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Abstract: The rapid growth of cloud computing has created a demand for efficient resource utilization and high-performance computing 

(HPC) solutions. An essential component for overseeing cloud workloads is Kubernetes, a top-tier container orchestration platform. 

However, challenges such as resource underutilization, workload inefficiencies, and performance bottlenecks persist in dynamic cloud 

environments. This paper presents a comprehensive evaluation of optimizing Kubernetes for high-performance computing (HPC) in 

hybrid cloud-edge environments. Kubernetes is configured with components such as Etcd, Kube-APIServer, Kube-controller-manager, 

and Kube-scheduler to enable efficient resource management and workload orchestration. Kubeflow operators are integrated to automate 

machine learning workflows, including distributed training, hyperparameter tuning, and model serving. Performance metrics were 

analyzed for two methods, KFT and KFL. KFT achieved a deployment time of 173 seconds, a task completion time of 4.62 hours, CPU 

utilization of 3.47%, and RAM utilization of 3708 MB. Conversely, KFL demonstrated a faster deployment time of 51.29 seconds, a task 

completion time of 5.31 hours, CPU utilization of 13.77%, and RAM utilization of 2725 MB. Furthermore, KFT outperformed KFL in 

accuracy, reaching 0.55 at epoch 10, compared to 0.50 for KFL. These findings highlight a trade-off between resource utilization and 

performance, offering key insights into optimizing Kubernetes for scalable HPC systems in cloud-native environments. 
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1. Introduction 
 

The fast growth of cloud computing has become a major 

motivator for large-scale data centers, and it has also become 

the standard for next-generation information technology [1]. 

For contemporary data centers, purchasing new servers 

represents 50%–70% of the total cost of ownership (TCO) 

[2][3]. However, a number of studies reveal that data center 

servers often use just 10%–20% of their resources. Growing 

usage of Bubble-Up in contemporary warehouse-scale 

computers[4],[5] leads to significant resource waste and 

expensive operating costs[6]. 

 

Additionally, containers are replacing virtual machines as the 

data center's virtualization solution of choice [7],[8]. 

Application development and deployment may be 

significantly streamlined using containers, a lightweight 

virtualization technique that eliminates virtualization 

overhead [9][10][11]. As far as container cluster management 

platforms go, Kubernetes is currently the gold standard 

[12][13][14]. In addition to its extensive usage in public clouds 

and business IT systems, Kubernetes is now being utilized by 

many operators to operate and manage workloads that are 

neither microservices nor web apps [15]. Typical examples 

include traditional large data processing, high-performance 

computing, and ML training [16],[17]. With the release of 

version 2.3.0, Spark formally added native support for 

Kubernetes. 

 

Running batch processes concurrently with user-facing, 

latency-sensitive services might lead to a decrease in the 

quality of the end-user experience because of competition for 

shared resources [18]. To address this, Kubernetes typically 

separates these workloads into different machines, reducing 

performance interference but resulting in underutilized 

resources [19][20]. Leveraging Kubernetes for enhancing 

cloud computing involves optimizing resource allocation to 

balance workload performance while minimizing 

inefficiencies [21][22].  

 

The most significant obstacle in Kubernetes's path to 

improving cloud computing services is selecting higher-

performing components to replace native ones and using 

suitable optimization techniques [23][24]. We want to choose 

various parts to test and compare them, make concurrent 

changes to the underlying architecture, and then confirm the 

findings via extensive trials[25][26]. Thus, prioritize 

enhancing K8s cloud computing performance by the 

incorporation of new components and the modification of K8s 

design [27][28][29]. 

 

a) Motivation and contribution of the study 

This work aims to optimize Kubernetes for high-performance 

computing (HPC) in cloud environments, addressing 

challenges related to resource utilization, dynamic workload 

placement, and scalability. By enhancing Kubernetes' 

capabilities, this study aims to improve the efficiency and 

performance of cloud computing systems, particularly in 

managing computationally intensive tasks like machine 

learning and simulations across hybrid cloud and edge setups. 

The contribution of study is as: 
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• Proposes strategies for optimizing Kubernetes to handle 

high-performance computing workloads efficiently in 

cloud environments. 

• Develop an approach for dynamic workload placement 

based on resource availability and computational demand, 

ensuring optimal resource utilization. 

• Conducts a comprehensive performance analysis of 

Kubernetes-based systems in cloud environments, 

evaluating key metrics like deployment time, CPU and 

RAM utilization, and overall system efficiency. 

