛) + (√3 𝑦𝑛 + 2√3 𝑢𝑛) 

= (2 𝑦𝑛 + 3 𝑢𝑛) + √3( 𝑦𝑛 +  𝑢𝑛). 

Thus, the recurrence relations  

{
𝑦𝑛+1 = 2𝑦𝑛 + 3𝑢𝑛

𝑢𝑛+1 = 𝑦𝑛 + 2𝑢𝑛  
       (n = 1, 2, 3, . . . ) 

give all solutions of 𝑦2 − 3𝑢2 = 1. That is, all CH-triangles 

have sides 2𝑦𝑛 − 1, 2𝑦𝑛 , and 2𝑦𝑛  + 1.           

 

Illustration 3.2.8 For (𝑦1 , 𝑢1) = (2, 1):  

 𝑎 =  2𝑦1 − 1 = 2(2) − 1 = 3,  
 𝑏 =  2𝑦1 = 2(2) = 4,  

𝑐 = 2𝑦1 + 1 = 2(2) + 1 = 5;  
and  

𝑦2  = 2𝑦1 + 3𝑢1 = 2(2) + 3(1) = 7,  
𝑢2  = 𝑦1  +  2𝑢1 = 2 + 2(1) = 4.  

Therefore, (𝑦2, 𝑢2)  =  (7, 4).  
 

For (𝑦2 , 𝑢2) = (7,4):  

 𝑎 = 2𝑦2 − 1 = 2(7) − 1 = 13,  
 𝑏 = 2𝑦2 = 2(7) = 14,  

𝑐 = 2𝑦2 + 1 = 2(7) + 1 = 15;  
and  

𝑦3  = 2𝑦2 + 3𝑢2 = 2(7) + 3(4) = 26,  
𝑢3  = 𝑦2  +  2𝑢2 = 7 + 2(4) = 15.  

Therefore, (𝑦3, 𝑢3)  =  (26, 15).  
 

For(𝑦3 , 𝑢3) = (26,15):  

𝑎 = 2𝑦3 − 1 = 2(26) − 1 = 51,  
 𝑏 = 2𝑦3 = 2(26) = 52,  

𝑐 = 2𝑦3 + 1 = 2(26) + 1 = 53; 
and  

𝑦4  = 2𝑦3 + 3𝑢3 = 2(26) + 3(15) = 97,  
𝑢4  = 𝑦3  +  2𝑢3 = 26 + 2(15) = 56.  

Therefore, (𝑦4, 𝑢4)  =  (97, 56).  
 

For (𝑦4, 𝑢4)  =  (97, 56):  

𝑎 = 2𝑦4 − 1 = 2(97) − 1 = 193,  
 𝑏 = 2𝑦4 = 2(97) = 194,  

𝑐 = 2𝑦4 + 1 = 2(97) + 1 = 195; 
 

By 𝑦4 = 2,7,26,97, . .. we get the CH-triangles  (3, 4, 5); 
(13, 14, 15); (51, 52, 53); (193, 194, 195); . . .. 
The ∆ABC is Figure 3.4 is also a CH-triangle. 

 

Corollary 3.2.9 In a CH-triangle with sides of lengths 2𝑦 − 1, 

2𝑦, and 2𝑦 + 1, the inradius 𝑟 is always an integer.  

 

Proof : Let 𝑟 be the inradius, 𝐴 denotes the area and 𝑝 is the 

semiperimeter of  the CH-triangle. Then 𝑟 =
𝐴

𝑝
 . By Theorem 

3.2.6, 𝑝 = 3𝑦 and 𝐴 = 𝑦𝑡. Thus,  

𝑟 =
𝐴

𝑝
=

𝐴

3𝑦
=

𝑦𝑡

3𝑦
=

𝑡

3
 . 

From the proof of Theorem 3.2.7, 𝑡 = 3𝑢. Hence,  

 𝑟 =
𝑡

3
=

3𝑢

3
= 𝑢 

Therefore, r is an integer.             □  

             

Corollary 3.2.10 In a CH-triangle with sides of lengths 2𝑦 −
1 , 2𝑦 , and 2𝑦 + 1 , the height ℎ2𝑦 denotes the height 

corresponding to the (single) even side is an integer.  

 

Proof : Let 𝐴  denotes the area and ℎ2𝑦  the height 

corresponding to the side 2𝑦 . Then 𝐴 =
1

2
(2𝑦)ℎ2𝑦 . Thus, 

ℎ2𝑦 =  
2𝐴

2𝑦
=

𝐴

𝑦
 . 

 

From the proof of Theorem 3.2.7, 𝑡 = 3𝑢, where 𝑢 = 𝑟 by 

the proof of Corollary 3.2.9. Hence, ℎ2𝑦 =
𝐴

𝑦
=

𝑦𝑡

𝑦
= 𝑡 =

3𝑢 = 3𝑟 . Therefore, ℎ2𝑦 is an integer.         □ 

          

Corollary 3.2.11 In a CH-triangle, which is not a P-triangle 

(that is, excluding the triangle (3,4,5), all other heights 

cannot be integers.  

Proof : For side 2𝑦 − 1, let 𝑥 be the height. Then  

𝑦𝑡 = 𝐴 =
(2𝑦 − 1)𝑥

2
 

 2𝑦𝑡 = (2𝑦 − 1)𝑥 

 𝑥 =
2𝑦𝑡

2𝑦−1
 . 

 

Since (2𝑦 −  1, 2𝑦)  =  1, so 𝑥 =
2𝑦𝑡

2𝑦−1
  is integer only if 

(2𝑦 − 1)|𝑡 where 𝑡 = 3𝑢 from the proof of Theorem 3.2.7. 

That is, (2𝑦 − 1)|3𝑢.  

