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Abstract: The purpose of this paper is to establish some certain integrals involving G-function and 

multivariable polynomial as product.  Integrals are obtained by combining the products of first- and 

second-class general polynomials with the g-function of one variable and n- variables. 
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1. Introduction: 

In this paper we derive some integrals involving the 

product of a G-function of one variable and a 

multivariable with multivariate polynomials of first 

and second class as defined by Srivastava (1985). We 

will use the following formulae in our current 

investigation.  The G-function of one variable given 

by Meijer (1936)   
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Where 1i = − , 0z  ;  exp log argz z i z = +  

 

In which log z   represent a natural logarithm of z

and argi z  does not necessarily have the principal 

value.  

 

Where M, N, P and Q are integers with constrained

0 N P  , 0 M Q  , and [ 1,2,..., ],ja j p=  

[ 1,2,..., ]jb j q=  are complex numbers such that 

coincides with any pole of ( )1 , 1,2,...,ja j N − + = .  

An empty product is interpreted as 1. This perception 

will persist everywhere.   

 

(I) The path γ runs from ( )i −  to ( )i +   in such a 

way that all the poles of ( ),jb  − 1,2,...,j M= lie 

on the right side and all the points of 

( )1 ,ja  − + 1,2,....,j N=  lie on the left side of the 

path.  The integral converges absolutely if 

( )2 M N P Q+  + , and ( )arg 2
2

z M N P Q


 + − −  

. 

If ( )arg 2 0
2

z M N P Q


= + − −    the integral  

converges absolutely when P Q= , if ( ) 1 0R  +  ;  

and when P Q , if with ' i  = + , σ and ε are 

real, then σ is chosen so that for  → , 

( ) ( ) 1
2

P Q
Q P R 

 −  
−  + +   

  
, 

where 
1 1
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= =

=  −  .  

 

(II) The path γ is the loop from  +  to +  including 

all poles of ( ), 1,2,...,jb j M − =  once in the 

negative direction, but none of the poles of

( )1 , 1,2,....,ja j N − + = . If  1Q   and either 

P Q or P Q= , and 1z   then the integral 

converges.  
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(III) The path γ is a loop from  − to− , including 

all poles of ( )1 , 1,2,....,ja j N − + = , once in the 

positive direction, but none of the poles of

( ), 1,2,...,jb j M − = . If 1P   and are either P Q=

, and 1z   then the integral converges. 

 

It is further assumed that the values of variables z and 

parameters are such that at least one of the above 

definitions make sense.   

  

The G-function of multivariable is given by  
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And , , , , , , ,k k k kP Q M N m n p q , k are positive integers 

with constrained 1,0p N M Q    0k kq m  and 

0k kp n  1,2,...,k r= The path 
r  situated in the 

complex plane, which moves from i−   to i+  , such 

that all poles of ( )kj kd  − , 1,.., kj m=  and

1
1 1,...,

r

j k
k

a j N
=

 
 − +  = 
 

, are to the left of
r . 

 

Srivastava (1985;686) defined the second-class of 

multivariable polynomial as follows 
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Srivastava and Garg (1987:686) defined the first-

class of multivariable polynomial as follows 
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where 0,1,2,... =  

 

From the table of integration [Gradshteyn and 

Ryzhik (2007):3.196 Eq. 3 and 3.257 eq. 3)] We need 

the following integration formulas 
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2. Main Result: 

 

2.1 First Integral:  

 

The first integral is obtained from the product of the 

G-function of one variable and the second-class of 

multivariate polynomial. 
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Where 
1 2 1 2, ,..., 0,  , ,..., 0t tm m m n n n   

 

2.2 Second Integral: 

Second integral is obtained from the product of G-

function of one variable and first class of 

multivariable polynomial 
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Where 
1 2 1 2, ,..., 0, , ,..., 0t tm m m n n n   
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2.3 Third Integral: 

Third integral is obtained from the product of G-

function of multivariable and second-class of 

multivariable polynomial 
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3. Proof 

To establish the first integral formula, we use the 

second class of multivariable polynomial given by 

equation [5] and the G-function of one variable given 

on the left side of equation [1] in terms of a contour 

integral of Mellin–Barnes type.  After interchanging 

the order summation and integration, we get the 

following relation, then after simplifying it a bit, we 

get 
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Now with the help of integral [7] and interpreting the 

resulting contour integral of the G-function we find 

the first integral [9]. Similar to the proof of equation 

[9], we can also establish the second integral [10]. 
 

To obtain the result [11] first we express the G-

function of the multivariate [2] as a contour integral 

of Millen-Barnes type and the first class of 

polynomial in the series form given on the left side 

of the equation [5] and integration [8] is written as a 

product.  Now interchanging the order of integration 

and summation, we get the following relation, then 

after a little simplification we get 
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where 
1 2, ,..., r    are the variables of the Mellin–

Barnes type contour integral of the G-function as 

mentioned above [2]. Now with the help of 

integration [8] and interpreting the resulting contour 

integral in terms of the G-function of the r-variable 

we easily get the result [11]. 

 

4. Special Cases 

If we take ( ) ( ) ( )1 1 1 1 1, ;...; , , ... ,t t t t tA k k A k A k   =   in 

equations [9] and [11] then the multivariate 
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 S z

 defined by [Srivastava, 1972;1, eq.(1)]The 

result of equation [9} change into 
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And the result of equation [11] change into 
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If we take ( )
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[9] then the second class of polynomial 

 1

1

,...,

,..., 1 2, ,...,t

t tS z z z
 

   will turn into first-class 

hypergeometric polynomial of multivariate and 

when we put it in equation [10] then the first-class 

polynomial  1 ,...,

1 2, ,...,t

tS z z z
 

  will turn into second 

class hypergeometric polynomial of multivariable, 

defined by Srivastava and Garg, (1987) and we easily 

obtain two new integrals involving polynomials. 
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