International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

Random Forest Classifier to Predict Financial Data

Aumkar Wagle

Random Forest Classifier is a powerful machine learning
algorithm widely utilized in the field of finance to predict
uptrends and downtrends in financial data. By leveraging the
collective wisdom of multiple decision trees, the Random
Forest Classifier excels in handling complex datasets with
numerous features and variables. This ensemble learning
technique works by aggregating the predictions of individual
decision trees to provide accurate and reliable classifications,
making it a popular choice for financial analysts and traders
seeking to forecast market movements and make informed
investment decisions.

I will be using this algorithm to predict positive moves (up
trend).

We will first import all the libraries related to this exercise.
The use cases for these libraries ranges from being able to
store and manipulate data via dataframes to using learning
algorithms on our dataset.

import warnings
warnings.filterwarnings(‘ignore’)
warnings.simplefilter(action="ignore,
category=FutureWarning)

Data manipulation

import pandas as pd

import numpy as np

Plotting

import matplotlib.pyplot as plt

import seaborn as sns

Preprocessing

from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import (
train_test_split,

RandomizedSearchCV,
TimeSeriesSplit,

)

from sklearn.metrics import (accuracy_score,
f1_score,

recall_score,

precision_score,

roc_auc_score,

auc)

from sklearn.metrics import (classification_report,
confusion_matrix

)

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV,
RandomizedSearchCV

I am using a file that has been downloaded from Yahoo
Finance onto my work computer. Not pinging the Yahoo
Finance API directly to retrieve the data since | believe it is
constantly pinged by my company server and hence pulling
the data is not easy. Therefore, | downloaded the file directly
from the website and will be using Pandas to access it.
#import os to know which directory we are in

import os

o0s.getcwd()

'C:\\Users\\waglaum'

#change the directory to the one where the data file from
Yahoo Finance has been downloaded
os.chdir('C:\\Users\\waglaum\\Downloads')

#confirming the directory has changed successfully
o0s.getcwd()

'C:\\Users\\waglaum\\Downloads'
The dataset that we are working on is that of an Indian index
Nifty 50. Data worth 5 years has been drawn on a daily basis.

#reading and plotting the downloaded data

cross_val_score df = pd.read_csv('Nifty50.csv', index_col=0,
) parse_dates=True)[['Open’, 'High', ‘Low', 'Close','Adj
metrics Close','VolumeT]
from sklearn.metrics import (precision_recall_curve, df.shape
roc_curve, plt.plot(df['Adj Close);
RocCurveDisplay, df.head()
ConfusionMatrixDisplay
Date Open High Low Close Adj Close | Volume

29-10-2018 | 10078.0996 | 10275.2998 | 10020.3496 | 10250.8496 | 10250.8496 | 364400

30-10-2018 | 10239.4004 | 10285.0996 | 10175.3496 | 10198.4004 | 10198.4004 | 289800

31-10-2018 | 10209.5498 10396 10105.0996 | 10386.5996 | 10386.5996 | 375000

01-11-2018 | 10441.7002 | 10441.9004 | 10341.9004 | 10380.4502 | 10380.4502 | 348500

02-11-2018 | 10462.2998 | 10606.9502 | 10457.7002 10553 10553 421200

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
WWW.ijsr.net

Paper |D: SR24418155701

DOI: https://dx.doi.org/10.21275/SR24418155701 1932

https://www.ijsr.net/

International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

20000 -
18000 ~
16000 ~
14000
12000 A W

10000 ~

8000 ~

T T
2019 2020

As we can see from the above data, the trend is mainly
upwards which is coherent with the idea that over a period of
time markets usually move upwards. The data also includes
the massive downturn that was seen in the market due to the

T
2021

T T T
2022 2023 2024
returns. This is good for our model building exercise as it
encompasses the general idea of pregoressive markets along
with a downturn to capture negative returns as well.

COVID-19 pandemic so it also includes negative territory for ~ df.describe()

Open High Low Close Adj Close Volume
count 1233.00 1233.00 1233.00 1233.00 1233.00 1.23E+03
mean | 14634.85544 | 14706.97444 | 14535.58445 | 14624.23452 | 14624.23452 | 4.21E+05

std 3228.140787 | 3228.071332 | 3225.610422 | 3228.117879 | 3228.117879 | 2.18E+05
min | 7735.149902 | 8036.950195 | 7511.100098 7610.25 7610.25 0.00E+00
25% | 11542.7002 11588.5 11461.84961 | 11527.4502 11527.4502 | 2.61E+05
50% 15073.25 15188.5 15008.84961 | 15108.09961 | 15108.09961 | 3.54E+05
75% | 17599.90039 | 17683.15039 | 17485.84961 | 17599.15039 | 17599.15039 | 5.55E+05
max | 20156.44922 | 20222.44922 | 20129.69922 | 20192.34961 | 20192.34961 | 1.81E+06