 

Now (2𝑦 − 1)|3𝑢  implies (2𝑦 − 1)|3𝑢2 = 𝑦2 + 1  since 

𝑦2  − 3𝑢2 = 1  from the proof of Theorem 3.2.7. Thus, 

(2𝑦 − 1)|𝑦2 −  1.                 □ 

 

Corollary 3.2.12 Let 𝑅  denotes the radius of the 

circumscribed circle of CH-triangle with sides 𝑎, 𝑏, 𝑐, then it 

is not an integer.  

 

Proof : Note that  

𝑅 =
𝑎𝑏𝑐

4𝐴
=

2𝑦(2𝑦 + 1)(2𝑦 − 1)

4𝑦𝑡
=

2𝑦(4𝑦2 − 1)

4𝑦𝑡
 

𝑅 =
4𝑦2−1

2𝑡
=

odd

even
≠ integer.  

Therefore, the result follows.            □  

          

Corollary 3.2.13 Let 𝑟2𝑦 denotes the radius of the exscribed 

circle corresponding to the side of length 2𝑦. Then 𝑟2𝑦 is an 

integer.  
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Proof: Now, 𝑟2𝑦 =
𝐴

𝑝−2𝑦
=

𝑦𝑡

3𝑦−2𝑦
=

𝑦𝑡

𝑦
= 𝑡 . Hence, 𝑟2𝑦 is 

integer.                      

          

Corollary 3.2.14 Let 𝑟2𝑦−1 denote the radius of the exscribed 

circle corresponding to the side of length 2𝑦 − 1. Then 𝑟2𝑦−1 

is integer only in the P-triangle (3,4,5).  

 

Proof : Now,  

𝑟2𝑦−1 =
𝐴

𝑝 − (2𝑦 − 1)
=

𝑦𝑡

3𝑦 − (2𝑦 − 1)
=

𝑦𝑡

p − 2y + 1
 

𝑟2𝑦−1 =
𝑦𝑡

y + 1
. 

Since (𝑦 + 1, 𝑦) = 1, so 𝑟2𝑦−1 is integer only when (𝑦 +

1)|𝑡 where 𝑡 = 3𝑢, and since 𝑦2 − 3𝑢2 = 1 then  

𝑦2 − 1 = 3𝑢2 

(𝑦 − 1)(𝑦 + 1) = 𝑢(3𝑢). 

 

Now (𝑦 + 1)|3𝑢 implies that there exists 𝑘 ∈ 𝑍 such that 

3𝑢 = (𝑦 +  1)𝑘. Thus  

(𝑦 − 1)(𝑦 + 1) = 𝑢(𝑦 + 1)𝑘  
3(y − 1)(y + 1) = 3u(y + 1)k  
  (𝑦 − 1)(𝑦 + 1) = 𝑢(𝑦 + 1)𝑘  

  𝑦 − 1 = 𝑢𝑘  
3(𝑦 − 1) = 3𝑢𝑘.  

Substituting 3𝑢 = (𝑦 + 1)𝑘, we have  

3(𝑦 − 1) = 3𝑢𝑘  
3(𝑦 − 1) = [(𝑦 +  1)𝑘]𝑘  

𝑘2 =
3(𝑦 −  1)

𝑦 +  1
=

3𝑦 − 3

𝑦 +  1
=

3𝑦 − 3 + 3 − 3

𝑦 +  1
 

𝑘2 =
3𝑦 +  3 −  6 

𝑦 +  1
=

3(𝑦 + 1)

𝑦 +  1
−

6

𝑦 +  1
 

𝑘2 = 3 −
6

𝑦 +  1
 

 

Now, (𝑦 + 1)|6 when y ∈ {1, 2, 5}. But the only value of 𝑦 

is 2 when 𝑘 = 1. Hence, when 𝑦 = 2, the CH-triangle has 

sides 3, 4, and 5 which is a P-triangle.          

           

Corollary 3.2.15 Let 𝑟2𝑦+1 denote the radius of the exscribed 

circle corresponding to the side of length 2𝑦 + 1. Then 𝑟2𝑦+1 

is integer in the P-triangle (3, 4, 5) and P-triangle (13, 14, 

15).  

 

Proof : Now,  

𝑟2𝑦+1  =
𝐴

𝑝 − (2𝑦 + 1)
=

𝑦𝑡

3𝑦 − (2𝑦 + 1)
  

𝑟2𝑦+1  =
𝑦𝑡

3𝑦−2𝑦−1
=

𝑦𝑡

𝑦 −1
. 

Since (𝑦 − 1, 𝑦) = 1, so 𝑟2𝑦+1 is integer only when (𝑦 −

1)|𝑡 where 𝑡 = 3𝑢. Since 𝑦2  −  3𝑢2 = 1 then  

  𝑦2 − 1 = 3𝑢2  
 (𝑦 − 1)(𝑦 + 1) = 𝑢(3𝑢).  

Now (𝑦 − 1)|3𝑢 implies that there exists 𝑘 ∈ 𝑍 such that 

3𝑢 = (𝑦 − 1)𝑘. Thus  

 (𝑦 − 1)(𝑦 + 1) = 𝑢(𝑦 − 1)𝑘  
     𝑦 +  1 =  𝑢𝑘  

   3(𝑦 + 1) = 3𝑢𝑘. 
 

Substituting 3𝑢 = (𝑦 − 1)𝑘, gives  

3(𝑦 + 1) = 3𝑢𝑘  

3(𝑦 + 1) = [(𝑦 − 1)𝑘]𝑘  

  𝑘2  =
3(𝑦 +  1)

𝑦 −  1
=

3𝑦 + 3

𝑦 −  1
 =

3𝑦 + 3 − 3 + 3

𝑦 −  1
 

  𝑘2  =
3𝑦 − 3 + 6

𝑦 −  1
=

3(𝑦 − 1) + 6

𝑦 −  1
  

   𝑘2 =
3(𝑦−1)

𝑦 − 1
+

6

𝑦 − 1
= 3 +

6

𝑦 − 1
  . 

