
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Random Forest Classifier to Predict Financial Data

Aumkar Wagle

Random Forest Classifier is a powerful machine learning

algorithm widely utilized in the field of finance to predict

uptrends and downtrends in financial data. By leveraging the

collective wisdom of multiple decision trees, the Random

Forest Classifier excels in handling complex datasets with

numerous features and variables. This ensemble learning

technique works by aggregating the predictions of individual

decision trees to provide accurate and reliable classifications,

making it a popular choice for financial analysts and traders

seeking to forecast market movements and make informed

investment decisions.

I will be using this algorithm to predict positive moves (up

trend).

We will first import all the libraries related to this exercise.

The use cases for these libraries ranges from being able to

store and manipulate data via dataframes to using learning

algorithms on our dataset.

import warnings

warnings.filterwarnings('ignore')

warnings.simplefilter(action='ignore',

category=FutureWarning)

Data manipulation

import pandas as pd

import numpy as np

Plotting

import matplotlib.pyplot as plt

import seaborn as sns

Preprocessing

from sklearn.preprocessing import MinMaxScaler

from sklearn.pipeline import Pipeline

from sklearn.model_selection import (

train_test_split,

RandomizedSearchCV,

TimeSeriesSplit,

cross_val_score

)

metrics

from sklearn.metrics import (precision_recall_curve,

roc_curve,

RocCurveDisplay,

ConfusionMatrixDisplay

)

from sklearn.metrics import (accuracy_score,

f1_score,

recall_score,

precision_score,

roc_auc_score,

auc)

from sklearn.metrics import (classification_report,

confusion_matrix

)

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import GridSearchCV,

RandomizedSearchCV

I am using a file that has been downloaded from Yahoo

Finance onto my work computer. Not pinging the Yahoo

Finance API directly to retrieve the data since I believe it is

constantly pinged by my company server and hence pulling

the data is not easy. Therefore, I downloaded the file directly

from the website and will be using Pandas to access it.

#import os to know which directory we are in

import os

os.getcwd()

'C:\\Users\\waglaum'

#change the directory to the one where the data file from

Yahoo Finance has been downloaded

os.chdir('C:\\Users\\waglaum\\Downloads')

#confirming the directory has changed successfully

os.getcwd()

'C:\\Users\\waglaum\\Downloads'

The dataset that we are working on is that of an Indian index

Nifty 50. Data worth 5 years has been drawn on a daily basis.

#reading and plotting the downloaded data

df = pd.read_csv('Nifty50.csv', index_col=0,

parse_dates=True)[['Open', 'High', 'Low', 'Close','Adj

Close','Volume']]

df.shape

plt.plot(df['Adj Close']);

df.head()

Date Open High Low Close Adj Close Volume

29-10-2018 10078.0996 10275.2998 10020.3496 10250.8496 10250.8496 364400

30-10-2018 10239.4004 10285.0996 10175.3496 10198.4004 10198.4004 289800

31-10-2018 10209.5498 10396 10105.0996 10386.5996 10386.5996 375000

01-11-2018 10441.7002 10441.9004 10341.9004 10380.4502 10380.4502 348500

02-11-2018 10462.2998 10606.9502 10457.7002 10553 10553 421200

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1932

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

As we can see from the above data, the trend is mainly

upwards which is coherent with the idea that over a period of

time markets usually move upwards. The data also includes

the massive downturn that was seen in the market due to the

COVID-19 pandemic so it also includes negative territory for

returns. This is good for our model building exercise as it

encompasses the general idea of pregoressive markets along

with a downturn to capture negative returns as well.

df.describe()

 Open High Low Close Adj Close Volume

count 1233.00 1233.00 1233.00 1233.00 1233.00 1.23E+03

mean 14634.85544 14706.97444 14535.58445 14624.23452 14624.23452 4.21E+05

std 3228.140787 3228.071332 3225.610422 3228.117879 3228.117879 2.18E+05

min 7735.149902 8036.950195 7511.100098 7610.25 7610.25 0.00E+00

25% 11542.7002 11588.5 11461.84961 11527.4502 11527.4502 2.61E+05

50% 15073.25 15188.5 15008.84961 15108.09961 15108.09961 3.54E+05

75% 17599.90039 17683.15039 17485.84961 17599.15039 17599.15039 5.55E+05

max 20156.44922 20222.44922 20129.69922 20192.34961 20192.34961 1.81E+06

#checking for null values in the dataset

df.isnull().sum()