#checking for null values in the dataset
df.isnull().sum()

Open 3
High 3
Low 3
Close 3
Adj Close 3
Volume 3
dtype: int64

df['return] = np.log(df['Adj Close"] / df['Adj Close"].shift(1))
create logarithmic returns

df['return_sign'] = np.sign(df[‘return’]) # create a variable to
check the sign depending on the above define return

#create function to compute exponential moving average

def EMAcreate(price, period):
modifiedPrice = price.copy()
sma_period = price.rolling(period).mean()
modifiedPrice.iloc[0:period] = sma_period[0:period]
ema_period = modifiedPrice.ewm(span=period,
adjust=False).mean()

return ema_period

df['/Adj Close Lagged] = df['Adj Close".shift(1) # lagged
adjusted close price

df['Open Lagged'] = df.Open.shift(1) # lagged open price
df['Close Lagged'] = df.Close.shift(1) # lagged close price
df['High Lagged' = df.High.shift(1) # lagged high price
df['Low Lagged’] = df.Low.shift(1) # lagged low price
df['Volume Lagged] = df.VVolume.shift(1) # lagged Volume

creating lagged returns

lags =8

cols =]

for lag in range(1, lags+1):
col_ret ="ret_%d' % lag
df[col_ret] = df['return’].shift(lag)
cols.append(col_ret)

#creating a list of features that includes rolling and lagged
returns
features_list =[]
for r in range(10, 65, 5):
df['Ret_'+str(r)] = df['return.rolling(r).sum()

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWW.ijsr.net

Paper |D: SR24418155701

DOI: https://dx.doi.org/10.21275/SR24418155701 1933

https://www.ijsr.net/

International Journal of Science and Research (1JSR)

ISSN: 2319-7064
SJIF (2022): 7.942

df['Std_"+str(r)] = df['return'].rolling(r).std()

features_list.append('Ret_'+str(r))

features_list.append('Std_"+str(r))
features_list.append(‘ret_over_21d")
features_list.append('MOM_1d")
features_list.append('MOM_5d")
features_list.append('MA_5d")
features_list.append('EMA_7d")
df.dropna(inplace = True)

df['ret_over_5d] = np.log(df['Adj Close Lagged] / df['Adj
Close Lagged1.shift(5)) # lagged 5-day return
dff'ret_over_21d] = np.log(df['Adj Close Lagged] / df['Adj]
Close Lagged'.shift(21)) # lagged 21-day return
df[MOM_1d"] = df['Adj Close Lagged].diff(1) # lagged 1-
day adjusted close price difference

df[MOM_5d" = df['Adj Close Lagged.diff(5) # lagged 5-
day adjusted close price difference

df[MA_5d] = df['Adj Close Lagged’.rolling(1).mean() #
lagged 5-day adjusted close price moving average
df[EMA_7dT = EMAcreate(df['/Adj Close Lagged], 1) #
lagged 7-day adjusted close price exponential moving
average

df.dropna(inplace = True)

All the 50 reated features are still part of our original
dataframe 'df' so we will now create a copy of our dataframe
to store the feature set as a new datafram ‘features_df'.

create a copy of our dataframe
features_df = df.copy()

features_df.head(5)

