
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Transforming Healthcare API Development with

Generative AI: A Dynamic and Efficient Swagger

Framework

Saritha Kondapally

Abstract: This article explores how Generative AI integrates with modern API standards to enhance Swagger specifications dynamically.

Focusing on provider management APIs in healthcare, the AI-driven framework demonstrates significant efficiency, reducing manual

effort and errors while maintaining OpenAPI compliance. The approach is cross-functional, with potential applications in industries like

finance and retail. The study highlights methodologies, technical challenges, validation processes, and efficiency gains, emphasizing the

transformative role of Generative AI in API development.

Keywords: Generative AI, Healthcare, Swagger Specification Automation, API Standardization, Swagger UI, AI in Software Engineering,

AI-enhanced Documentation, Provider Management APIs, Stoplight Studio, Machine Learning in API Design, Postman for API Testing

1. Introduction

In the healthcare industry, robust and well-documented APIs

are critical for enabling seamless interoperability between

systems, managing provider data, and ensuring secure data

exchanges. However, the process of creating and maintaining

API specifications is often plagued by fragmented

documentation, manual inconsistencies, and time

inefficiencies. Data scattered across legacy systems leads to

integration delays, while traditional methods of manually

designing APIs can take hours, especially when adhering to

complex standards like OpenAPI 3.0.

Generative AI presents an innovative solution to this

challenge. By dynamically generating, enhancing, and

validating Swagger specifications, the API development

process becomes significantly faster, more consistent, and

error-free. This article presents a case study on provider APIs

in healthcare, showcasing how Generative AI addresses

common challenges." for improved readability. Key

highlights include:

• Dynamic Swagger generation based on natural language

queries and contextual data.

• Enhancements such as health check endpoints,

standardized security schemas, and CRUD operations.

• Validation and testing using tools like Postman, Swagger

UI, and Stoplight Studio.

This approach, while rooted in healthcare, highlights cross-

domain applicability and scalability across industries.

2. Methodology

Dynamic Swagger Generation

Generative AI dynamically generates Swagger specifications

based on natural language inputs and pre-existing contextual

data. The steps include:

• Query Input: A natural language description such as

"Create APIs for managing provider data."

• Context Retrieval: Relevant data is retrieved from a vector

database containing API components, schemas, and

existing Swagger files.

Paper ID: SR241216081942 DOI: https://dx.doi.org/10.21275/SR241216081942 1175

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

• Chunking: Pre-existing Swagger files and relational

database schemas are broken into logical units.

• Similarity Search: Relevant segments are identified using

vector-based similarity searches powered by LangChain

retrieval mechanisms.

• AI-Driven Generation: A generative AI model produces

the Swagger JSON file dynamically by contextualizing

inputs.

Enhancements to API Specification

Static enhancements are added to ensure the generated

Swagger specification is comprehensive and standardized.

These include:

a) A health-check endpoint (/healthcheck) to monitor

API availability.

b) Standardized Security Schemes: JWT-based bearer

authentication (bearerAuth).

c) Additional endpoints for managing provider data:

• /providers/{id} (GET): Retrieve provider details.

• /providers/{id} (PATCH): Update provider details

partially.

Role of LangChain Chains and Multi-Agents

The system leverages LangChain’s chaining capabilities and

multi-agent workflows to:

• Facilitate Context Management: Chains connect the

vector store search (retrieval) and generation model,

ensuring relevant context is dynamically fed into the

generative process.

• Enable Task Segmentation: Multi-agent workflows

handle separate tasks, such as retrieval, generation, and

enhancement, ensuring a modular and scalable

architecture.

• Enhance Validation Pipelines: Agents validate

generated outputs against predefined schemas and

business rules, ensuring accuracy and adherence to API

standards.

Cross-Domain Adaptability

The framework supports seamless adaptation to multiple

industries. By altering input queries and context (e.g.,

financial data, retail product catalogs), the system

dynamically generates API specifications for any domain

with minimal reconfiguration.

3. Results

The AI-driven process successfully generated and enhanced

Swagger API specifications for provider management. Key

outputs include:

Key Endpoints:

• /providers (POST): Create a new provider.

• /providers/{id} (GET): Retrieve provider details by ID.

• /providers/{id} (PATCH): Update provider details.

• /healthcheck (GET): API health status.

Key Components:

• ProviderCreateInput: Input schema for creating

providers.