Open 3

High 3

Low 3

Close 3

Adj Close 3

Volume 3

dtype: int64

df['return'] = np.log(df['Adj Close'] / df['Adj Close'].shift(1))

create logarithmic returns

df['return_sign'] = np.sign(df['return']) # create a variable to

check the sign depending on the above define return

#create function to compute exponential moving average

def EMAcreate(price, period):

 modifiedPrice = price.copy()

 sma_period = price.rolling(period).mean()

 modifiedPrice.iloc[0:period] = sma_period[0:period]

 ema_period = modifiedPrice.ewm(span=period,

adjust=False).mean()

 return ema_period

df['Adj Close Lagged'] = df['Adj Close'].shift(1) # lagged

adjusted close price

df['Open Lagged'] = df.Open.shift(1) # lagged open price

df['Close Lagged'] = df.Close.shift(1) # lagged close price

df['High Lagged'] = df.High.shift(1) # lagged high price

df['Low Lagged'] = df.Low.shift(1) # lagged low price

df['Volume Lagged'] = df.Volume.shift(1) # lagged Volume

creating lagged returns

lags = 8

cols = []

for lag in range(1, lags+1):

 col_ret = 'ret_%d' % lag

 df[col_ret] = df['return'].shift(lag)

 cols.append(col_ret)

#creating a list of features that includes rolling and lagged

returns

features_list = []

for r in range(10, 65, 5):

 df['Ret_'+str(r)] = df['return'].rolling(r).sum()

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1933

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 df['Std_'+str(r)] = df['return'].rolling(r).std()

 features_list.append('Ret_'+str(r))

 features_list.append('Std_'+str(r))

features_list.append('ret_over_21d')

features_list.append('MOM_1d')

features_list.append('MOM_5d')

features_list.append('MA_5d')

features_list.append('EMA_7d')

df.dropna(inplace = True)

df['ret_over_5d'] = np.log(df['Adj Close Lagged'] / df['Adj

Close Lagged'].shift(5)) # lagged 5-day return

df['ret_over_21d'] = np.log(df['Adj Close Lagged'] / df['Adj

Close Lagged'].shift(21)) # lagged 21-day return

df['MOM_1d'] = df['Adj Close Lagged'].diff(1) # lagged 1-

day adjusted close price difference

df['MOM_5d'] = df['Adj Close Lagged'].diff(5) # lagged 5-

day adjusted close price difference

df['MA_5d'] = df['Adj Close Lagged'].rolling(1).mean() #

lagged 5-day adjusted close price moving average

df['EMA_7d'] = EMAcreate(df['Adj Close Lagged'], 1) #

lagged 7-day adjusted close price exponential moving

average

df.dropna(inplace = True)

All the 50 reated features are still part of our original

dataframe 'df' so we will now create a copy of our dataframe

to store the feature set as a new datafram 'features_df'.

create a copy of our dataframe

features_df = df.copy()

features_df.head(5)

O
p

en

H
ig

h

L
o

w

C
lo

se

A
d

j
C

lo
se

V
o

lu
m

e

re
tu

rn

re
tu

rn
_

si
g

n

A
d

j
C

lo
se

 L
a
g

g
ed

O
p

en
 L

a
g
g

ed

..
.

R
et

_
5

5

S
td

_
5

5

R
et

_
6

0

S
td

_
6

0

re
t_

o
v

er
_

5
d

re
t_

o
v

er
_

2
1

d

M
O

M
_

1
d

M
O

M
_

5
d

M
A

_
5

d

E
M

A
_

7
d

D
a

te

2
0

1
9

-0
5

-0
7

1
1

6
5

1
.5

0
0
0

0
0

1
1

6
5

7
.0

4
9
8

0
5

1
1

4
8

4
.4

5
0
1

9
5

1
1

4
9

7
.9

0
0
3

9
1

1
1

4
9

7
.9

0
0
3

9
1

3
3

7
5

0
0

.0

-0
.0

0
8
6

9
0

-1
.0

1
1

5
9

8
.2

5
0
0

0
0

1
1

6
0

5
.7

9
9
8

0
5

..
.