• Demonstrates how Kubernetes can be deployed across both 

cloud and edge nodes, improving scalability and 

performance for hybrid cloud architectures. 

 

b) Structure of paper 

This is the structure that the rest of the paper follows. Section 

II provides a literature review on Kubernetes Optimization for 

High-Performance Computing with Kubernetes, Performance 

Analysis, and Dynamic Workload Placement towards the 

Enhancement of Cloud Computing. Section III contains 

methods and methodologies, and Section IV involves analysis 

and discussion of results. Section V presents the study's 

conclusion and plans for advancement. 

 

2. Literature Review 
 

In this section, previous studies have explored optimizing 

Kubernetes for high-performance computing by improving 

resource allocation, workload placement, and system 

efficiency. Research also highlights advancements in auto-

scaling, disaster recovery, and zero-downtime updates, 

enabling Kubernetes to handle increased workloads while 

maintaining efficiency in cloud-native environments. 

 

In, Zhang et al. (2021) introduces Zeus, a cluster scheduling 

solution built on top of Kubernetes extension methods and 

meant to be extremely scalable. Protected colocation of best-

effort tasks and latency-sensitive services is accomplished by 

Zeus. Zeus may also dynamically distribute resources between 

the two types of workloads and schedule best-effort processes 

according to actual server utilization. Further, Zeus improves 

container isolation by integrating hardware and software 

isolation capabilities. Consequently, Zeus is able to enhance 

Kubernetes cluster resource utilization. Findings demonstrate 

that Zeus may achieve a 15% to 60% increase in average CPU 

utilization without SLO violations by co-locating latency-

sensitive services with best-effort workloads[30]. 

 

In, Han, Hong and Kim (2020) provide a framework for 

improving the placement of microservices based on profiling 

in order to detect and effectively react to workload factors. We 

extract delicate resource needs from profiling studies with 

specified workloads to attain this purpose. We next use a 

greedy-based heuristic approach to position microservices, 

taking application performance into account via the utilization 

of resource needs determined by the profiled findings. Lastly, 

we compare the experimental findings that include our work 

with those that do not, in order to confirm the suggested 

notion[31]. 

 

In, Vasireddy, Kandi and Gandu (2023) consequences of load 

balancing on the efficiency and scalability of applications 

running on Kubernetes clusters. Thinking about things like 

reaction speed, throughput, and flexibility to diverse 

workloads, it investigates the costs and benefits of various 

solutions. Load balancing in dynamic container orchestration 

systems is becoming more and more important as cloud-native 

designs change. Researchers and practitioners may benefit 

from our synthesis of the existing literature on Kubernetes load 

balancing, which lays the groundwork for future developments 

in the pursuit of distributed systems that are efficient, scalable, 

and robust[32]. 

 

In, Sai et al. (2024) fully commits to the field of improving 

OpenStack and Kubernetes in the context of edge computing, 

with a particular emphasis on optimizing performance and 

refining methods for allocating resources. This research aims 

to discover new ways to improve these platforms' functionality 

by carefully analyzing the difficulties of resource allocation 

and exploring the subtleties of performance improvement by 

investigating how OpenStack and Kubernetes may work 

together to manage infrastructure and containers more 

effectively[33]. 

 

In, Yadav (2024) delves into the possible uses and advantages 

of using AI algorithms in Kubernetes settings, spotlighting 

important domains like auto-scaling, optimized deployment 

techniques, predictive maintenance, cost optimization, and 

continuous optimization, among others. Through an analysis 

of the interplay between Generative AI and Kubernetes, this 

study brings attention to the potential for better utilization of 

resources, better application performance, lower infrastructure 

costs, and higher operational efficiency. It emphasizes the 

significance of researchers, practitioners, and the open-source 

community working together to foster innovation and realize 

the full potential of AI-driven optimizations in 

Kubernetes[34]. 

 

In, Mondal, Zheng and Cheng (2024) aims to optimize zero-

downtime rolling updates, reduce data distribution latency, 

enhance cluster backup and restore strategies for better 

disaster recovery, incorporate better strategies for load 

balancing and request handling, optimize autoscaling, 

introduce better scheduling strategies, and much more. Results 

demonstrated that the optimized Kubernetes platform could 

manage 2000 concurrent requests with less CPU overhead 

(less than 1.5%), less memory (less than 0.6%), shorter 

average request times (less than 7.6%), and fewer failures (less 

than 32.4%), all in comparison to the default settings [27]. 