• ProviderUpdateInput: Input schema for updating

providers.

• Provider: Response schema defining provider attributes.

Security:

Bearer authentication using JWT tokens (bearerAuth).

Time Comparison:
. Creation Time Validation Time Total Time

Manual Process ~4 hours ~1 hour 5 hours

AI-Driven Process ~5 minutes ~10 minutes 15 minutes

The results demonstrate a significant reduction in

development time while maintaining consistency, accuracy,

and scalability.

Validation and Testing

The generated Swagger specifications were validated and

tested using:

a) Swagger UI:

• Visualized the API structure to confirm adherence to

OpenAPI standards.

• Tested endpoints interactively with input payloads and

monitored responses.

Example Test Result:

Request Body (POST /providers):
{

 "last_name": "Smith",

 "specialties": "Cardiology",

 "phone_numbers": "123-456-7890"

}

Response:
{

 "id": "1",

 "last_name": "Smith",

 "specialties": "Cardiology",

 "phone_numbers": "123-456-7890"

}

Postman:

• Simulated real-world API requests to verify endpoint

behaviors.

• Validated success responses (201 Created) and error

handling (400 Bad Request).

Stoplight Studio:

• Rendered and modified the Swagger specification to

demonstrate flexibility and scalability.

Significance of Validation:

• Real-time testing ensured endpoints behaved as expected.

• Error detection highlighted schema misalignments and

missing fields.

• Scalability validation confirmed adaptability to other

domains and tools.

Process Flow Diagram

Paper ID: SR241216081942 DOI: https://dx.doi.org/10.21275/SR241216081942 1176

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

4. Discussion

Resolving Documentation Fragmentation

Generative AI addresses the challenge of scattered and

inconsistent documentation by:

• Centralizing Information: Retrieval-augmented

generation consolidates details from multiple sources,

ensuring cohesive API specifications.

• Dynamic Contextualization: Contextual data ensures

domain-specific requirements are met without manual

intervention.

• Traceability: Each component’s origin (e.g., Swagger

files, database schemas) is clearly labeled for transparency

and maintainability.

Efficiency, Accuracy, and Scalability

Generative AI drastically reduces manual effort, automating

repetitive tasks while maintaining accuracy. By integrating

standardized components, validation mechanisms, and

security schemas, errors are minimized. This methodology

extends seamlessly to other domains such as finance, retail,

and logistics.

5. Conclusion

Generative AI represents a transformative approach to API

development, offering:

• Efficiency: Manual effort is reduced from hours to

minutes.

• Accuracy: Standardized and validated specifications

enhance reliability.

• Adaptability: Cross-domain applicability ensures

scalability with minimal customization.

The healthcare provider API case study demonstrates the

potential of AI-driven Swagger generation and enhancement.

By automating API design and validation, organizations can

accelerate development cycles, unify fragmented

documentation, and ensure long-term scalability. Future

enhancements include integrating CI/CD pipelines for

continuous validation and leveraging advanced testing

strategies.

References

[1] OpenAPI Initiative. "OpenAPI Specification."

https://swagger.io/specification/

[2] AAAI. "Artificial Intelligence in Software

Development." https://www.aaai.org/

[3] Hugging Face. "Transformers Documentation."

https://huggingface.co/docs

[4] LangChain. "Documentation."

https://docs.langchain.com/

[5] Lewis, P., Oguz, B., Rinott, R., Riedel, S., & Stoyanov,

V. (2020). "Retrieval-Augmented Generation for

Knowledge-Intensive NLP Tasks." Advances in Neural

Information Processing Systems, 33, 9459-9474.

https://arxiv.org/abs/2005.11401

[6] Brundage, M., Avin, S., Wang, J., et al. (2020). "Toward

Trustworthy AI Development: Mechanisms for

Supporting Verifiable Claims." arXiv preprint

arXiv:2004.07213. https://arxiv.org/abs/2004.07213

[7] Postman. "API Development Platform."

https://www.postman.com/

[8] Stoplight Studio. "Design, Develop, and Document

APIs." https://stoplight.io/studio

Paper ID: SR241216081942 DOI: https://dx.doi.org/10.21275/SR241216081942 1177

http://www.ijsr.net/
https://swagger.io/specification/
https://www.aaai.org/
https://huggingface.co/docs
https://docs.langchain.com/
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2004.07213
https://www.postman.com/
https://stoplight.io/studio