3 ® S IS (=} N
s | < = @ | o £ £ o | =4 B8B83 ;' 8N
o =2 o o O =] = E 3 - ol -cl o -cl > °>’ > > <I <
o|T | |0 |z |8|e 5|85 | B | |B| 2159122352
< 8108 g 4|22 i
T | © b
b=t
<
o
~ | 818|883 |3 8| 8 = 81| 8
o = <] — I52) I52) o g =] © o <t ~ N X S = 8 o o
s S o o S =) S 3 S » 159) © 73] < N b S o S S
) o < [Tp) o o l=) 0 o Yol (o2} (o2} D N~ o] ™ e S (o)) Lo [Te]
7 0 < < o o re)) - N ™~ ~ © P © S =) <) ~ N N
o — ~ < ~ ~ ~ S] 9] 7o) Py = 8 = S S - Lo [o9) oo
H L0 7o) o) o o ™ o3} o))) : : = o) o3} o)
o © © < < < ™ < 0 © o o o o Q@ < \=} < 0 n
N — — — — — — — A I — —
i — i i — i — — —
o | B3| 88|88 > | 8 29|32 | 2
o — © — — — o S ™ S 0 ~ o 0 s N O =3 ™ I52)
B o [} o o o S e o =] o] © ~ — 3 9 S 8 o o
9 S » e}) o) S N o S S N o © o Q] =4 S S S
o oo o © o oy N S ; ~ — s = S 8 o o ; ; ~ ~
— ~ ~ < 9] o N~) 7o) 4 4) : : = «©) o)
o <t < ™ ™ ™ ™ < < © o o o o < Q@ Q w < <
N — — — — — ! — — ! ! A N — —
— — — — — — — — —
o | 2383|1888 S| 3 o | o | & | 8
o 52} © @0 @0 @ o oo} — — N~ 0 © © g N~ 2 2 it 1
B = [} o o3} » S 3 o o o~ I} ~ [¥o} S Q = g o o
9 =) <] < 1<) > S N o Ire) <) o~ o o o Q s 2 p=4 re))
) N ~ o = — ® | 8 ' @ | © s = 3 8 S S 5 5 o2} D
I N [To) [Tl o o N~ L0 ~ g g g : d o o Te) [Te)
o ™ ™ ~ ™ ™ ™ < ™ < o o o o S Q 3] = ™ ™
N — — — — — — — i @ — —
— — — — — — — — —
28138333 3| 3 w | 8|8
S [52] 5] 0 ™ ™ o Q o] ™ <t o Te] o~ = N 3 3 5] 0
S =) » o S =) S N o) =)) e} N © N P & b=y » o)
b Irg] S < S S S < o S =) < o) =) o S %2 S Q 1<) o)
> 4 [RS ||| 8|8 |3 |~|= gl 8| a|85|a|a 8|5
o | 4| W | d| 0| o |~ | S ' o | o 18| 8|8 || | <« ==
— — < L0 ~ ~ © o N d d) - - ~ N o o
o ™ ™ [N [N o ™ 4 ™ ™ o o o o Q@ 4 o] ™ ™
N — — — — — ! — — ! ! 1 5 — —
— — — — — — — — —
wn | S| a3 3| 3 > | 3 o 3| 3
— — — © — — o 8 52} ™ o < N o y b 3 3 ™ I52)
& o o o) o o S 9 S =) < T} ~ o e NS = Qo S S
b S S 1o S S =4 s o S Ire] ~ o ~ o N 5 S 2 S S
- [Y n N N 3 = S > =1 © ~ ~ ~ o 3 o) 3 <) o)
o oS =) Te] o3 o ~ =)] oo < P = = = S S @ : <e) oo
= re] S N < < [75) ~ - g) d : : ~ V) ~ ~
o SN ™ — — — ™ @ [N ™ o o o o Q@ Q@ N @ [[N
N — — — — — — — h < — —
i — i i — i — — i
5 rows x 50 columns 0 Open 930 non-null float64
features_df.info() 1 High 930 non-null float64
<class 'pandas.core.frame.DataFrame'> 2 Low 930 non-null float64
Datetimelndex: 930 entries, 2019-07-30 to 2023-10-27 3 Close 930 non-null float64
Data columns (total 50 columns): 4 Adj Close 930 non-null float64
Column Non-Null Count Dtype 5 Volume 930 non-null ~ float64
mmm mmmmem e e 6 return 930 non-null float64
Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
WWW.ijsr.net
Paper 1D: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1934

https://www.ijsr.net/

International Journal of Science and Research (1JSR)

ISSN: 2319-7064
SJIF (2022): 7.942

7 return_sign
8 Ret_10
9 Std_10
10 Ret_15
11 Std_15
12 Ret_20
13 Std_20
14 Ret_25
15 Std_25
16 Ret_30
17 Std_30
18 Ret_35
19 Std_35
20 Ret_40
21 Std_40
22 Ret_45
23 Std_45
24 Ret_50
25 Std_50
26 Ret_55
27 Std_55
28 Ret_60
29 Std_60

30 Adj Close Lagged 930 non-null
31 Open Lagged
32 Close Lagged

33 High Lagged
34 Low Lagged

35 Volume Lagged

36 ret 1
37 ret 2
38 ret 3
39 ret 4
40 ret 5
41 ret_6
42 ret 7
43 ret 8
44 ret_over_5d

45 ret_over_21d

46 MOM_1d
47 MOM_5d
48 MA_5d

49 EMA_T7d

930 non-null float64
930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

930 non-null float64
930 non-null float64

float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64
930 non-null float64

dtypes: float64(50)
memory usage: 370.5 KB

Target or Label Definition

Label or the target variable is the variable we are trying to
predict. Here, the target variable is whether Nifty Index price
will close up or down on the next trading day. If the
tomorrow’s closing price is greater than the 0.99995 of
today’s closing price, then we will buy the Nifty Index, else
we will sell the index.