 

3. Methodology 
 

The methodology for optimizing Kubernetes for high-

performance computing (HPC) in cloud environments 

involves setting up a hybrid cloud-edge architecture, where 

cloud nodes (equipped with 4 CPUs, 16GB RAM, and A100 

GPU) and edge nodes (with 15 CPUs, 30GB RAM, and P2000 

GPU) are interconnected via fiber optics. Kubernetes is 

deployed to manage resources efficiently across these nodes, 

with master and worker nodes playing distinct roles in 

controlling and executing workloads. The system is 

configured with Kubernetes components like Etcd for cluster 

coordination, Kube-EPiServer for API interactions, Kube-

controller-manager for control loops, and Kube-scheduler for 

pod management. Additionally, Kubeflow operators are 

implemented to automate machine learning workflows, 
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focusing on distributed training, hyperparameter tuning, and 

model serving, leveraging Kubernetes' scalability and resource 

management features. Performance analysis is conducted 

using metrics such as deployment time, complete time, CPU 

and RAM utilization to evaluate resource efficiency and 

optimize workload placement dynamically across the cloud 

and edge nodes for enhanced cloud computing performance. 

 

1) Kubernetes Architecture  

Kubernetes is designed using a client-server model. In a multi-

master configuration, high availability is achievable; however, 

in the usual configuration, a single server serves as the 

controlling node and point of contact [35][36]. Figure 1 shows 

the Kubernetes architecture. According to Kubernetes's 

Master-Slave paradigm, there are two types of nodes: Master 

and Worker[37][38]. The Master node acts as the hub of the 

Kubernetes cluster, performing all necessary administration 

and control tasks [39][40]. Key components that operate on the 

Master node include:  

 
Figure 1: Kubernetes Architecture 

 

• Etcd: Data needed to coordinate the cluster's configuration 

and resources among its many components is stored in a 

distributed key-value database [41][42].  

• Kube-EPiServer: Makes available the Restful interface, 

the only means of accessing the cluster capabilities 

[43][44].  

• Kube-controller-manager: The Kubernetes core control 

loops are embedded by this daemon [45]. Control loops are 

nonterminating loops that govern the system's status in 

robotics and automation applications [46][47].  

• Kube-scheduler: It iteratively chooses Pods waiting in 

line and places them on nodes that have enough of the 

needed resources [48]. As the most fundamental object that 

may be produced, scheduled, and deployed, a pod consists 

of one or more containers that share storage and network 

resources as well as a specification for how to operate the 

containers[49]. 

 

2) Kubeflow operator (KFL) 

An essential part of Kubeflow, an open-source platform 

intended to make managing and deploying machine learning 

workflows on Kubernetes easier, is the Kubeflow Kubernetes 

operator. Operators in Kubeflow, such as TFJob, PyTorchJob, 

and Katib, automate the orchestration of ML-specific tasks 

like distributed training[50], hyperparameter tuning, and 

model serving[51][52]. These operators leverage Kubernetes' 

native capabilities for scalability and resource management, 

enabling seamless integration and optimization of ML 

workflows in containerized environments[53]. Native 

automation of stateful apps is not possible with solitary K8s. 

We have developed K8s operators to handle this issue. By 

enhancing the Kubernetes API, these third-party controllers 

simplify the administration and deployment of complicated 

applications[54]. They enable automated activities like 

scalability, upgrades, and backups by encapsulating 

operational information. By encoding application-specific 

characteristics, operators improve K8s capabilities, making 

them more dynamic, adaptable, available, and flexible for 

unique personalized control loops[55].  

 

3) KubeFATE (KFT) 

When it comes to production settings, KubeFATE is the way 

to go for a solitary deployment. It employs a KubeFATE client 

binary package with YAML settings to personalize the rollout 

of exchanges and parties [56][57]. The four main components 

of a party deployment are the following: the roll site pod, 

which facilitates contact between the parties, the destiny board 

pod, which keeps tabs on everything, the client pod, which 

houses a Jupiter notebook, and the python pod, which hosts 

the fate flow container and a MySQL client [58][59]. Each 

participant in a Kubernetes (k8s) cluster is contained inside its 

own namespace when it is deployed. It is possible for many 

FATE clusters to cohabit on one or more clusters, with SSH 

allowing access across pods at various roll sites. In this way, 

pods may be guaranteed to stay on their designated nodes even 

after several trials[60]. The configuration allocated resources 

among nodes in the following way: the exchange was hosted 

by node C1, two parties by node C2, one party each by nodes 

E1 and E2, and three parties each by nodes E3 and E4. Even 

though GPUs are compatible with KubeFATE, we refrained 

from using them in our tests[61][62]. 