  

Thus, (𝑦 − 1)|6 when 𝑦 ∈  {2, 3, 4, 7}. But 𝑦 = 7 or 2 when 

𝑘 = 2  or 3, respectively. Hence, when 𝑦 = 2 , the 

CH-triangle has sides 3, 4, and 5 which is a P-triangle and 

when 𝑦 = 7, the CH-triangle has sides 13, 14, and 15 which 

is also a P-triangle.                  

    

3.2.3 Isosceles Triangle  

 

Theorem 3.2.16 Let ABC be an isosceles triangle with 

|𝐴𝐵|  =  |𝐴𝐶|  =  𝑏 ,  |𝐵𝐶|  =  𝑎,  |𝐴𝐴′ |  =  𝑥  and |𝐵𝐵′ |  =
 𝑦 are integers. Then triangle ABC is a Heron triangle. 

 

Illustration:  

 

 
Figure 3.6: An isosceles ∆ABC 

 

Proof: From the Pythagorean Theorem,  

𝑏2 = 𝑥2 + (
𝑎

2
)

2

= 𝑥2 +
𝑎2

4
,  

𝑏2 − 𝑥2 =
𝑎2

4
 is an integer. Implying that a is even.  

 

Let 𝑎 be an even number, that is, 𝑎 = 2𝑢, where 𝑢 is an 

integer. Then  

𝑏2 = 𝑥2 + (
𝑎

2
)

2

= 𝑥2 +
(2𝑢)2

4
= 𝑥2 +

4𝑢2

4
= 𝑥2 + 𝑢2. 

 

Since 𝑥 is an integer and 𝑎 = 2𝑢, so the sides of ∆ABC are 

integers. Also, since  

𝐴 =
1

2
𝑏ℎ =

1

2
𝑎𝑥 =

1

2
(2𝑢)𝑥 = 𝑥𝑢. 

Therefore, ∆ABC is H-triangle.           □  

        

Remark 3.2.17 The general solutions of 𝑏2 = 𝑥2 + 𝑢2  can 

be written as one of the following:  

(i)  𝑏 = 𝜆(𝑚2 + 𝑛2), 𝑥 = 𝜆(𝑚2 − 𝑛2 ), 𝑢 = 2𝜆𝑚𝑛; or  

(ii) 𝑏 = 𝜆(𝑚2 + 𝑛2 ), 𝑥 = 2𝜆𝑚𝑛, 𝑢 = 𝜆(𝑚2  − 𝑛2 ).  

 

Proof : It follows from Theorem 2.1.18 and Lemma 3.1.4. □ 

  

Note that from Remark 3.2.17,  

(i)  𝑥2 + 𝑢2 = (𝑚2 − 𝑛2)2 + 4𝜆2𝑚2𝑛2 

=  𝜆2(𝑚2 − 2𝑚2𝑛2 + 𝑛2) + 4𝜆2𝑚2𝑛2 

=  𝜆2(𝑚2 − 2𝑚2𝑛2 + 𝑛2 + 4𝑚2𝑛2) 

=  𝜆2(𝑚2 + 2𝑚2𝑛2 + 𝑛2) 

= 𝜆2(𝑚 + 𝑛)2 = 𝑏2. 
Similarly, (ii) can be easily verified.  
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Corollary 3.2.18 In an isosceles H-triangle having all heights 

which are integers and 𝑎 is the base of the triangle,   
(i)  𝑎 = 4𝑠𝑚𝑛(𝑚2 + 𝑛2)  and  𝑏 = 𝑠(𝑚2 + 𝑛2)2 or  

(ii) 𝑎 = 2𝑠(𝑚4 − 𝑛4 )  and  𝑏 = 𝑠(𝑚2 + 𝑛2)2.  

 

Proof : (i) From the proof of Theorem 3.2.16, 𝑎 = 2𝑢. By 

Remark 3.2.17(i),  

𝑎 = 2𝑢 = 2(2𝜆𝑚𝑛) = 4𝜆𝑚𝑛, 𝑎𝑛𝑑 𝑏 =  𝜆(𝑚2  + 𝑛2); 
𝐴 = 𝑢𝑥 = 𝜆(𝑚2 − 𝑛2)(2𝜆𝑚𝑛) =  2𝜆2𝑚𝑛(𝑚2 − 𝑛2).  

 

Now, 𝐴 =
𝑏ℎ

2
=

𝑏𝑦

2
. Thus,  

𝑦 =
2𝐴

𝑏
=  

2[ 2𝜆2𝑚𝑛(𝑚2 −𝑛2)]

𝜆(𝑚2 +𝑛2)
=

4𝜆2𝑚𝑛(𝑚2 −𝑛2)

𝜆(𝑚2 +𝑛2)
,  

where 𝑦 is an integer only when λ(𝑚2 + 𝑛2)|4𝜆2mn(𝑚2 −
𝑛2). Since (𝑚2 + 𝑛2, 4𝑚𝑛(𝑚2 − 𝑛2)) =  1, by the remarks 

in Section 2.2, it follows that (𝑚2 + 𝑛2)|𝜆,  that is,  𝜆 =
𝑠(𝑚2 + 𝑛2) for some 𝑠 ∈ 𝑍. Hence,  

𝑎 = 2𝑢 = 2[2𝜆𝑚𝑛] = 4𝜆𝑚𝑛  
= 4[𝑠(𝑚2 + 𝑛2)](𝑚𝑛) = 4𝑠𝑚𝑛((𝑚2 + 𝑛2);  

𝑏 =  𝜆(𝑚2 + 𝑛2 ) = 𝑠(𝑚2 + 𝑛2)](𝑚2 + 𝑛2) 

= 𝑠(𝑚2 + 𝑛2)2 .  
 

