
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Docker vs. Kubernetes on Google Cloud Platform

for Cost-Effective Spring Boot Deployments

Srinivas Adilapuram

B.Tech in Computer Science Engineering

Designation: Software Engineer, Equifax Inc.

Email id: srini.adilas[at]gmail.com

Abstract: Deploying Java Spring Boot applications on Google Cloud Platform (GCP) involves choosing cost-effective solutions. While

Kubernetes provides powerful orchestration, its high costs make it impractical for smaller-scale applications. This article proposes

Docker as an alternative for containerizing Spring Boot applications on a single virtual machine (VM). Docker ensures consistent

environments, simplifies management, and reduces infrastructure costs. This approach enhances deployment reliability and streamlines

operations, making it ideal for budget-conscious teams.

Keywords: Docker, Spring Boot, Google Cloud Platform, containerization, virtual machine, cost-effective deployment

1.Introduction

Java Spring Boot is a framework that simplifies the

development of Java-based applications [1]. It provides

pre-configured templates that reduce the effort needed to

set up new projects. Developers use Spring Boot to build

microservices, REST APIs, and enterprise-level

applications [2]. It ensures flexibility, scalability, and

rapid development cycles.

Spring Boot works by embedding essential tools like

Tomcat, Jetty, or Undertow servers directly into the

application [3]. It eliminates the need for manual server

configurations. Developers only focus on writing business

logic. It manages dependencies, configurations, and

integrations with minimal setup. However, deploying

Spring Boot applications is not always straightforward. [4]

One common challenge is environmental consistency.

Applications often work differently in development,

testing, and production environments. Misaligned

configurations or missing dependencies lead to errors and

delays. Additionally, managing multiple Spring Boot

applications on a single virtual machine (VM) can cause

resource conflicts [5]. These issues waste time, increase

operational costs, and strain team resources.

Addressing these challenges is critical for cost efficiency.

Issues such as debugging errors, resource conflicts, and

manual scaling increase operational costs and strain team

productivity. Streamlining the deployment process with

tools that ensure consistency and scalability is essential to

maximize performance while minimizing expenses.

While Kubernetes is a popular solution for orchestrating

containerized applications, its implementation is often

expensive and complex, especially for smaller-scale

deployments. A more practical alternative is Docker [6].

Docker encapsulates applications and their dependencies

into portable, isolated containers. This enables consistent

environments across all stages of deployment. By running

Dockerized Spring Boot applications on a single VM in

Google Cloud Platform (GCP), teams can avoid the high

costs and overhead associated with Kubernetes clusters

[7]. Docker provides reliability, scalability, and cost

savings via better resource usage and reduced debugging

time [8].

2.Literature Review

The use of Docker and containerization has been a

significant development in application deployment.

Researchers and forums have discussed its impact on

performance, cost, and scalability extensively. Docker

simplifies application management. It packages

applications with their dependencies into isolated

containers. [9]

Spring Boot is very popular for developing microservices.

Soni et al. (2017) described how Spring Boot provides

pre-configured tools, reducing setup time for Java

developers. This helps streamline development and testing

[1]. Sharma (2019) also extended this by showcasing

Spring Boot’s compatibility with cloud platforms like

Google Cloud, which improves scalability [5].

Kubernetes is another popular orchestration tool.

However, it is resource-intensive for small-scale

deployments. Vasireddy et al. (2023) noted Kubernetes

excels at auto-scaling but requires significant

infrastructure, making it costly for smaller teams [7].

Onyebuchi (2021) suggested Docker as an alternative for

teams operating on limited budgets. He found that Docker

achieves similar results on single VMs without the

complexity of Kubernetes [6].

3.Problem Statement: Challenges of Single

VM deployments

Deploying Java Spring Boot applications in a single

virtual machine (VM) environment on Google Cloud

Platform (GCP) without Kubernetes orchestration poses

significant challenges. While Kubernetes excels at auto-

scaling and managing resources for large-scale

applications, its implementation requires multiple nodes

Paper ID: SR241217083147 DOI: https://dx.doi.org/10.21275/SR241217083147 1217

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

and additional infrastructure. This significantly increases

costs, making Kubernetes impractical for smaller teams

and projects.