 

4) Testbed implementation 

The situation was replicated via tests conducted at the Smart 

Internet Lab's Networking Testbed, which comprises of one 

main node (the cloud) and one set of edge nodes [63][64]. A 

control plane is located in the main node, and these nodes are 

linked via fiber. The complexity of FL systems makes it 

difficult to deploy them across a variety of decentralized 

clients. 

 

Table 1: System Configuration for Cloud and Edge Nodes 
System 

Configuration 

Node 

C=cloud E=Edge 

CPU 4 15 

RAM 16 30 

Storage 80 100 

GPU A100 P2000 

5) Performance Matrix  

There is some performance used for Deployment and 

Resource Utilization Across Methods[65]. The following 

performance matrix are explained in below: 

 

a) Deployment Time 

Deployment time is a metric that measures the amount of time 

it takes to deploy software to a production environment[66]It 

is used to measure the efficiency of the deployment process 

and identify areas for improvement[67]. The formula for 

Deployment Time is Eq. (1): 

      𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 =  𝐸𝑛𝑑 𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 
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It is calculated by measuring the amount of time it takes to 

deploy software from the moment it is ready to be deployed 

until it is fully deployed in the production environment. The 

unit of deployment time is typically in hours, minutes, or 

seconds. 

 

b) Complete Time 

The time required for all the processes or the workflow to 

complete starting from start to end. Usually, it measures how 

long it takes a system to finish all tasks in experiments or 

deployments and is generally indicated in hours or any units 

of time this is known as complete time[68][69]. This is a 

metric that gives an idea about how best a method should 

perform in terms of time efficiency and how well it performed 

overall[70]. The following Eq. (2): 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑇𝑖𝑚𝑒 = 𝐸𝑛𝑑 𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 

 

c) CPU Utilization 

CPU Utilization is the percentage of the central processing unit 

(CPU) that is used by a system, application or method when 

executing. But it reveals how well the CPU is being utilized 

[71]. Low CPU usage suggests more efficient processing 

while high utilization suggests processor-intensive 

computational demand. The following Eq. (3): 

 

𝐶𝑃𝑈 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%) = (
𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
) × 100  

 

d) RAM Utilization 

RAM Utilization is the usage, or amount, of Random-Access 

Memory (RAM) used during the execution of a process or 

workflow. It works in megabytes (MB) or gigabytes (GB) and 

shows how much memory the system or application needs to 

run. Smooth operation without memory overflow, or lag, is 

enabled through efficient utilization of RAM[72][73][36]. It is 

formulated by Eq. (4): 

 

𝑅𝐴𝑀 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (%) = (
𝑇𝑅𝐴𝑀 𝑈𝑠𝑒𝑑 (𝑀𝐵/𝐺𝐵)

𝑇𝑜𝑡𝑎𝑙 𝑅𝐴𝑀 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑀𝐵/𝐺𝐵
) × 100  

The proposed system's performance is assessed using these 

metrics. 

 

4. Results and Discussion 
 

The results of comparing the suggested Kube Flower to the 

benchmarks are shown and discussed in this section. Important 

parameters, such as deployment time and completion time, 

CPU utilization, and RAM utilization, are evaluated in this 

research. Measure time-related metrics, which provide 

information about the system's efficiency, by keeping track of 

how long it takes to complete the deployment process. 

Through this research, we want to learn important things about 

the system's overall performance characteristics in the cloud-

native architecture. Table II presents the KFT and KFL 

performance based on performance measurement.  

 

Table 2: Performance Metrics Comparison for Deployment 

and Resource Utilization Across Methods 
Methods Deploy 

time (s) 

Complete 

time (h) 

CPU 

utilization 

RAM 

utilization 

KFT 173 4.62 3.47 3708 

KFL 51.29 5.31 13.77 2725 

 

Table II presents a comparative analysis of two methods, KFT 

and KFL, based on deployment time, completion time, CPU 

utilization, and RAM utilization. KFT demonstrates a longer 

deployment time (173 seconds) compared to KFL (51.29 

seconds), but it achieves a faster completion time of 4.62 hours 

compared to 5.31 hours for KFL. In terms of resource 

utilization, KFT shows lower CPU usage at 3.47% but 

significantly higher RAM usage at 3708 MB. On the other 

hand, KFL balances efficiency with higher CPU usage at 

13.77% and reduced RAM utilization of 2725 MB. These 

results highlight a trade-off between resource efficiency and 

performance, with KFL excelling in deployment speed and 

memory efficiency, while KFT offers advantages in CPU 

utilization and task completion speed. 