Similarly for (ii) and with 𝑎 = 2𝑢, apply Remark 3.2.17(ii), 

so that  

𝑎 = 2𝑢 = 2𝜆(𝑚2 − 𝑛2) 𝑎𝑛𝑑 𝑏 = 𝜆(𝑚2 + 𝑛2); 
𝐴 = 𝑢𝑥 = 𝜆(𝑚2 − 𝑛2)(2𝜆𝑚𝑛) = 2𝜆2𝑚𝑛((𝑚2 − 𝑛2).  

 

Now, 𝐴 =
𝑏ℎ

2
=

𝑏𝑦

2
. Thus,  

𝑦 =
2𝐴

𝑏
=  

2[ 2𝜆2𝑚𝑛(𝑚2 −𝑛2)]

𝜆(𝑚2 +𝑛2)
=

4𝜆2𝑚𝑛(𝑚2 −𝑛2)

𝜆(𝑚2 +𝑛2)
 ,  

where 𝑦 is an integer only when λ(𝑚2 + 𝑛2)|4𝜆2mn(𝑚2 −
𝑛2).Since (𝑚2 + 𝑛2, 4𝑚𝑛(𝑚2 − 𝑛2)) =  1 , it implies that 

(𝑚2 + 𝑛2)|𝜆, that is, 𝜆 = 𝑠(𝑚2 + 𝑛2)for some 𝑠 ∈ 𝑍. Hence, 

 𝐴 = 2𝑢 = 2[𝜆(𝑚2 − 𝑛2)] = 2𝜆(𝑚2 − 𝑛2) 

= 2[𝑠(𝑚2 + 𝑛2)](𝑚2 − 𝑛2) = 2𝑠(𝑚4 − 𝑛4); 
𝐵 = 𝜆(𝑚2 + 𝑛2) = [𝑠(𝑚2 + 𝑛2)](𝑚2 + 𝑛2) 

= 𝑠(𝑚2 + 𝑛2)2 .  
Therefore, the result follows.                          

  

Corollary 3.2.19 If an isosceles ∆ABC with integer sides 

𝑎, 𝑐, 𝑏 (base 𝑎) is an H-triangle, then its height 𝑥 must be an 

integer.  

 

Proof : Let  

𝑝 =
𝑎+𝑏+𝑐

2
=

𝑎 +𝑏+𝑏

2
 (since 𝑐 = 𝑏) 

𝑝 =
𝑎 + 2𝑏

2
=

𝑎 

2
+ 𝑏. 

Thus, 𝑝 is an integer, when 𝑎 is even. Let 𝑎 = 2𝑢, for some 

integer 𝑢. Then  

𝑝 = 𝑏 + 𝑢, 

𝑝 − 𝑎 = 𝑏 + 𝑢 − 𝑎 = 𝑏 + 𝑢 − 2𝑢 = 𝑏 − 𝑢,  
𝑝 − 𝑏 = 𝑝 − 𝑐 = 𝑏 + 𝑢 − 𝑏 = 𝑢.  

It follows that  

𝐴 = √𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐) = √𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)2 

     = √(𝑏 + 𝑢)(𝑏 + −𝑢)𝑢2 = 𝑢√𝑏2 − 𝑢2.   
This is integer only when 𝑏2 − 𝑢2 = 𝑞2 , that is, 𝐴 = 𝑢𝑞 . 

Now 𝑏2 − 𝑢2  is in fact 𝑥2  (where 𝑥  is the height 

corresponding to the base a), so 𝑞 = 𝑥. In other words, if an 

isosceles triangle ABC is H-triangle then its height x must be 

integer.                     □ 

Corollary 3.2.20 In an isosceles H-triangle, 𝑟 is integer only 

when  

(i)  𝑏 = 𝑠(𝑚 + 𝑛)(𝑚2 + 𝑛2) and 𝑎 = 4𝑚𝑛𝑠(𝑚 + 𝑛) or  

(ii) 𝑏 = 𝑠𝑚(𝑚2 + 𝑛2) and 𝑎 = 2𝑠𝑚(𝑚2 − 𝑛2).  

 

Proof : (i) Note that  𝑟 =
𝐴

 𝑝
=

𝑢𝑞

 𝑏+𝑢
,  where 𝑏2 = 𝑢2 + 𝑞2 . 

Applying Remark 3.2.17(i), then write the following 

equations  

𝑏 = 𝜆(𝑚2 + 𝑛2), 𝑢 = 2𝜆𝑚𝑛, 𝑞 = 𝜆(𝑚2 − 𝑛2),  
𝑝 = 𝑏 + 𝑢 = 𝜆(𝑚2 + 𝑛2) + 2𝜆𝑚𝑛 

= 𝜆(𝑚2 + 𝑛2 + 2𝑚𝑛) = 𝜆(𝑚2 + 2𝑚𝑛 + 𝑛2)  
=  𝜆(𝑚 +  𝑛)2,   

𝐴 = 𝑢𝑞 = 2𝜆𝑚𝑛[𝜆(𝑚2 − 𝑛2)] = 2𝜆2𝑚𝑛(𝑚2 − 𝑛2).   
 

Now, 𝑟 is an integer if 𝑏 + 𝑢|𝑢𝑞, that is, 𝜆(𝑚 +
𝑛)2|2𝜆2𝑚𝑛(𝑚2 − 𝑛2) implies (𝑚 + 𝑛)2|2𝜆𝑚𝑛(𝑚2 − 𝑛2) 

implies (𝑚 + 𝑛)|2𝜆𝑚𝑛(𝑚 − 𝑛) . Since (𝑚 + 𝑛, 2𝑚𝑛(𝑚 −
𝑛)) = 1, then it follows that (𝑚 + 𝑛)|𝜆, that is, 𝜆 = 𝑠(𝑚 +
𝑛) for some 𝑠 ∈ 𝑍. Hence,  

𝑏 = 𝜆(𝑚2 + 𝑛2) = 𝑠(𝑚 + 𝑛)(𝑚2 + 𝑛2) and  

𝑎 = 2𝑢 = 2(2𝜆𝑚𝑛) = 4𝜆𝑚𝑛 

= 4[𝑠(𝑚 + 𝑛)](𝑚𝑛)  = 4𝑚𝑛𝑠(𝑚 + 𝑛).  
 