We assign a value of +1 for the buy signal and 0 for the sell
signal to target variable. The target can be described as :
Target = 1, if pt+1 > 0.99995 * pt

0, if pt+1 Otherwise

where, pt is the Adjusted closing Price of Nifty Index and
pt+1 is the 1-day forward Adjusted Closing Price of the index.

features_df[Target] = np.where(features_df['Adj
Close'].shift(-1)> 0.99995 * features_df['Adj Close'],1,0)

#creating set for our explained variable

y = features_df['Target']

Now that we have our list of features, we will try and find
which features are correlated above a threshold of 0.9. We do
this to remove any redundant features present in our features
list as they would not provide a value add to our model.

#create a visualisation of the correlation matrix of features to
know which features are highly correlated
sns.heatmap(features_df.corr()>0.9,

annot=True,

annot_kws={"size": 8},

fmt=".2",

linewidth=.5,

cmap="coolwarm",

cbar=True); #cmap="crest", virids, magma

plt.title('Features Set Correlations’);

Volume 13 Issue 4, April 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

Paper |D: SR24418155701

WWW.ijsr.net

DOI: https://dx.doi.org/10.21275/SR24418155701 1935

https://www.ijsr.net/

International Journal of Science and Research (1JSR)

ISSN: 2319-7064
SJIF (2022): 7.942

1.0

0.8

- 0.6
- 0.4

e e e

umwmwmmmww
;

return -

Ad) Close
Ad) Close Lagged

Close Lagged -
Low Lagged -

0.0

=- 13bue|
PSS Wi

pPS_Jan0 12
09 124

GG 19y

05 124

St 19y

0t 124

GE 19y

0€ 124

GZ =4

0Z_ 1Y

GT 124

0T 13Y
L3

G 1

£ 12

T 1=d
pabbey mo
pabbeq aso)0
pabbe asopD [py
uinizu
2s500D Ipy
Mo

uado

drop the highly correlated features

New features_df

remove the first feature that is correlated with any other

feature

features_df.dro

:]_)

features, axis

p(drop_correlated

=0.9):

(data, threshold

=set()

def correlated features

col_corr

corr_matrix

New_features_df

0

for i in range(len(corr_matrix.columns

features df.corr

)):

if abs(corr_matrix.iloc[i, j]) > threshold:

#creating our explanatory variables set without the explained

variable as a part of it

for j in range(i):

1) #dropping

sign'],axis=

‘return

p(l
return sign as I'm not finding it extremely important to be

added at this point.

New_features_df.dro

A=

(i]

= corr_matrix.columns
(colname)

colname

col_corr.add
return col_corr

:1)

A.drop(['Target],axis

X
X

total correlated features

s_df)

features(feature

drop_correlated_features = correlated

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWW.ijsr.net

1936

DOI: https://dx.doi.org/10.21275/SR24418155701

Paper |D: SR24418155701

https://www.ijsr.net/

International Journal of Science and Research (1JSR)

2319-7064

ISSN
SJIF (2022)

