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Abstract: The purpose of this paper is to establish some certain integrals involving G-function and
multivariable polynomial as product. Integrals are obtained by combining the products of first- and
second-class general polynomials with the g-function of one variable and n- variables.
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1. Introduction:

In this paper we derive some integrals involving the
product of a G-function of one variable and a
multivariable with multivariate polynomials of first
and second class as defined by Srivastava (1985). We
will use the following formulae in our current
investigation. The G-function of one variable given
by Meijer (1936)
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Where i=+v-1, z#0; z° =exp{log|z|+iarg z£}

In which log|z| represent a natural logarithm of ||
and iargz does not necessarily have the principal
value.

Where M, N, P and Q are integers with constrained
0O<N<P, 0<M<Q, and a[j=12..,pl

b[j=12..q] are complex numbers such that
coincides with any pole of F(l—aj +£),j=12,.,N.

An empty product is interpreted as 1. This perception
will persist everywhere.
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The path y runs from (¢—iw)to (¢+iw) in such a
way that all the poles of I'(b; -¢), j=12,..,Mlie

on the right side and all the points of

r(1-a;+¢), j=12...,N lic onthe leftside of the
path. The integral converges absolutely if

2(M+N)>P+Q, and|argz|<%[2(M +N)-P-Q]

If |arg 7| =%[2(M +N)-P-Q]=>0the integral

converges absolutely when P =Q, ifR(1)+1<0;
and whenP =Q, if withé'=o+ie, 6 and ¢ are

real, then o is chosen so that fore— +wo,
(Q—P)0>{R(l)+l+(P;Qﬂ,

Q P
where A1=%b -Xa..
= g

The path vy is the loop from +w0 to 4o including
all poles of I'(b,-¢),j=12..,M once in the

negative direction, but none of the poles of
r(1-a;+¢),j=12..,N. If Q=1 and either

P<QorP=Q, and |z/<1 then the integral

converges.
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(1) The path v is a loop from —woto—o, including
all poles of I'(1-a;+¢),j=12,..., N, once in the
positive direction, but none of the poles of
(b, —£),j=12..,M.If P>1 and are either P=Q

,and |z|>1 then the integral converges.

It is further assumed that the values of variables z and
parameters are such that at least one of the above
definitions make sense.

The G-function of multivariable is given by
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AndP,Q,M,N,m,,n,, p,.q., K are positive integers
with constrained p>N=>1,0<M <Q g, >m, >0and
p,>n >0k=12..,rThe path » situated in the
complex plane, which moves from —ico t0+ico, such
that all poles of T(d;-£&), j=1.m and

r[l—aj +ké_1§kj j=1..,N,are to the left of y, .

Srivastava (1985;686) defined the second-class of
multivariable polynomial as follows

Srivastava and Garg (1987:686) defined the first-
class of multivariable polynomial as follows
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where ¢=0,12,...

From the table of integration [Gradshteyn and
Ryzhik (2007):3.196 Eg. 3 and 3.257 eq. 3)] We need
the following integration formulas
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2. Main Result:

2.1 First Integral:

The first integral is obtained from the product of the
G-function of one variable and the second-class of
multivariate polynomial.
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Where m,m,,...m >0, n,n,,..,n, >0

2.2 Second Integral:

Second integral is obtained from the product of G-
function of one variable and first class of
multivariable polynomial
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Where m,m,,....m >0,n,n,,...,n, >0
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2.3 Third Integral:

Third integral is obtained from the product of G-
function of multivariable and second-class of
multivariable polynomial
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3. Proof

To establish the first integral formula, we use the
second class of multivariable polynomial given by
equation [5] and the G-function of one variable given
on the left side of equation [1] in terms of a contour
integral of Mellin—Barnes type. After interchanging
the order summation and integration, we get the
following relation, then after simplifying it a bit, we
get
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Now with the help of integral [7] and interpreting the
resulting contour integral of the G-function we find
the first integral [9]. Similar to the proof of equation
[9], we can also establish the second integral [10].

To obtain the result [11] first we express the G-
function of the multivariate [2] as a contour integral
of Millen-Barnes type and the first class of
polynomial in the series form given on the left side

of the equation [5] and integration [8] is written as a
product. Now interchanging the order of integration
and summation, we get the following relation, then
after a little simplification we get
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where &£,¢,,..,& are the variables of the Mellin—

Barnes type contour integral of the G-function as
mentioned above [2]. Now with the help of
integration [8] and interpreting the resulting contour
integral in terms of the G-function of the r-variable
we easily get the result [11].

4. Special Cases

If we take A(a k;..;aq.k)=A(a.k)..A(a.k) In
equations [9] and [11] then the multivariate
polynomial SE 2,250, 2,] turns into

S2[z,]xS[z,]x..xSk [2,], a product of polynomials
S/[z]defined by [Srivastava, 1972;1, eq.(1)]The
result of equation [9} change into
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And the result of equation [11] change into
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If we take A(a, k..., k )=—"2""% in equation

(71 )kl}vl+...+k‘A
class of polynomial
turn  into  first-class

hypergeometric polynomial of multivariate and
when we put it in equation [10] then the first-class
polynomial sZ+*[z,z,,..z] will turn into second
class hypergeometric polynomial of multivariable,

defined by Srivastava and Garg, (1987) and we easily
obtain two new integrals involving polynomials.

second
will

[9] then the
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