0
.0

3
7
9

8
0

0
.0

0
6
9

6
4

0
.0

5
9
7

5
7

0
.0

0
6
8

4
2

-0
.0

0
3
7

4
8

-0
.0

0
6
0

9
4

-1
1
4

.0
0

0
0

0
0

-4
3

.5
4
9

8
0

5

1
1

5
9

8
.2

5
0
0

0
0

1
1

5
9

8
.2

5
0
0

0
0

2
0

1
9

-0
5

-0
8

1
1

4
7

8
.7

0
0
1

9
5

1
1

4
7

9
.0

9
9
6

0
9

1
1

3
4

6
.9

5
0
1

9
5

1
1

3
5

9
.4

5
0
1

9
5

1
1

3
5

9
.4

5
0
1

9
5

3
7

2
8

0
0

.0

-0
.0

1
2
1

1
4

-1
.0

1
1

4
9

7
.9

0
0
3

9
1

1
1

6
5

1
.5

0
0
0

0
0

..
.

0
.0

3
7
2

9
5

0
.0

0
6
9

8
7

0
.0

4
1
8

7
0

0
.0

0
7
0

1
8

-0
.0

2
2
0

8
4

-0
.0

1
8
5

5
2

-1
0
0

.3
4

9
6

0
9

-2
5
6

.7
5

0
0

0
0

1
1

4
9

7
.9

0
0
3

9
1

1
1

4
9

7
.9

0
0
3

9
1

2
0

1
9

-0
5

-0
9

1
1

3
2

2
.4

0
0
3

9
1

1
1

3
5

7
.5

9
9
6

0
9

1
1

2
5

5
.0

4
9
8

0
5

1
1

3
0

1
.7

9
9
8

0
5

1
1

3
0

1
.7

9
9
8

0
5

3
7

3
0

0
0

.0

-0
.0

0
5
0

8
8

-1
.0

1
1

3
5

9
.4

5
0
1

9
5

1
1

4
7

8
.7

0
0
1

9
5

..
.

0
.0

3
7
2

2
7

0
.0

0
6
9

8
8

0
.0

3
5
0

7
6

0
.0

0
7
0

5
6

-0
.0

3
3
6

4
6

-0
.0

2
4
7

3
7

-1
3
8

.4
5

0
1

9
6

-3
8
8

.7
0

0
1

9
6

1
1

3
5

9
.4

5
0
1

9
5

1
1

3
5

9
.4

5
0
1

9
5

2
0

1
9

-0
5

-1
0

1
1

3
1

4
.1

5
0
3

9
1

1
1

3
4

5
.7

9
9
8

0
5

1
1

2
5

1
.0

4
9
8

0
5

1
1

2
7

8
.9

0
0
3

9
1

1
1

2
7

8
.9

0
0
3

9
1

3
8

7
3

0
0

.0

-0
.0

0
2
0

2
8

-1
.0

1
1

3
0

1
.7

9
9
8

0
5

1
1

3
2

2
.4

0
0
3

9
1

..
.

0
.0

4
0
4

8
4

0
.0

0
6
9

5
0

0
.0

3
1
0

2
5

0
.0

0
7
0

6
1

-0
.0

3
6
7

4
0

-0
.0

2
5
8

7
1

-5
7

.6
5
0

3
9

0

-4
2
2

.9
5

0
1

9
5

1
1

3
0

1
.7

9
9
8

0
5

1
1

3
0

1
.7

9
9
8

0
5

2
0

1
9

-0
5

-1
3

1
1

2
5

8
.7

0
0
1

9
5

1
1

3
0

0
.2

0
0
1

9
5

1
1

1
2

5
.5

9
9
6

0
9

1
1

1
4

8
.2

0
0
1

9
5

1
1

1
4

8
.2

0
0
1

9
5

3
5

7
6

0
0

.0

-0
.0

1
1
6

5
6

-1
.0

1
1

2
7

8
.9

0
0
3

9
1

1
1

3
1

4
.1

5
0
3

9
1

..
.