7.942

PT WOW 000000 ¥TT- 6096¥€°00T- 96T0SY'8ET- 06€0599°2G- ¥1v668'¢C- 06€001"9- 8¢88170'¢8- T6€006°09¢-

PTZ 49n0 38l ¥60900°0- 2558100 LELYC00- 1.8G¢20°0- Tv.LEE00- 9855¢0°0- T618T0°0- L09€¢0°0-
PS Jan0 184 877.€00°0- ¥802¢0°0- 9v9€€00- 0v.9€0°0- ¢0..€0°0- 065800°0- L090T0°0- 0L0€20°0-
07 19d ¢C9¢T0'0- €8.0¢0°0- CTLTED0- 65¥820°0- 0T65¥0°0- L910T0°0- ¢S10¢0°0- 6.¥8¢0°0-
GT 19 98¥.00°0- 129020°0- 2816200~ 0€85SE0°0- ¢€19G50°0- 8.6000°0 €¢E8T00- 0¥0120°0-
0T PIS €VEB00°0 €ET800°0 /8T800°0 ¢12900°0 129900°0 L¢vS00°0 €¢S900°0 8G/500°0
0T 3194 1267200~ L.¥0¢0°0- 896€¢0°0- 8888€0°0- ¥2eEY00- 999500°0- 6881700~ 9G¢6¢0°0-
g8 12l L6ST00°0- 2682100 612,000~ L¥9600°0 €55000°0- 9506000 ¢ST900°0 9/8000°0-
L3181 ¢68¢T0°0 61¢L00°0- L¥9600°0 €55000°0- ¥66T00°0- ¢ST900°0 9/8000°0- ¢L1¢00°0-
9 184 61¢.00°0- L¥9600°0 €45000°0- 7667000~ £90T00°0- 9/8000°0- ¢L1¢00°0- 8.6000°0-
G 18l L¥9600°0 €45000°0- ¥66T00°0- £90T00°0- 18.600°0- ¢L1¢00°0- 8.6000°0- ¥€0700°0
7 104 €55000°0- 7667000~ £90T00°0- 1826000~ 069800°0- 8.6000°0- ¥€0%700°0 ¢11.00°0-
REY ¥66700°0- £90T00°0- 18.600°0- 069800°0- ¥11¢70°0- ¥€0¥00°0 ¢1T.00°0- ¢9€¢00°0-
AR Y £90T00°0- 18.600°0- 069800°0- y1T¢T0°0- 880500°0- ¢1T.00°0- ¢9€¢00°0- 06T¥00°0-
T 384 1816000~ 0698000~ ¥112T0°0- 8805000~ 8¢0¢00°0- ¢9€¢00°0- 06T¥00°0- Ov¥€TO0-
2966e7 swnjoy 0°00066¢ 0°00G.€€ 0°008¢.LE 0'000€LE 0°00€.48¢€ 0°00€0€¢ 0'00€86T 000097
uimesu. 069800°0- 112100~ 880500°0- 8¢0200°0- 999T10°0- 06T100°0- OvvET0"0- ¢1€800°0-
SWINJOA 0'00S.€E€ 0°008¢.€ 0°000€LE 0°00€.8€ 0°009.5€ 0°00€86T 0000947 0°00€s¢c

uado 00000S'TS9TT G6T00L'8LVTT T6E00V'CCETT T6E0ST YTETT G6T00L'8GCTT T6E0STCPS6T | 609665 TCS6T | 6TC6VY98C6T

areq L0-50-6T70C 80-G0-6T0C 60-G0-6T0C 07-50-6T0C €1-G0-6T0C 0¢-0T-€20¢ €¢-0T-€¢0¢C G¢-0T-€¢0C

Volume 13 Issue 4, April 2024

©
c
S
>
o
a
o]
(3
=
2
>
()
o
S
[
[
o
o
£
[
2
Qo
>
o
@]
[72]
[70]
(5]
Q
Q
<
c
[
(o8
@)
o]
[
()
S
[
y—
D
o
=
=
LL

sr.net

WWW.

1937

DOI: https://dx.doi.org/10.21275/SR24418155701

Paper |D: SR24418155701

https://www.ijsr.net/

International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

g ©
> 8 —
@ =y clo|lw|ol| | &3
c = c < — o~ ™ < o © ~ o) = = I - I I
8_ S S = ! ! ! ! o o ! = ! Hl ! ! g g >
= (3]
oO|ls|B|g|e|le|je|e|le|e|le|le|l2|B|l2|2|5]|3]|0
> - o 2] o o o |
E 8| g | 2
=) = o
<
(5]
3
©
[a]
o
N S o o~ o o o o~ © o~ 0 Lo © T} ™ 3
¥ 8|l 2| | Q|la|lF|eo|lo|lal|ldImIR| 0|l o8| a9 0| o
o Ire) (=3 o} (= [+] < — (] — I D — ™ ~ N =] < < D
= Q S ™ S e} ™ < I ~ 2 S N & 5 o — O o) &
| . < I [92] o — o o o o o o <t o [52] < [32] N o
Qlx|lgs|algl|ala|la|ld8|a|8|a8|8|a|8|8|a|8|a]|a
o S 3 o S S) =) S =) S S o S S o) o o ry]
N o’ 1 1 1 1 1 1 [1 [1 [1 [FI{
—
o
N S o 0 o o o~ o o o o~ < © © 0 Lo — ™ o >
) S 2 « d T} o I 53} © — &3 ~ Irs) 3 ™ ™ Lo IS I59)
o Irs) 1= o (=3 [2} 2} < — ™ — S o) < ™ o] Lo N < [=}
= 2 S S =] ™ o) ™ < I ~ 2 S o} 2 re) < N N S
; - ~ 9 3 - o i o o o S S 17} S N D < < S
Q| s|g|3|g|&|e|la&|la|a|a|8|a|8|8|e|a8|a|3]| <
S 1 N = ™ S < < S < < o < < = < < < < N
— Ll

989 rows x 19 columns

X.info()

