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Abstract: This paper explores the properties of distributive lattices, focusing on the uniqueness of complements for each element 

within such structures. Distributive lattices, fundamental in lattice theory, exhibit a specific algebraic structure where the distributive 

law holds. The study investigates the complementation property in these lattices, demonstrating that for any given element, its 

complement is unique within the lattice. The uniqueness of complements is established through careful mathematical proofs, shedding 

light on the inherent characteristics of distributive lattices. The implications of this uniqueness property are discussed, showcasing its 

significance in understanding the structural workings of distributive lattices and its possible applications in various mathematical and 

logical contexts. 
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1. Introduction 
 

Lattice theory is a branch of mathematics that deals with the 

study of partially ordered sets and the structures that can be 

built upon them, known as lattices. Lattice theory has its 

roots in various mathematical disciplines, including order 

theory, algebra, and geometry. The development of lattice 

theory can be traced back to the early 20th century, with key 

contributions from mathematicians such as Garrett Birkhoff, 

Oystein Ore, and George Grätzer. Lattice are algebraic 

structures that capture the essence of order relationships. At 

its core, lattice theory deals with the study of partially 

ordered sets where any two elements have a unique 

supremum (least upper bound or join) and a unique infimum 

(greatest lower bound or meet). These structures offer a 

unified framework for understanding various mathematical 

concepts and have applications in diverse fields such as 

computer science, physics, and engineering. 

 

A partially ordered set (poset) is a set equipped with a binary 

relation (usually denoted by ≤) that satisfies three 

fundamental properties: reflexivity, transitivity, and 

antisymmetry. In lattice theory, these posets become the 

building blocks for constructing lattices. 

 

In conclusion, lattice theory has evolved from its historical 

roots in order theory to become a fundamental and 

interdisciplinary branch of mathematics. Its concepts and 

structures continue to influence various fields, making it an 

essential area of study with a rich history and promising 

future developments. 

 

2. Historical Backgrounds 
 

Lattice theory historical background that traces its roots back 

to the late 19th and early 20th centuries. The development of 

lattice theory was closely tied to the broader evolution of 

algebraic and mathematical thinking during this period.  

 

The foundations of lattice theory were laid by the pioneering 

work of George Boole in the mid-19th century. Boole's 

algebra of logic, presented in his influential work "The Laws 

of Thought" (1854), provided a formal framework for 

reasoning about logical relationships using algebraic 

notation. 

 

The next significant step came with the work of Ernst 

Schroder, a German mathematician, who expanded upon 

Boole's ideas and developed a systematic approach to the 

study of lattices. Schroder’s work, published in the late 19th 

and early 20th centuries, focused on the algebraic structure 

of partially ordered sets and introduced key concepts such as 

distributive lattices. 

 

The early 20th century saw the emergence of lattice theory 

as a distinct and independent branch of mathematics. Garrett 

Birkhoff, an American mathematician, played a pivotal role 

in shaping the field. In his landmark work "Lattice Theory" 

(1940), Birkhoff provided a comprehensive treatment of the 

subject, formalizing the study of lattices and their properties. 

 

Birkhoff's lattice theory was instrumental in unifying and 

generalizing various mathematical structures, such as 

Boolean algebras and group theory, under the broader 

umbrella of lattice-ordered structures. His contributions 

helped establish lattice theory as an essential tool in diverse 

areas of mathematics, including algebra, topology, and logic. 

 

During the mid-20th century, lattice theory continued to 

evolve with the efforts of mathematicians like Alfred North 

Whitehead and Charles Sanders Peirce, who explored 

lattice-related ideas in the context of logic and philosophy. 

The connections between lattice theory and other branches 

of mathematics, such as universal algebra and category 

theory, further enriched the field. 

 

In the latter half of the 20th century and into the 21st 

century, lattice theory found applications in computer 

science, particularly in the study of formal languages, 

automata theory, and program semantics. The lattice-
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theoretic approach provided valuable tools for analyzing the 

structure of computational processes and reasoning about 

program correctness. 

 

In summary, lattice theory has a historical journey deeply 

intertwined with the development of mathematical logic and 

abstract algebra. From its origins in the work of Boole and 

Schroder to the foundational contributions of Birkhoff and 

others, lattice theory has evolved into a versatile and 

powerful mathematical framework with applications across 

various disciplines. Its historical development reflects the 

ongoing search to understand and formalize the fundamental 

structures that underlie mathematical reasoning. 

 

Preliminaries: 

 

Distributive Lattice: 

A lattice L is called distributive lattice if for any elements a, 

b and c of L, it satisfies following distributive properties: 

1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

2) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

 

If the lattice L does not satisfies the above properties, it is 

called a non-distributive lattice. 

 

Example: 1. The power set P (S) of the set S under the 

operation of intersection and union is a distributive function. 

Since, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and, also a ∨ (b ∧ c) = 

(a ∨ b) ∧ (a ∨ c) for any sets a, b and c of P(S). 

 
Complemented lattices: 

Let L be a bounded lattice with lower bound 0 and upper 

bound I. Let a be an element if L. An element x in L is 

called a complement of a if a ∨ x = I and a ∧ x = 0 

 

A lattice L is said to be complemented if L is bounded and 

every element in L has a complement. 