The high infrastructure costs, management overhead, and

additional fees associated with Kubernetes clusters create

barriers for organizations working on limited budgets. A

single VM setup with Docker offers a simpler and more

cost-effective solution. Without proper containerization,

teams face issues such as environmental inconsistencies,

dependency conflicts, and inefficient resource allocation.

These problems lead to debugging delays, wasted

resources, and restricted scalability.

Inconsistent Development, Testing, and Production

Environments

The absence of a standardized runtime environment often

results in discrepancies across development, testing, and

production stages. Developers frequently encounter the

infamous "it works on my machine" issue due to

differences in configuration, operating systems, or

dependency versions [9]. For instance:

Figure 1: Mismatched functionality represented as

Docker Code

Such mismatches end up breaking functionality,

introducing bugs, and therefore leading to significant

debugging time and resources. This delays project

timelines, frustrates teams, and increases costs as a direct

result. [1]

Dependency Conflicts

A single VM setup often involves running multiple

applications [10], which can create dependency conflicts.

Different applications may require different versions of

the same library. Without isolation, this results in failures

or unexpected behavior. For example:

Figure 2: Local Environment (Application A)

Figure 3: Production Environment (Application B):

Figure 4: Highlighting Conflict

In this example, Application A uses Spring Boot version

2.4.0 locally, while Application B relies on version 2.6.0

in production. These mismatches can result in errors when

deploying to a single VM where both applications coexist,

as the shared runtime environment cannot accommodate

conflicting dependencies.

Without Docker's isolation capabilities, such issues

disrupt workflows, delay debugging, and increase costs.

This often leads to "it works on my machine" problems.

Restricted Scalability

A single VM has limited resources (CPU, memory, and

storage). Scaling applications within this setup requires

manual resource allocation. If user demand increases

suddenly, the application may crash due to insufficient

resources. For example:

Figure 5: Manual Scaling with Limited Resources

Unlike Kubernetes, which auto-scales resources based on

demand, manual scaling is error-prone and inefficient.

This affects the reliability of critical operations such as

file transfers. [1] [4] [5]

Lack of Isolation

Running multiple applications on a single VM without

containerization leads to resource contention [11]. One

misbehaving process can consume excessive CPU or

memory, degrading the performance of other applications.

For instance:

Figure 6: Resource Contention Due to Lack of Isolation

Figure 6 shows how one poorly behaving process can

monopolize system resources, negatively impacting other

applications running on the same VM due to the lack of

isolation.

As a result, this lack of isolation jeopardizes application

reliability and forces teams to invest additional effort in

monitoring and troubleshooting. [5]

Increased Operational Costs

Debugging, maintaining dependencies, and manually

scaling applications consume valuable time and resources.

Operational costs increase as teams spend more hours

resolving issues instead of building new features.

Moreover, single VM setups often require additional

monitoring tools to ensure stability, further escalating

expenses. [11]

Paper ID: SR241217083147 DOI: https://dx.doi.org/10.21275/SR241217083147 1218

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

High Kubernetes Overhead

Kubernetes solves many of the problems listed above, but

can be quite resource-intensive. This is because it requires

multiple nodes to form a cluster, which increases

infrastructure costs [12]. For example:

Figure 7: Kubernetes Cluster Setup Overhead

The YAML configuration above is an example of a basic

Kubernetes cluster setup with three distinct nodes. The

goal is to show Kubernetes' resource-intensive nature,

which increases infrastructure costs. GCP can charge

additional fees for managing more clusters, making

Kubernetes expensive for smaller setups. The cost often

outweighs the benefits, especially when simpler solutions

like Docker on a single VM can address the operational

needs without being as resource or cost intensive. [2]

Solution: Adopting Docker for Containerized

Deployments

1. Preparing the Spring Boot Application

For the first step, you will be creating a Spring Boot

application. Use the spring-boot-starter-web dependency

for REST APIs. A simple Dockerfile is needed to

containerize the application.

Here's the pom.xml Configuration for Spring Boot

application.