Similarly for (ii) applying Remark 3.2.17(ii) and write the 

following equations  

𝑏 = 𝜆(𝑚2 + 𝑛2), 𝑢 = 𝜆(𝑚2 − 𝑛2), 𝑞 = 2𝜆𝑚𝑛,  
𝑝 = 𝑏 + 𝑢 = 𝜆(𝑚2 + 𝑛2)  +  𝜆(𝑚2 − 𝑛2) 

   =  𝜆(𝑚2 + 𝑛2  +  𝑚2 − 𝑛2)  =  2𝜆𝑚2 , 
𝐴 = 𝑢𝑞 = 𝜆(𝑚2 − 𝑛2)(2𝜆𝑚𝑛)  =  2𝜆2𝑚𝑛(𝑚2 − 𝑛2).  

 

Now, 𝑟  is an integer if 𝑏 + 𝑢|𝑢𝑞 , that is, 

2𝜆𝑚2|2𝜆2𝑚𝑛(𝑚2 − 𝑛2)  which implies 𝑚2 |𝜆𝑚𝑛(𝑚2 −
𝑛2)and further implies, 𝑚|𝜆𝑛(𝑚2 − 𝑛2). Since (𝑚, 𝑛) = 1, 

then it implies that 𝑚|𝜆 , that is 𝜆 = 𝑠𝑚  for some  𝑠 ∈ 𝑍 . 

Hence,  

𝑏 = 𝜆(𝑚2 + 𝑛2 )  =  𝑠𝑚(𝑚2 + 𝑛2 ) and  

𝑎 = 2𝑢 = 2𝜆(𝑚2 − 𝑛2)  =  2𝑠𝑚(𝑚 −  𝑛).  

Therefore, the result follows.              

  

Corollary 3.2.21 In an isosceles H-triangle with sides 𝑎, 𝑏, 𝑐 

where 𝑏 = 𝑐, R is integer when  

(i) 𝜆 = 2𝑠(𝑚2 − 𝑛2) and  

(ii) 𝜆 = 4𝑚𝑛𝑠.  

 

Proof : (i) Note that 2𝐴 = 𝑥𝑢 from the proof of Theorem 

3.2.16. Then  

𝑅 =
1

2
𝑐 =

𝑎𝑏𝑐

4𝐴
=

𝑎𝑏2

4𝐴
=

2𝑢𝑏2

4𝑢𝑞
=

𝑏2

2𝑞
 . 

𝑅  is an integer only when 2𝑞|𝑏2 , where 𝑏2 = 𝑢2 + 𝑞2 . 

Applying Remark 3.2.17(i) we get 2𝑞|𝑏2, that is, 2[𝜆(𝑚2 −
𝑛2)]|[𝜆(𝑚2 + 𝑛2 )]2  which implies 2𝜆(𝑚2 − 𝑛2)|𝜆2(𝑚2 +
𝑛2)2  and gives 2(𝑚2 − 𝑛2)|𝜆(𝑚2 + 𝑛2 )2. Since  

(2(𝑚2 − 𝑛2), (𝑚2 + 𝑛2)2 ) = 1, then it follows that 

2(𝑚2 − 𝑛2)|𝜆, that is, 𝜆 = 2𝑠(𝑚2 − 𝑛2) for some 𝑠 ∈  𝑍.  

 

Similarly for (ii), apply Remark 3.2.17(ii) and get 2𝑞|𝑏2, that 

is, 2[2𝜆𝑚𝑛]|[𝜆(𝑚2 + 𝑛2)]2  which implies 4𝜆𝑚𝑛|𝜆2(𝑚2 +
𝑛2 )2  and gives 4𝑚𝑛|𝜆(𝑚2 + 𝑛2) . Since (4𝑚𝑛, 𝑚2 +
𝑛2)  =  1, then it implies that 4𝑚𝑛|𝜆, that is, 𝜆 = 𝑚𝑛𝑠 for 

some 𝑠 ∈  𝑍.                    
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Corollary 3.2.22 Let 𝑟𝑎  denotes the radius of the exscribed 

circle corresponding to side of length 𝑎. Then 𝑟𝑎  is integer 

only when  

(i) 𝜆 = 𝑠(𝑚 − 𝑛) and  

(ii) 𝜆 = 𝑠𝑛.  

 

Proof : Note that  

 𝑟𝑎 =
𝐴

𝑝−𝑎
=

𝑢𝑞

𝑏−𝑢
 

where 𝑏2 = 𝑢2 + 𝑞2.  

 

Applying Remark 3.2.17(i)  

𝐴 = 𝑢𝑞 = (2𝜆𝑚𝑛)[𝜆(𝑚2 − 𝑛2)] = 2𝜆2𝑚𝑛(𝑚2 − 𝑛2), 

 𝑝 − 𝑎 = 𝑏 − 𝑢 = 𝜆(𝑚2 + 𝑛2)  −  2𝜆𝑚𝑛 

=  𝜆[(𝑚2 + 𝑛2) − 2𝑚𝑛] 
=  𝜆[𝑚2 −  2𝜆𝑚𝑛 + 𝑛2 ]  =  𝜆(𝑚 −  𝑛)2.  

Thus,  

𝑟𝑎 =
𝑢𝑞

𝑏−𝑢
=

2𝜆2𝑚𝑛(𝑚2−𝑛2)

𝜆(𝑚−𝑛)2 , 

that is,  𝜆(𝑚 − 𝑛)2|2𝜆2𝑚𝑛(𝑚2 − 𝑛2) which implies (𝑚2 −
𝑛2)|2𝜆𝑚𝑛(𝑚 + 𝑛) . Since (𝑚 − 𝑛, 2𝑚𝑛(𝑚 + 𝑛))  =  1 , 

then it implies that (𝑚 − 𝑛)|𝜆, that is, 𝜆 = 𝑠(𝑚 − 𝑛), for 

some 𝑠 ∈ 𝑍.  

