
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Challenges in Transitioning from Traditional Data

Warehousing to Modern Data Architectures

Aneehika Nellutla

Optum Insight

Indian Land, SC, USA

aneehika.n[at]gmail.com

Abstract: The transition from traditional data warehouses, such as SQL Server, to modern data architectures like the Medallion

architecture, has introduced a paradigm shift in data management and processing. This paper explores the challenges faced during this

transition, particularly focusing on differences in scalability, schema design, data partitioning, and query optimization. It also examines

the implications of adopting distributed systems and new technologies, highlighting the practices that need adaptation. By addressing

these challenges, organizations can fully realize the potential of modern data platforms.

Keywords: Modern Data Warehouse, Traditional Data Warehouse, Medallion Architecture, MPP Systems, Scalability, Data Partitioning,

Query Optimization, Schema-on-Read, Real-Time Processing, Distributed Systems

1. Introduction

Traditional data warehouses have been the backbone of

enterprise data storage and processing for decades. They rely

on monolithic architectures, rigid schema enforcement, and

centralized query optimization. Modern data architectures,

such as the Medallion architecture, leverage distributed,

massively parallel processing (MPP) systems to meet the

demands of big data, real-time analytics, and scalability.

This paper discusses the key challenges in migrating from

traditional data warehouses to modern platforms, focusing

on technical, architectural, and operational aspects. Figures

are included to illustrate key comparisons and trends.

2. Understanding Medallion Architecture

The Medallion architecture, popularized by Databricks, is a

framework for organizing data within a data lake to ensure

scalability, maintainability, and reliability. It divides data

into three distinct layers—Bronze, Silver, and Gold—to

manage data at different stages of its lifecycle effectively.

Bronze Layer

• Purpose: This layer contains raw, unprocessed data

ingested from various sources, including IoT devices, logs,

and transactional databases.

• Characteristics:

o Data is stored in its original format (e.g., JSON, CSV,

Parquet).

o Minimal transformations are applied.

o Acts as the immutable source of truth for ingested data.

Silver Layer

• Purpose: This layer focuses on data cleansing,

deduplication, and normalization. It serves as the

intermediate processed data layer.

• Characteristics:

o Data is structured and enriched to provide consistency.

o Data validation checks and error handling are

implemented.

o Optimized for consumption by downstream analytics or

machine learning systems.

Gold Layer

• Purpose: The Gold layer contains aggregated, business-

ready data used for reporting and analytics.

• Characteristics:

o Highly curated datasets optimized for specific use cases.

o Often includes metrics, KPIs, and dimensional

modeling.

o Data is typically consumed by dashboards, business

intelligence tools, and advanced analytics platforms.

Advantages of Medallion Architecture

• Scalability: By processing data in stages, this architecture

accommodates large-scale data efficiently.

• Modularity: Each layer is decoupled, enabling

independent scaling and maintenance.

• Governance: Clear boundaries between layers enhance

data governance and lineage tracking.

• Real-Time Capabilities: Streaming data can be integrated

into the Bronze layer and progressively refined for near

real-time analytics.

3. Key Challenges

Scalability and Resource Management

• Traditional Approach: SQL Server and similar databases

use vertically scaled architectures with limited hardware

[1].

• Modern Architecture: MPP systems scale horizontally,

introducing challenges in data distribution, node

balancing, and resource allocation [2].

Identity Columns and Key Management

• Traditional Practice: Identity columns provide sequential

IDs, simplifying indexing and referencing [3].

Paper ID: SR241215083913 DOI: https://dx.doi.org/10.21275/SR241215083913 1320

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Modern Challenge: Distributed environments prefer

surrogate keys or UUIDs to prevent bottlenecks and data

skew [4].

Data Partitioning

• Traditional Approach: Often neglected due to smaller

datasets.

• Modern Requirement: Effective partitioning strategies

are critical to optimize distributed queries and minimize

data shuffling [5].

Schema Design: Schema-on-Write vs. Schema-on-Read

• Traditional Approach: Schema-on-write ensures data

integrity but limits flexibility.

• Modern Transition: Schema-on-read enables raw data

ingestion, increasing flexibility but requiring stronger

governance [6].

Query Optimization

• Traditional Practice: Indexes and execution plans drive

query performance [7].

• Modern Requirement: Optimization involves

minimizing inter-node communication and leveraging

caching mechanisms [8].

Data Consistency Models

• Traditional Approach: ACID compliance ensures strong

consistency [9].

• Modern Challenge: Eventual consistency models,

common in distributed systems, demand reconciliation and

conflict resolution mechanisms [10].

Figure 1: Challenge Intensity: Traditional vs Modern Data

Architectures

This figure compares the intensity of challenges faced by

traditional and modern data architectures.

Figure 2: Real-Time Processing Capability: Traditional vs

Modern Systems

This figure illustrates the distribution of batch, near-real-

time, and real-time processing capabilities.

4. Implications

The transition to modern architectures offers scalability,

performance, and flexibility but requires substantial changes

in practices. Organizations must invest in upskilling teams,

adopting new tools, and rethinking traditional processes to

avoid pitfalls during this shift.

Operational Implications

• Emphasizing team training on distributed systems and

open storage formats.

• Revisiting data governance policies for schema-on-read.

Technical Implications

• Implementing robust partitioning and data distribution

strategies.

• Ensuring optimized workload management for high

concurrency environments.

5. Conclusion

The shift from traditional data warehouses to modern

architectures is inevitable as data volume and velocity grow.

By understanding the challenges outlined in this paper,

organizations can better prepare for and navigate the

complexities of this transition. The adoption of modern

practices such as distributed key management, effective

partitioning, and schema governance is essential to unlock

the full potential of MPP systems like the Medallion

architecture.

References

[1] Kimball, R., & Ross, M. (2013). The Data Warehouse

Toolkit: The Definitive Guide to Dimensional

Modeling. Wiley.

[2] Databricks. (2023). Medallion Architecture for Data

Lakehouse. Retrieved from databricks.com.

Paper ID: SR241215083913 DOI: https://dx.doi.org/10.21275/SR241215083913 1321

http://www.ijsr.net/
https://www.databricks.com/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[3] Snowflake Inc. (2023). Best Practices for Distributed

Data Warehousing.

[4] Delta Lake Documentation. (2023). Delta Lake for

Modern Data Warehousing.

[5] Stonebraker, M., & Cattell, R. (2011). Ten Rules for

Scalable Performance in 'Big Data'.

[6] Microsoft. (2022). SQL Server Partitioning Strategies.

[7] Apache Hive. (2023). Optimizing Query Execution

Plans.

[8] Presto Documentation. (2023). Caching in Distributed

Query Engines.

[9] Amazon Web Services. (2023). ACID Compliance in

Modern Architectures.

[10] Google BigQuery Documentation. (2023). Consistency

and Data Reconciliation.

Author Profile

Aneehika earned her B.Tech. degree in

Electronics and Communication Engineering from

JNTU Hyderabad, India, and her M.S. degree in

Electrical Engineering from Southern Illinois

University, Edwardsville. Throughout her career, she has

worked in the healthcare industry, developing a deep

understanding of healthcare systems and data engineering.

Paper ID: SR241215083913 DOI: https://dx.doi.org/10.21275/SR241215083913 1322

http://www.ijsr.net/