Figure 8: Configuring Maven dependencies for a basic

Spring Boot application. This configuration sets up the

required libraries for a web-based API.

2. Creating the Dockerfile

The Dockerfile specifies instructions to build the Docker

image for the Spring Boot application.

Figure 9: Dockerfile to containerize the Spring Boot

application.

This file defines the container's environment. The

ENTRYPOINT command ensures the container runs the

application on startup.

3. Building the Docker Image

Use the docker build command to create the image. Tag

the image appropriately for easy reference. The command

for this is: docker build -t spring-boot-app:latest. This step

compiles the Dockerfile and packages the application into

a deployable container image.

4. Running the Docker Container

Run the container locally to test its functionality. Use the -

p flag to map the container port to the host machine. The

command for this is: docker run -d -p 8080:8080 spring-

boot-app:latest This command deploys the application in a

container and binds port 8080 of the container to the host's

port 8080.

5. Deploying to GCP VM

Transfer the Docker image to a GCP virtual machine. Use

the Google Container Registry (GCR) to host the image

and pull it from the VM.

The command to give here is to push Docker image to

GCR. This involves inputting the following functions:

Figure 11: Uploading the Docker image to GCR.

With this, the image should now be accessible globally

within your GCP project. Next, you need to deploy the

Dockerized Spring Boot application on a GCP VM. For

this use the following function:

Figure 12: Deploying the Dockerized Spring Boot

application on a GCP VM.

With this step, you will be able to run the application

within the cloud environment, ensuring consistent

performance.

6. Managing Dependencies and Isolation

Docker containers isolate dependencies, preventing

conflicts between applications. Each container runs in its

own environment, ensuring stability. To verify that

containers are running properly for deployment, use the

following command: docker ps This command confirms

active containers and validates that no conflicts exist.

7. Scaling Within a Single VM

To scale, replicate the Docker container. Use multiple

instances to distribute traffic and enhance performance.

Paper ID: SR241217083147 DOI: https://dx.doi.org/10.21275/SR241217083147 1219

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 13: Scaling the Spring Boot application by running

multiple containers.

Here, each container handles separate requests,

distributing the load and improving reliability.

5. Cost Impacts

Adopting Docker for deploying Spring Boot applications

on a VM in GCP brings substantial cost benefits.

The most important aspect that Docker addresses is that it

eliminates the need for a multi-node Kubernetes cluster,

drastically reducing infrastructure expenses [14]. A single

VM with Docker ensures reliable deployments without the

overhead of maintaining additional nodes or paying for

managed Kubernetes services.

On average, the costs and infrastructure may be as

follows:

• Single VM with Docker: GCP’s e2-standard-4 instance

(4 vCPUs, 16 GB RAM) costs approximately $12z3.25

per month if running 24/7 in the US region can support

multiple containers, handling small-to-medium-scale

workloads efficiently. [13]

• Kubernetes Cluster: A GCP Kubernetes Engine

(GKE) cluster with a minimum of three e2-standard-4

nodes incurs a base monthly cost of $293.49 for

compute (3 x $97.93). Additionally, GKE charges a

cluster management fee of $0.10, pro-rated down to

each second. This mounts to $74.40 per month, making

the total infrastructure cost approximately $367.89 per

month. [15]

Docker simplifies container management, reducing

operational overhead and eliminating the need for a

dedicated DevOps engineer, potentially saving an annual

salary of $120,000. [2] [6] It also enhances development

efficiency by providing a consistent runtime environment,

minimizing deployment discrepancies and debugging

time. This consistency accelerates delivery cycles,

enabling developers to focus on feature development. For

instance, saving 10 hours monthly on debugging for a

three-person team at $50 per hour translates to $18,000

annually.

4.Conclusion

Deploying Java Spring Boot applications on a single VM

in GCP without Kubernetes orchestration introduces

several challenges, including inconsistent environments,

resource conflicts, and restricted scalability. These

challenges take root from the need for cost-effective,

reliable, and scalable solutions. While Kubernetes is a

robust orchestration platform offering advanced features

like automated scaling and self-healing, its complexity

and cost make it more suitable for larger-scale

deployments where such capabilities justify the

investment. Kubernetes, while effective for large-scale

orchestration, often proves cost-prohibitive for smaller

setups due to its infrastructure demands and management

complexity.