<class 'pandas.core.frame.DataFrame'>
Datetimelndex: 989 entries, 2019-05-07 to 2023-10-27
Data columns (total 19 columns):

Column Non-Null Count Dtype
0 Open 989 non-null float64

1 Volume 989 non-null float64

2 return 989 non-null float64

3 Volume Lagged 989 non-null float64
4 ret 1 989 non-null float64

5 ret 2 989 non-null float64

6 ret 3 989 non-null float64

7 ret 4 989 non-null float64

8 ret 5 989 non-null float64

9 ret 6 989 non-null float64

10 ret 7 989 non-null float64

11 ret 8 989 non-null float64

12 Ret 10 989 non-null float64
13 Std_10 989 non-null float64
14 Ret_15 989 non-null float64
15 Ret 20 989 non-null float64
16 ret_over_5d 989 non-null float64
17 ret_over_21d 989 non-null float64
18 MOM_1d 989 non-null float64

dtypes: float64(19)
memory usage: 154.5 KB

Value counts for class 1 and 0

pd.Series(y).value_counts()

1 533

0 456

Name: Target, dtype: int64

Above we see that the two classes are not perfectly balanced
i.e. there are more values for class 1 as compared to class 0.
Although this could be addressed by changing our earlier
threshold for what get's classifed as 1 or 0, it has been kept as
is. This is because we see that the general trend in the data is
upwards i.e. positive return and that is also the characteristic
of the equity market since the economy of a developing

country is expected to grow over time (unless it is part of a
depression cycle).

That being said, there isnt too severe of a class imbalance in
this case.

Splitting the datasets into training and testing data.

X _train, X _test, y train, y test = train_test_split(X, v,
test_size=0.2, shuffle=False)

Output the train and test data size

print(f"Train and Test Size {len(X_train)}, {len(X_test)}")
Train and Test Size 791, 198

Above we have split the data into training and test data with
a 80-20 ratio and shuffle has been set to False because Time
Series data is sequential in nature.

The training data is used to fit the model. The algorithm that
we are going to use will use the training data to learn the
relationship between the features and the target. The test data
will then be used to evaluate the performance of the model
that we have built.

Base Model

We now build a base model with the default parameters. Our
base model will be built using the Random Forest Classifier
which is a machine learning algorithm that creates a forest of
decision trees and combines their predictions to make a final
prediction i.e it is an ensemble learning technique combining
numerous classifiers to enhance a model's performance.

model = RandomForestClassifier() #default parameters
model.fit(X_train,y_train)

Predicting the test dataset

y_pred = model.predict(X_test)

Predict Probabilities

y_proba = model.predict_proba(X_test)

Now that we have fitted our model and added the code to
predict as well, we will need to know if the model is any good
at making these predictions.

acc_train = accuracy_score(y_train, model.predict(X_train))
acc_test = accuracy_score(y_test, y_pred)

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
WWW.ijsr.net

Paper |D: SR24418155701

DOI: https://dx.doi.org/10.21275/SR24418155701

1938

https://www.ijsr.net/

International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

print(fTrain Accuracy: {acc_train:0.4}, Test Accuracy:
{acc_test:0.4})

Train Accuracy: 1.0, Test Accuracy: 0.5101

Comparing the Train Accuracy to the Test Accuracy, we can
see that clearly the data is overffiting.

Taking a step back, Accuracy is essentially checking the
predictions that the model made against the actual values in
the set. In other words we are comparing the prediction that
was made with the actual values from our dataset. Keeping
this in mind, we see that the Train Accuracy is 1.0 and Test
Accuracy is 0.5101. This means that our model is memorizing
the training data and is not able to generalize on a test dataset.
This occurs when the model is too complex and is thus unable
to generalize well on data points outside of what is learnt from
the training data. It also indicates that the model has low bias
meaning that it is overly expressive. In the Bias - Variance
tradeoff, this model has high Variance and low Bias.

Thus, in the following part of this exercise we look to reduce
the complexity of this model i.e. reduce the variance problem
so that it is able to generalize on a test dataset. This can be
achieved through hyperparameter tuning.

But let us first look at some more interesting observations
about how the algorithm has performed.

disp = ConfusionMatrixDisplay.from_estimator(
model,

X _test,

y_test,

display_labels=model.classes_,
cmap=plt.cm.Blues

)
disp.ax_.set_title('Confusion matrix’)
plt.show()
Confusion matrix
56
54
0 45 42
52
T 50
s
s
E 48
- 46
- a4

Predicted label

From the above confusion matrix we can see that the true
positive values are greater than the false positive i.e. the
model is predicting the uptrend (class 1) correctly more times
than it is misclassifying it. The same is with the case with the
downtrend (class 0).