 

 
Figure 2: Performance based on deployment and complete 

time 

 

Figure 2 illustrates the performance comparison of KFT and 

KFL based on deploy time (in seconds) and complete time (in 

hours). KFT has a significantly higher deployment time of 173 

seconds, while KFL completes deployment much faster at 

51.29 seconds. However, when it comes to completion time, 

KFT performs slightly better, finishing tasks in 4.62 hours, 

compared to 5.31 hours for KFL. This analysis highlights the 

trade-off between the two methods, with KFL being more 

efficient for rapid deployment and KFT excelling in faster task 

completion. 

 

 
Figure 3: Performance Metrics for CPU and RAM 

utilization 

 

Figure 3 compares the CPU utilization (%) and RAM 

utilization (in MB) of the methods KFT and KFL, highlighting 

a clear trade-off between processing power and memory 

usage. KFT exhibits significantly lower CPU utilization at 

3.47%, making it more efficient in terms of processing 
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demands. However, this comes at the cost of higher RAM 

utilization, consuming 3708 MB. In contrast, KFL shows 

higher CPU usage at 13.77% but is more memory-efficient, 

utilizing only 2725 MB. This analysis demonstrates that KFT 

is more suitable for CPU-intensive tasks, while KFL is 

optimized for memory-constrained environments. 

 

 
Figure 4: Loss curves for KubeFATE and KubeFlower for 

10 epochs. 

 

Figure 4, comparing the loss values over epochs for two 

different methods or models, labeled "KFT" and "KFL." The 

y-axis displays the loss values, which roughly range from 1.0 

to 2.0, while the x-axis indicates the number of epochs, which 

ranges from 1 to 10. Both methods start with high loss values 

at epoch 1 and show a decreasing trend over subsequent 

epochs, indicating improved performance. The "KFL" method 

shows slightly lower loss values compared to "KFT" across all 

epochs, suggesting better performance in reducing the loss. 

The graph uses different colored lines with markers for 

distinction: blue for "KFT" and orange for "KFL." 

 
Figure 5: Accuracy curves for KubeFATE and Kubeflow 

for 10 epochs. 

 

Figure 5 compares the accuracy over epochs for two methods, 

"KFT" and "KFL." The x-axis represents the number of 

epochs (1 to 10), and the y-axis represents accuracy values 

(ranging from 0.25 to 0.55). Both methods show increasing 

accuracy as epochs progress. The "KFT" method (blue line) 

consistently achieves higher accuracy than "KFL" (orange 

line) across all epochs, demonstrating better performance. The 

gap between the two methods widens as the epochs increase, 

with "KFT" surpassing 0.55 accuracy by epoch 10, while 

"KFL" plateaus below 0.50. 

 

 

 

5. Conclusion and Future Scope 
 

The proliferation of microservices has led many businesses to 

use containerization for their application deployment 

strategies. If you're looking for a technology to streamline 

container management, one of the most popular options is 

Kubernetes. The node's resource request rate is the primary 

reference statistic for Kubernetes' default scheduler. Container 

scheduling is given precedence on nodes with low rates of 

resource requests. To get a node's resource application rate, 

take its overall resource count and divide it by the quantity of 

resources it has requested. This study demonstrates the 

potential of Kubernetes in optimizing HPC in hybrid cloud-

edge environments by analyzing the trade-offs between two 

methods, KFT and KFL. While KFT excels in faster task 

completion 4.62 hours and higher accuracy (0.55 at epoch 10), 

it incurs longer deployment time (173 seconds) and higher 

RAM utilization 3708 MB. In contrast, KFL offers rapid 

deployment (51.29 seconds) and better memory efficiency 

2725 MB but with slightly lower task performance. The study 

highlights limitations, such as the need for more advanced 

dynamic workload balancing and energy efficiency in 

distributed environments. Future research could explore 

adaptive resource allocation strategies, integration of energy-

aware scheduling algorithms, and enhanced support for edge-

specific workloads to further optimize Kubernetes for diverse 

and scalable HPC applications. 
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