 
 

Example:  

Determine the complement of a and c in fig: 

 
 

Solution:  

The complement of a is d. Since, a ∨ d = 1 and a ∧ d = 0 the 

complement of c does not exist. Since, there does not exist 

any element c such that c ∨ c'=1 and c ∧ c'= 0. 

 

Unique element: 

A unique element refers to an element that possesses a 

distinct position or role within the lattice structure, 

distinguishing it from other elements based on certain 

properties or relationships defined by the lattice. 

 

A lattice is a partially ordered set in which every pair of 

elements has a unique supremum (least upper bound) and 

infimum (greatest lower bound). Within this context, a 

unique element could be characterized by its specific 

position with respect to these bounds or other lattice-specific 

operations. 

 

Examples of unique elements in a lattice may include  
1) Maximal element: The element that is greater than or 

equal to every other element in the lattice. In a lattice of 

integers under the usual order relation, the top element 

is positive infinity. 

2) Minimal element: The element that is less than or 

equal to every other element in the lattice. In a lattice of 

integers under the usual order relation, the bottom 

element is negative infinity. 

3) Greatest fixed point: In a lattice of functions ordered 

by point wise ordering, a unique element might be a 

function that remains unchanged after the application of 

a certain operator, such as the least fixed point of a 

monotone function. 

4) Least common multiple: In a lattice of integers under 

divisibility, the unique element representing the LCM of 

two integers is a unique element in the lattice. 

5) Greatest common divisor: Similarly, in a lattice of 

integers under divisibility, the unique element 

representing the GCD of two integers is another 

example. 

 

These examples illustrate how unique elements in a lattice 

can have specific roles or properties within the structure, 

providing a foundation for understanding and analyzing the 

relationships between elements in the lattice. 

 

Lattice theory: 

Lattice theory is a branch of abstract algebra that deals with 

the study of lattices, which are partially ordered sets with 
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certain algebraic structures. A lattice consists of a set of 

elements, equipped with a binary relation (partial order) that 

satisfies two fundamental properties: the existence of a least 

upper bound (join or supremum) and a greatest lower bound 

(meet or infimum) for any pair of elements in the set. 

 

Formally, a lattice is defined as an ordered pair (L, ≤), where 

L is a set and ≤ is a partial order on L. For any two elements 

a, b in L, the join (a ∨ b) is the least upper bound of {a, b}, 

and the meet (a ∧ b) is the greatest lower bound of {a, b}. 

These operations satisfy certain properties, such as 

commutatively, associatively, and absorption laws, which 

govern the behavior of joins and meets within the lattice. 

 

Lattice theory finds applications in various fields, including 

mathematics, computer science, and physics. It provides a 

framework for studying the structure and relationships 

within partially ordered sets, allowing for the analysis of 

concepts like algebraic structures, closure operators, and 

topology. Lattices play a crucial role in understanding and 

solving problems related to order and hierarchy in diverse 

mathematical and theoretical contexts. 

 

 
 

 

Complement uniqueness:  

Complement uniqueness refers to a characteristic or property 

of a set of elements wherein each element is distinct and 

exclusive from the others, ensuring that no two elements 

within the set are identical or redundant in their 

representation. In other words, each element in the set 

complements the others by offering a unique and non-

overlapping contribution, thereby adding diversity or 

distinctiveness to the entire collection. This concept is often 

encountered in various fields such as mathematics, logic, 

and information theory, where the emphasis is on ensuring 

that each element or component serves a distinct role or 

purpose without duplication. Complement uniqueness is 

fundamental in maintaining precision, clarity, and efficiency 

in the representation or utilization of sets and collections. 

 

 

Theorem1: Let (𝐿, 𝑉, Λ) be a distributive lattice. If an 

element 𝛼𝜖𝐿 has complemented then prove that it is unique. 

Proof: Let (𝐿, 𝑉, Λ) be a distributive lattice 𝛼𝜖𝐿. If possible, 

let ‘b’ and ‘c’ be the complements of 𝛼𝜖𝐿 . 

 𝑎’ =  𝑏 𝑎 𝑉 𝑏 =  1  

 𝑎 Λ 𝑏 =  0  
 

 𝑎’ =  𝑐 𝑎 𝑉 𝑐 =  1  

 𝑎 Λ 𝑐 =  0  
 𝑏 =  𝑏 𝑉 0  

 =  𝑏 𝑉  𝑎 Λ 𝑐  

 =  (𝑏 𝑉 𝑎) Λ (𝑏 𝑉 𝑐) Distributive law……………… 

 =  (𝑎 𝑉 𝑏) Λ (𝑏 𝑉 𝑐) Commutative law …………….  

  

 =  1 Λ  𝑏 𝑉 𝑐  ...………………….. (1)  

  

 𝑐 =  𝑐 𝑉 0  

 =  𝑐 𝑉   𝑎 Λ 𝑏  
 =    𝑐 𝑉 𝑎  Λ   𝑐 𝑉 𝑏  Distributive law……………… 

 = ( 𝑎 𝑉 𝑐) Λ ( 𝑏 𝑉 𝑐) Commutative law …………….  