This is another indication that we would need to fine tune our
model some more.

We will now take a look at the Classification Report which
will give us a table of addtional metrics we can use to guage
the performance of the model.

print(classification_report(y_test, y_pred))
precision recall fl-score support

0 045 052 048 87
1 057 050 054 111

accuracy 0.51 198
macroavg 051 051 051 198
weightedavg 052 051 051 198

Building from the comments about the confusion matrix
wherein the true positives were predicted greater than the true
negatives is also visible in the accuracy report when we take
a look at the 'precision’ column. Precision tells us how many
selected items are relevant whereas 'recall’ tells us how many
relevant items are selected.

We will now look at another metric called the ROC (Receiver
Operating Characteristic) Curve below.

Display ROCCurve

disp_roc = RocCurveDisplay.from_estimator(
model,

X_test,

y_test,

name='"Random Forest Classifier")
disp_roc.ax_.set_title(ROC Curve’)
plt.plot([0,1], [0,1], linestyle="--")

plt.show()

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
WWW.ijsr.net

Paper |D: SR24418155701

DOI: https://dx.doi.org/10.21275/SR24418155701 1939

https://www.ijsr.net/

International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

ROC Curve

1.0~

0.8

0.6

0.4

True Positive Rate (Positive label: 1)

0.0

—— Random Forest Classifier (AUC = 0.56)

T
0.0 0.2 0.4

T
0.6 0.8 1.0

False Positive Rate (Positive label: 1)

The ROC Curve tells us the tradeoff netween the True
Positive Rate and the False Positive Rate and hence we check
for the steepness of the curve. The graph shows us the
performance of the model at all classification thresholds.
The objective is to defeat randomness with our model so an
ROC curve greater than 0.5 would mean that it is working
better than a fair coin toss. In our case we see that the value is
greater than 0.5. Although the value isnt extremely high and
signifies a week learning algorithm, it will perform better than
a coint toss for predictions.

Now that we have seen how our base model is performing, we
will try and enhance it's performance. This is done through
hyperparameter tuning. Hyperparameters are parameters that
are not directly learnt within estimators. It is possible and
recommended to search the hyperparameter space for the best
cross validation score. Any parameter provided when
constructing an estimator may be optimized in this manner.
Hyperparameter tuning is a method to choose the best loss
minimizing function to maximize Accuracy or whatever
function we are scoring for (example F1 score, etc.)

First we will get a list of parameters used in our model, then
we will tune the hyperparameters to select the best score by
TimeSeriesSplit cross-validation. Once we get a list of the
best parameters and best score, we will tune our base model
to use these parameters. Once we have fitted the model with
the best parameters, we will go through all the above metrics
again to see if the model has improved or not.

Get params list
model.get_params()

{'bootstrap": True,

‘ccp_alpha’; 0.0,
‘class_weight': None,
‘criterion’: 'gini’,

'max_depth": None,
'max_features": 'auto’,
'max_leaf_nodes": None,
'max_samples": None,
'min_impurity_decrease”: 0.0,
'min_samples_leaf": 1,
'min_samples_split": 2,
'min_weight_fraction_leaf": 0.0,
'n_estimators": 100,

'n_jobs': None,

‘oob_score": False,
‘random_state": None,
'verbose": 0,

‘warm_start": False}

Timeseries CV 3-split
tscv = TimeSeriesSplit(n_splits=5, gap=1)

Hyper parameter optimization
param_grid = {

'n_estimators': [25, 50, 100, 150],

'max_features": ['sqrt’, 'log2', None],

'max_depth": [3, 6, 9],

'max_leaf_nodes": [3, 6, 9],
}
The RandomizedSearchCV implements a “fit” and a “score”
method and perform randomized search on hyperparameters.
The parameters of the estimator used to apply these methods
are optimized by cross-validated search over parameter
settings. Not all parameter values are tried out, but rather a

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWW.ijsr.net

Paper |D: SR24418155701

DOI: https://dx.doi.org/10.21275/SR24418155701

1940

https://www.ijsr.net/

International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

fixed number of parameter settings is sampled from the
specified distributions.

perform random search

rs = RandomizedSearchCV(model, param_grid, n_iter=100,
scoring="f1', cv=tscv,verbose=0)

rs.fit(X_train, y_train)

RandomizedSearchCV/(cv=TimeSeriesSplit(gap=1, max_trai
n_size=None, n_splits=5, test_size=None),
estimator=RandomForestClassifier(), n_iter=100

param_distributions={'max_depth": [3, 6, 9],
'max_features": ['sqrt’, 'log2', None],
'max_leaf nodes": [3, 6, 9],
'n_estimators': [25, 50, 100, 150]},
scoring="f1")

best parameters
rs.best_params_

{'n_estimators": 25,
'max_leaf_nodes": 3,
'max_features": 'sqrt’,
'max_depth": 9}

best score
rs.best_score_

0.6387682740908026

Tuned Model

Now that we have our best parameters and score, we will refit
our base modeel to use these parameters to check for
improvements in the performance of our model.