 

Similarly for (ii), applying Remark 3.2.17(ii)  

𝐴 = 𝑢𝑞 =  (2𝜆𝑚𝑛)[𝜆(𝑚2 − 𝑛2)] = 2𝜆2𝑚𝑛(𝑚2 − 𝑛2),  
𝑝 − 𝑎 = 𝑏 − 𝑢 = 𝜆(𝑚2 + 𝑛2 ) − 𝜆(𝑚2 − 𝑛2)  

=  𝜆[(𝑚2 + 𝑛2)  −  (𝑚2 − 𝑛2)] 
=  𝜆[𝑚2 + 𝑛2  −  𝑚2 + 𝑛2 ]  
=  𝜆(2𝑛2 )  =  2𝜆𝑛2 .  

Thus,  

𝑟𝑎 =
𝑢𝑞

𝑏−𝑢
=

2𝜆2𝑚𝑛(𝑚2−𝑛2)

2𝜆𝑛2 =
𝜆𝑚(𝑚2−𝑛2)

𝑛
=

𝜆𝑚3

𝑛
− 𝜆mn. 

Hence, 𝑛|𝜆𝑚3 . Since (𝑚, 𝑛) = 1, then it follows that 𝑛|𝜆, 

that is, 𝜆 = 𝑠𝑛, for some 𝑠 ∈ 𝑍. Therefore, 𝑟𝑎  is integer only 

if in (i) 𝜆 = 𝑠(𝑚 − 𝑛) and in (ii) 𝜆 = 𝑠𝑛.        □ 

 

3.2.4 Integral Triangle  

Theorem 3.2.23 An integral triangle of sides 𝑎, 𝑏, 𝑐  is 

H-triangle if 𝑎, 𝑏, 𝑐 can be represented in the following forms  

𝑎 =
(𝑚−𝑛)(𝑘2+𝑚𝑛)

𝑑
, 𝑏 =

𝑚(𝑘2+𝑛2)

𝑑
, 𝑐 =

𝑛(𝑘2+𝑚2)

𝑑
 

where 𝑑, 𝑚, 𝑛, 𝑘 are positive integers; 𝑚 >  𝑛; and 𝑑 is an 

arbitrary common divisor of (𝑚 − 𝑛)(𝑘2 +  𝑚𝑛), 𝑚(𝑘2 +
 𝑛2), and 𝑛(𝑘2 + 𝑚2).  

 

Proof : Let  

𝑎 =
(𝑚−𝑛)(𝑘2+𝑚𝑛)

𝑑
, 𝑏 =

𝑚(𝑘2+𝑛2)

𝑑
, 𝑐 =

𝑛(𝑘2+𝑚2)

𝑑
,  

where 𝑑, 𝑚, 𝑛, 𝑘 are positive integers; 𝑚 >  𝑛; and 𝑑 is an 

arbitrary common divisor of (𝑚 − 𝑛)(𝑘2 +  𝑚𝑛), 𝑚(𝑘2 +
 𝑛2), and 𝑛(𝑘2 + 𝑚2).  

  

Calculating 𝑝 and 𝐴:  

𝑝 =
(𝑚−𝑛)(𝑘2+𝑚𝑛)

𝑑
+

𝑚(𝑘2+𝑛2)

𝑑
+

𝑛(𝑘2+𝑚2)

𝑑

2
  

𝑝 =
(𝑚−𝑛)(𝑘2+𝑚𝑛)+𝑚(𝑘2+𝑛2)+𝑛(𝑘2+𝑚2)

2𝑑
  

𝑝 =
𝑚𝑘2−𝑛𝑘2+𝑚2𝑛−𝑚𝑛2+𝑚𝑘2+𝑚𝑛2+𝑛𝑘2+𝑚2𝑛

2𝑑
  

𝑝 =
𝑚𝑘2+𝑚𝑘2−𝑛𝑘2+𝑛𝑘2+𝑚2𝑛+𝑚2𝑛+𝑚𝑛2−𝑚𝑛2

2𝑑
  

𝑝 =
2𝑚𝑘2+2𝑚2𝑛

2𝑑
  

 

𝑝 =
2𝑚(𝑘2+𝑚𝑛)

2𝑑
  

𝑝 =
𝑚(𝑘2+𝑚𝑛)

𝑑
  

 

and 

𝑝 − 𝑎 =
𝑚(𝑘2+𝑚𝑛)

𝑑
−

(𝑚−𝑛)(𝑘2+𝑚𝑛)

𝑑
  

𝑝 − 𝑎 =
𝑘2𝑚+𝑚2𝑛−(𝑘2𝑚−𝑘2𝑛+𝑚2𝑛−𝑚𝑛2)

𝑑
  

𝑝 − 𝑎 =
𝑘2𝑚+𝑚2𝑛−𝑘2𝑚+𝑘2𝑛−𝑚2𝑛+𝑚𝑛2

𝑑
  

𝑝 − 𝑎 =
𝑘2𝑛+𝑚𝑛2

𝑑
  

𝑝 − 𝑎 =
𝑛(𝑘2+𝑚𝑛)

𝑑
 , 

 

𝑝 − 𝑏 =
𝑚(𝑘2+𝑚𝑛)

𝑑
−

(𝑚−𝑛)(𝑘2+𝑛2)

𝑑
   

𝑝 − 𝑏 =
𝑘2𝑚+𝑚2𝑛−𝑘2𝑚−𝑚𝑛2

𝑑
  

𝑝 − 𝑏 =
𝑚2𝑛−𝑚𝑛2

𝑑
  

𝑝 − 𝑏 =
𝑚𝑛(𝑚−𝑛)

𝑑
, 

 

𝑝 − 𝑐 =
𝑚(𝑘2+𝑚𝑛)

𝑑
−

𝑛(𝑘2+𝑚2)

𝑑
  

𝑝 − 𝑐 =
𝑘2𝑚+𝑚2𝑛−𝑘2𝑛−𝑚2𝑛

𝑑
  

𝑝 − 𝑐 =
𝑘2𝑚−𝑘2𝑛

𝑑
  

𝑝 − 𝑐 =
𝑘2(𝑚−𝑛)

𝑑
 . 