The adoption of Docker as a containerization solution

bridges this gap effectively. Docker provides isolated,

portable environments that standardize the deployment

process across development, testing, and production

stages. This eliminates the "it works on my machine"

problem by ensuring consistency. Additionally, Docker

enables simplified dependency management and efficient

resource utilization, addressing critical concerns of

reliability and performance. [9] [10]

References

[1] R. K. A. G. a. R. V. R. Soni, Spring: Developing Java

Applications for the Enterprise, Packt Publishing

Ltd., 2017.

[2] S. A. S. Aggarwal, "Spring Boot Application using

Three Layered Architecture in Java," Jaypee

University of Information Technology, Solan, H.P.,

Solan, 2023.

[3] S. Selvaraj, "Building RESTful APIs with Spring

Boot (Java).," in Mastering REST APIs: Boosting

Your Web Development Journey with Advanced API

Techniques, Berkeley, CA, Apress, 2024, pp. 291-

347.

[4] Jacky, "Avoiding Pitfalls: Common Challenges in

Backend Development with Spring Boot," 25 11

2023. [Online]. Available:

https://dev.to/jackynote/avoiding-pitfalls-common-

challenges-in-backend-development-with-spring-

boot-3ink. [Accessed 30 11 2024].

[5] S. Sharma, astering microservices with java: Build

enterprise microservices with Spring Boot 2.0, Spring

Cloud, and Angular, Packt Publishing Ltd., 2019.

[6] D. J. R. a. A. F. Silva, "Toward Optimal

Virtualization: An Updated Comparative Analysis of

Docker and LXD Container Technologies.,"

Computers, vol. 13, no. 4, p. 94, 2024.

[7] A. Onyebuchi, "Dockerizing Spring Boot

Microservices and deploying them on Google Cloud

Platform," 2 8 2021. [Online]. Available:

https://medium.com/@wizardom/dockerizing-spring-

boot-microservices-and-deploying-them-on-google-

cloud-platform-5e83cb197198. [Accessed 30 11

2024].

[8] G. R. P. K. Indrani Vasireddy, "Kubernetes and

Docker Load Balancing: State-of-the-Art Techniques

and Challenges," International Journal of Innovative

Research in Engineering and Management, vol. 10,

no. 6, pp. 49-54, 2023.

[9] J. A. Pardo, "“But… it works on my machine…”," 4

12 2023. [Online]. Available:

https://medium.com/@josetecangas/but-it-works-on-

my-machine-cc8cca80660c. [Accessed 30 11 2024].

[10] K. W. &. C. B. David Moreau, "Containers for

computational reproducibility," Nature Reviews

Methods Primers volume, p. 50, 13 06 2023.

[11] R. T. C. J. M. P. S. a. P. S. Queiroz, "Container-based

virtualization for real-time industrial systems—a

systematic review," ACM Computing Surveys, vol.

56, no. 3, pp. 1-38, 2023.

Paper ID: SR241217083147 DOI: https://dx.doi.org/10.21275/SR241217083147 1220

http://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor 2023: 1.843

Volume 13 Issue 12, December 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

[12] Raheem, "Understanding Pod Overhead in

Kubernetes: Impact and Control," 19 10 2023.

[Online]. Available:

https://medium.com/@abdulraheem.akv/understandin

g-pod-overhead-in-kubernetes-impact-and-control-

6ced59e7dafb. [Accessed 30 11 2024].

[13] Knieling, N., "Google Cloud Platform Pricing,"

GCloud Compute, 2024. [Online]. Available:

https://gcloud-compute.com/e2-standard-4.html.

[Accessed: Nov. 30, 2024].

[14] Google Cloud, "Google Kubernetes Engine pricing,"

Google Cloud, 2024. [Online]. Available:

https://cloud.google.com/kubernetes-engine/pricing.

[Accessed: Nov. 30, 2024].

Paper ID: SR241217083147 DOI: https://dx.doi.org/10.21275/SR241217083147 1221

http://www.ijsr.net/