Refit the Random Forest Classifier with the best params
cls = RandomForestClassifier(**rs.best_params_)
cls.fit(X_train, y_train)

eval_set=[(X_train, y_train), (X _test, y_test)]

score = cross_val_score(cls,X_train,y_train,cv=tscv)
print(fMean CV Score : {score.mean():0.4}")
Mean CV Score : 0.5145

Predicting the test dataset

y_pred = cls.predict(X_test)

Measure Accuracy

acc_train = accuracy_score(y_train, cls.predict(X_train))
acc_test = accuracy_score(y_test, y_pred)

Print Accuracy

print(f\n Training Accuracy \t: {acc_train :0.4} \n Test
Accuracy \t\t:{acc_test :0.4}")

Training Accuracy : 0.6106

Test Accuracy :0.5657

We can now see that the Training and Test Accuracy scores
have changed as compared to our base model. The Training
score has drastically reduced meaning that our algorithm is
not memorizing the dataset anymore. It has come down
severly from a perfect score of 1 which indicates that the
algorithm has been simplified and isnt as complex as before.
The score is also extremely close to the Test Accuracy Score,
although the Test Accuracy score is still a little lower than
Training Accuracy score, there isnt as much of a gap between
the two anymore. This means that although there is slight
overfitting taking place, the tuned model is performaing better
than the base model which is the purpose of hyperparameter
tuning. This is also visible in the fact that the Test Accuracy
score of the tuned model is greater than the base model.

Display confussion matrix

disp = ConfusionMatrixDisplay.from_estimator(
cls,

X_test,

y_test,

display_labels=model.classes_,
cmap=plt.cm.Blues

)

disp.ax_.set_title('‘Confusion matrix’)

plt.show()

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

WWW.ijsr.net

Paper |D: SR24418155701

DOI: https://dx.doi.org/10.21275/SR24418155701 1941

https://www.ijsr.net/

International Journal of Science and Research (1JSR)

ISSN: 2319-7064
SJIF (2022): 7.942

We can see that the True Positives VS False Positive ratio has
increased as compared to that from the base model. This is one
of the indicators that the model is performing better as it is able
to classify the positive class better.

Classification Report

print(classification_report(y_test, y_pred))
recall fl-score support

precision

0 052
1 057

accuracy

0.15
0.89

True Positive Rate (Positive label: 1)

0+ 13
o
2
Z
v
=
=

1+ 12

T

0

0.23
0.70

0.57

87

111

198

Confusion matrix

- 40

- 30

20

Predicted label

macro avg 055 052 0.46 198
weightedavg 055 057 049 198

Display ROCCurve

disp_roc = RocCurveDisplay.from_estimator(
cls,

X_test,

y_test,

name="Tuned Random Forest Classifier’)
disp_roc.ax_.set_title(ROC Curve’)
plt.plot([0,1], [0,1], linestyle="--")

plt.show()

ROC Curve

1.0 4

0.8

0.6 1

0.4 4

0.2 1

0.0 A

—— Tuned Random Forest Classifier (AUC = 0.57)

0.2

T
0.6 0.8 1.0

False Positive Rate (Positive label: 1)

Volume 13 Issue 4, April 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

Paper |D: SR24418155701

WWW.ijsr.net

DOI: https://dx.doi.org/10.21275/SR24418155701

1942

https://www.ijsr.net/

International Journal of Science and Research (1JSR)
ISSN: 2319-7064
SJIF (2022): 7.942

The ROC Curve metric now has a greater score of 0.57
compared to the score of 0.56 of the base model. Although it
is only slightly better and the results arent extremely
promising, it still shows an improvement in our model.

Concluding Remarks

We can see from our Training and Test Accuracy Scores for
the base and tuned model that this algorithm is indeed a week
learner. However, if the features are further refined and
selected, then the accuracy score would improve. It takes
quite a lot of time (can take 6 months or so) to try and get the
correct set of features to improve the model.

No random seed parameter has been applied through this
exercise so rerunning the code could lead to different results
since the data would be split randomly on the rerun. This
would give different training and test datasets on every run.

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
WWW.ijsr.net

Paper |D: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701

1943

https://www.ijsr.net/