 

Hence,  

𝑝(𝑝 −  𝑎)(𝑝 −  𝑏)(𝑝 −  𝑐)  

=
𝑚(𝑘2+𝑚𝑛)

𝑑
∙

𝑛(𝑘2+𝑚𝑛)

𝑑
∙

𝑚𝑛(𝑚−𝑛)

𝑑
∙

𝑘2(𝑚−𝑛)

𝑑
   

=
𝑘2𝑚2𝑛2(𝑘2+𝑚𝑛)

2
(𝑚−𝑛)2

𝑑4  . 

 

Thus,  

𝐴 = √𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐  

𝐴 = √
𝑘2𝑚2𝑛2(𝑘2+𝑚𝑛)2(𝑚−𝑛)2

𝑑4    

𝐴 =
𝑘𝑚𝑛(𝑘2+𝑚𝑛)(𝑚−𝑛)

𝑑2   

Hence, 𝑝 and 𝐴 are integers for all 𝑘, 𝑚, 𝑛, 𝑑 as given above. 

Therefore, the integral triangle is H-triangle.                       

 

4. Summary and Recommendations 
 

This chapter presents the summary of the results generated in 

this study. Moreover, some recommendations are given for 

further investigation.  

 

4.1 Summary  

 

This study successfully classify and examines Heron 

triangles, highlighting their unique mathematical properties 

and behaviors. By presenting rigorous and proof and 

examples, it opens avenues for further exploration, including 

generalized Heron triangles and their applications in 

advanced geometry. 

 

The following are the results in this study:  
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1) If a triangle has sides of lengths a, b, c and if 𝑝 =
1

2
(𝑎 +

𝑏 + 𝑐), the “semiperimeter” of the triangle, then Heron’s 

formula says that the area A of the triangle is given by  

𝐴 = √𝑝(𝑝 −  𝑎)(𝑝 −  𝑏)(𝑝 −  𝑐)    (Theorem3.1.2)  

 

2) The general solution of the equation 𝑎2  + 𝑏2 = 𝑐2 are 

given by 𝑎 = 𝜆(𝑚2 − 𝑛2), 𝑏 = 2𝜆𝑚𝑛 𝑎𝑛𝑑 𝑐 = 𝜆(𝑚2 +
𝑛2) (if b is even) where λ is an arbitrary positive integer, 

while m > n are relatively prime of different parities (that 

is, (m,n) =1 and m and n cannot be both odd or even). 

 (Lemma 3.1.4) 

 

3) Let 𝑎 = 𝜆(𝑚2 − 𝑛2), 𝑏 = 2𝜆𝑚𝑛 and 𝑐 = 𝜆(𝑚2 + 𝑛2) 

be the length of the sides of a P-triangle ABC where AB 

is the hypotenuse and λ is an arbitrary positive integer, 

while m > n are relatively prime of different parities (that 

is, (m, n) = 1 and m and n cannot be both odd or even). 

Then ∆ABC is a Heron triangle. (Theorem 3.2.1)  

 

4) Let p be the semiperimeter and r be the inradius of a 

Heron triangle where 𝑝 =
𝑎+𝑏+𝑐

2
, 𝑟 = 𝑝 − 𝑐, then p and 

r are integers. (Corollary 3.2.2)  

 

5) Let R be the radius of the circumscribed circle and 

ℎ𝑎 , ℎ𝑏 , ℎ𝑐 be the heights of a Heron ∆ABC in Figure 3.3, 

where 𝑅 =
1

2
𝑐 and ℎ𝑎 =

2𝐴

𝑎
, ℎ𝑏 =

2𝐴

𝑏
, ℎ𝑐 =

2𝐴

𝑐
 . Then R 

is an integer if λ is even and the heights ℎ𝑎 , ℎ𝑏 , ℎ𝑐 are all 

integers if 𝑐|𝑎𝑏. (Corollary 3.2.3) 

 

6) In a P-triangle with sides 𝑎, 𝑏 , and 𝑐 , the quantities 

𝐴, ℎ𝑎, ℎ𝑏 , ℎ𝑐 , 𝑟, and 𝑅 are integers at the same time if and 

only if a, b, and c, are given by 𝑎 = 2𝑑(𝑚4 − 𝑛4), 𝑏 =
 4𝑑𝑚𝑛(𝑚2 + 𝑛2), 𝑐 = 2𝑑(𝑚2 + 𝑛2)2  where λ is even, 

(𝑚, 𝑛) = 1, and m and n with m > n are of different 

parities. (Theorem 3.2.4) 

 

7) Let 2𝑦 − 1, 2𝑦, 2𝑦 + 1 be the sides of a triangle ABC 

where y is a positive integer. Then ∆ABC is a Heron 

triangle specifically known as CH-triangle. (Theorem 

3.2.6) 

 

8) A CH-triangle ABC has sides 2𝑦𝑛 − 1, 2𝑦𝑛, and 2𝑦𝑛 +
1.  (Theorem 3.2.7)  

 

9) In a CH-triangle with sides of lengths 2𝑦 − 1, 2𝑦, 2𝑦 +
1, the inradius r is always an integer. (Corollary 3.2.9)  

 

10) In a CH-triangle with sides of lengths 2𝑦 − 1, 2𝑦, and 

2𝑦 + 1, the height ℎ2𝑦 denotes the height corresponding 

to the (single) even side is an integer. (Corollary 

3.2.10) 

 

11) In a CH-triangle, which is not a P-triangle (that is, 

excluding the triangle (3,4,5), all other heights cannot be 

integers. (Corollary 3.2.11)  

 

12) Let R denotes the radius of the circumscribed circle of 

CH-triangle with sides a, b, c, then it is not an integer.  