 =  1 Λ ( 𝑏 𝑉 𝑐)  

 𝑐 =  𝑏 𝑉 𝑐 ………………………….. (2) 

 

According to (1) and (2), ) 𝑏 =  𝑐 ∴ the distributive lattice L 

has a unique complement, denoted by 𝛼𝜖𝐿. 

 

Theorem 2: Prove that the bounded poset, the least element 

is unique? 

 

Proof: Similar to Theorem 1, let P be a bounded poset with 

two least elements, say c and d. 

Since c is the least element, 𝑑 ≤ 𝑐 must hold. Similarly, 

since d is the least element, 𝑐 ≤ 𝑑 must hold.  

Combining these inequalities, we get 𝑐 = 𝑑, proving the 

uniqueness of the least element. 

 

Theorem 3: Prove that the bounded poset, the greatest 

element is greater than or equal to any other element? 

 

Proof: Let  𝑃, ≤  be a bounded poset. A poset is a set 

𝑃 equipped with a partial order relation ≤ that satisfies the 

following properties. 

1) Reflexivity: ∀𝑎 ∈ 𝑃, 𝑎 ≤ 𝑎 

2) Antisymmetry: ∀𝑎, 𝑏 ∈ 𝑃, 𝑖𝑓 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑎, then 

𝑎 = 𝑏 
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3) Transitivity: ∀𝑎, 𝑏, 𝑐 ∈ 𝑃, 𝑖𝑓 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤
𝑐, 𝑡ℎ𝑒𝑛 𝑎 ≤ 𝑐 

 

Now, since  𝑃, ≤  is a bounded poset, it has a greatest 

element, denoted as 0.  

 

This means that for any element 𝑎 in the poset, 0 ≤ 𝑎. 

 

Now, let’s consider an arbitrary element 𝑥 in the poset. By 

the property of the greatest element, 0 ≤ 𝑥. as well, by 

reflexivity, 𝑥 ≤ 𝑥. 
 

Now, by transitivity, we can combine these two inequalities. 

0 ≤ 𝑥 ≤ 𝑥  
 

This implies that the greatest element 0 is greater than or 

equal to any other element 𝑥 in the poset. 

∴ We have proven that in a bounded poset, the greatest 

element is greater than or equal to any other element. 

 

Hence complete the proof. 

 

Theorem 4: Prove that the bounded poset, the least element 

is less than or equal to any other element? 

Proof: Let 𝑃, ≤  be a poset, and let 𝐵 be the set of lower 

bounds of 𝑃. 
By definition, 𝐵 is non-empty because every element in 𝑃 is 

a lower bound for itself. Now, 

If is the least element of 𝑃, we want to show that 𝐿 ≤ 𝑥 for 

any 𝑥 in 𝑃. 

The least element 𝐿 has two properties: 

1. 𝐿 is a lower bound for 𝑃: This means that 𝐿 ≤ 𝑥 for all 𝑥 

in 𝑃. 

2. 𝐿 is the greatest lower bound for 𝑃: If 𝑦 is any other lower 

bound for 𝑃, then 𝑦 ≤ 𝐿. 
Now, let 𝑥 be an arbitrary element of 𝑃. since 𝐿 is a lower 

bound for 𝑃, we have 𝐿 ≤ 𝑥 

This establishes that the least element is less than or equal to 

any other element in the poset. 

In conclude, the least element in a bounded poset is a lower 

bound for the entire set, and therefore, it is less than or equal 

to any other element in the poset. 

 

Hence the complete proof. 

 

3. Conclusion 
 

The distributive lattice 𝐿 has a unique complement, denoted 

by 𝛼𝜖𝐿, as may be completed from equations (1) and (2), 

where 𝑏 =  𝑐. The common structural features of 𝐿 are 

highlighted by this, which suggests a unique complement 

element inside the lattice. The uniqueness of elements 

𝑐 𝑎𝑛𝑑 𝑑 in the bounded poset 𝑃 is well-known by 

representing 𝑐 = 𝑑 during study. The unique least element 

of the poset is confirmed, and this conclusion is based on the 

coupled inequalities 𝑑 ≤ 𝑐 𝑎𝑛𝑑 𝑐 ≤ 𝑑. 
 

We have successfully well-known the validity of Theorem 3 

for a bounded poset (𝑃, ≤). By demonstrating the existence 

of a greatest element denoted as 0 and utilizing the 

properties of the partial order relation ≤, we have shown that 

for any arbitrary element x in the poset, the greatest element 

0 is indeed greater than or equal to 𝑥. This proof aligns with 

the foundational principles of reflexivity, transitivity, and 

the definition of a bounded poset. Therefore, we can 

confidently conclude that in a bounded poset, the greatest 

element is greater than or equal to any other element, 

thereby completing the proof. 

 

Last theorem that in a bounded poset, the least element, 

denoted as 𝐿, serves as a lower bound for the complete set. 

This is verified by the detail that 𝐿 is less than or equal to 

any arbitrary element 𝑥 in the poset, thereby validating the 

theorem. 
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