(Corollary 3.2.12)  

 

13) Let 𝑟2𝑦 denotes the radius of the exscribed circle 

corresponding to the side of length 2y. Then 𝑟2𝑦 is an 

integer. (Corollary 3.2.13) 

 

14) Let 𝑟2𝑦−1 denote the radius of the exscribed circle 

corresponding to the ide of length 2𝑦 − 1. Then 𝑟2𝑦−1 is 

integer only in the P-triangle (3, 4, 5).   (Corollary 

3.2.14)  

 

15) Let 𝑟2𝑦+1 denote the radius of the exscribed circle 

corresponding to the side of length 2y + 1. Then 𝑟2𝑦+1 is 

integer in the P-triangle (3,4,5) and P-triangle 

(13,14,15). (Corollary 3.2.15) 

 

16) Let ABC be an isosceles triangle with |𝐴𝐵| = |𝐴𝐶| = 𝑏, 

|𝐵𝐶| = 𝑎, |𝐴𝐴1| = 𝑥 and |𝐵𝐵1| = 𝑦 are integers. Then 

triangle ABC is a Heron triangle. (Theorem 3.2.16) 

 

17) In an isosceles H-triangle having all heights which are 

integers and 𝑎 is the base of the triangle,  

a) 𝑎 = 4𝑠𝑚𝑛(𝑚2 + 𝑛2) and 𝑏 = 𝑠(𝑚2 + 𝑛2)2  or  

b) 𝑎 = 2𝑠(𝑚4 − 𝑛4 ) and 𝑏 = 𝑠(𝑚2 + 𝑛2)2 .  

(Corollary 3.2.18) 

  

18) If an isosceles ∆ABC with integer sides a, c, b (base a) is 

H-triangle, then its height x must be an integer.  

(Corollary 3.2.19)  

 

19) In an isosceles H-triangle, r is integer only when  

(i)  𝑏 = 𝑠(𝑚 + 𝑛)(𝑚2 + 𝑛2) and 𝑎 = 4𝑚𝑛𝑠(𝑚 + 𝑛) or  

(ii) 𝑏 = 𝑠𝑚(𝑚2 + 𝑛2) and 𝑎 = 2𝑠𝑚(𝑚2 − 𝑛2).  
                (Corollary 3.2.20) 

 

20) In an isosceles H-triangle with sides a, b, c where b = c, 

R is integer when  

(i)  𝜆 = 2𝑠(𝑚2  − 𝑛2) and  

(ii) 𝜆 =  4𝑚𝑛𝑠.       (Corollary 3.2.21)  

 

21) Let 𝑟𝑎 denotes the radius of the exscribed circle 

corresponding to side of length 𝑎 . Then 𝑟𝑎  is integer 

only when  

(i) 𝜆 =  𝑠(𝑚 − 𝑛) and  

(ii) 𝜆 =  𝑠𝑛.       (Corollary 3.2.22) 

 

22) An integral triangle of sides a, b, c is H-triangle if a, b, c 

can be represented in the following forms:  

 𝑎 =
(𝑚−𝑛)(𝑘2+𝑚𝑛)

𝑑
, 𝑏 =

𝑚(𝑘2 +𝑛2)

𝑑
, 𝑐 =

𝑛(𝑘2 +𝑚2)

𝑑
,  

where d, m, n, k are positive integers; m > n; and d is an 

arbitrary common divisor of (𝑚 − 𝑛)(𝑘2 + 𝑚𝑛), 𝑚(𝑘2 +
 𝑛2), and 𝑛(𝑘2 + 𝑚2).         (Theorem 3.2.23) 

 

4.2 Recommendations 

 

The following are recommended for further study:  

1) Other types of Heron triangle and its characterization.  

2) Characterization of a Generalized Heron triangle. 

 

 

 

 

 

Paper ID: SR241130104014 DOI: https://dx.doi.org/10.21275/SR241130104014 70 

http://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 12, December 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

References 
 

[1] David M. Burton (1998). Elementary Number Theory, 

Fourth Edition. McGraw-Hill Companies, Inc., 

International Edition. p. 313-314  

[2] G.H. Hardy and E.M. Wright,(1979). An Introduction to 

the Theory of Numbers, 5th Edition. Oxford at the 

Clavendon Press.. 

[3] Mgr. Daniela Krizova. Heron Triangle and Heron’s 

Formula. Mathematics Department, Faculty of 

Education, Masaryk University, 21498@mail.muni.cz; 

http://mathworld.wolfram.com  

[4] Moise, E., and Downs, F. (1991). Geometry. Addison 

Wesley Publishing Company.  

[5] Ivan Niven and Herbert S. Zuckerman, (1972). An 

Intoduction to the Theory of  Numbers (3rd Edition). 

JohnWitey and Sons, Inc. 

[6] William W. Strader and Laurence D. Rhoads, (1934). 

Plane Geometry a Modern Text. The John Winston 

Company.  p. 243-244  

[7] Andrew N.W. Hone. Heron Triangles and the Hunt for 

Unicorns. 

extension://mjdgandcagmikhlbjnilkmfnjeamfikk/https://

web3.arxiv.org/pdf/2401.05581   

 

Author Profile 
 
Liza Bordios received the B.S.Ed. Degree from 

Mindanao State University-Marawi City in 1995 and 

M.O.M. degree from Mindanao State University-Iligan 

Institute of Technology in 2009. During 2000 to 

present, she stayed in Mindanao State University-Buug Campus as 

Laboratory High School as mathematics teacher. 

Paper ID: SR241130104014 DOI: https://dx.doi.org/10.21275/SR241130104014 71 

http://www.ijsr.net/