0
.0

3
6
7

4
0

0
.0

0
7
0

5
4

0
.0

0
7
7

2
2

0
.0

0
7
0

8
0

-0
.0

3
7
7

0
2

-0
.0

3
3
7

4
1

-2
2

.8
9
9

4
1

4

-4
3
3

.3
4

9
6

0
9

1
1

2
7

8
.9

0
0
3

9
1

1
1

2
7

8
.9

0
0
3

9
1

5 rows × 50 columns

features_df.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 930 entries, 2019-07-30 to 2023-10-27

Data columns (total 50 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Open 930 non-null float64

 1 High 930 non-null float64

 2 Low 930 non-null float64

 3 Close 930 non-null float64

 4 Adj Close 930 non-null float64

 5 Volume 930 non-null float64

 6 return 930 non-null float64

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1934

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 7 return_sign 930 non-null float64

 8 Ret_10 930 non-null float64

 9 Std_10 930 non-null float64

 10 Ret_15 930 non-null float64

 11 Std_15 930 non-null float64

 12 Ret_20 930 non-null float64

 13 Std_20 930 non-null float64

 14 Ret_25 930 non-null float64

 15 Std_25 930 non-null float64

 16 Ret_30 930 non-null float64

 17 Std_30 930 non-null float64

 18 Ret_35 930 non-null float64

 19 Std_35 930 non-null float64

 20 Ret_40 930 non-null float64

 21 Std_40 930 non-null float64

 22 Ret_45 930 non-null float64

 23 Std_45 930 non-null float64

 24 Ret_50 930 non-null float64

 25 Std_50 930 non-null float64

 26 Ret_55 930 non-null float64

 27 Std_55 930 non-null float64

 28 Ret_60 930 non-null float64

 29 Std_60 930 non-null float64

 30 Adj Close Lagged 930 non-null float64

 31 Open Lagged 930 non-null float64

 32 Close Lagged 930 non-null float64

 33 High Lagged 930 non-null float64

 34 Low Lagged 930 non-null float64

 35 Volume Lagged 930 non-null float64

 36 ret_1 930 non-null float64

 37 ret_2 930 non-null float64

 38 ret_3 930 non-null float64

 39 ret_4 930 non-null float64

 40 ret_5 930 non-null float64

 41 ret_6 930 non-null float64

 42 ret_7 930 non-null float64

 43 ret_8 930 non-null float64

 44 ret_over_5d 930 non-null float64

 45 ret_over_21d 930 non-null float64

 46 MOM_1d 930 non-null float64

 47 MOM_5d 930 non-null float64

 48 MA_5d 930 non-null float64

 49 EMA_7d 930 non-null float64

dtypes: float64(50)

memory usage: 370.5 KB

Target or Label Definition

Label or the target variable is the variable we are trying to

predict. Here, the target variable is whether Nifty Index price

will close up or down on the next trading day. If the

tomorrow’s closing price is greater than the 0.99995 of

today’s closing price, then we will buy the Nifty Index, else

we will sell the index.

We assign a value of +1 for the buy signal and 0 for the sell

signal to target variable. The target can be described as :

Target = 1, if pt+1 > 0.99995 ∗ pt

0, if pt+1 Otherwise

where, pt is the Adjusted closing Price of Nifty Index and

pt+1 is the 1-day forward Adjusted Closing Price of the index.

features_df['Target'] = np.where(features_df['Adj

Close'].shift(-1)> 0.99995 * features_df['Adj Close'],1,0)

#creating set for our explained variable

y = features_df['Target']

Now that we have our list of features, we will try and find

which features are correlated above a threshold of 0.9. We do

this to remove any redundant features present in our features

list as they would not provide a value add to our model.

#create a visualisation of the correlation matrix of features to

know which features are highly correlated

sns.heatmap(features_df.corr()>0.9,

 annot=True,

 annot_kws={"size": 8},

 fmt=".2f",

 linewidth=.5,

 cmap="coolwarm",

 cbar=True); #cmap="crest", virids, magma

plt.title('Features Set Correlations');

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1935

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

 # remove the first feature that is correlated with any other

feature

def correlated_features(data, threshold=0.9):

 col_corr = set()

 corr_matrix = features_df.corr()

 for i in range(len(corr_matrix.columns)):

 for j in range(i):

 if abs(corr_matrix.iloc[i, j]) > threshold:

 colname = corr_matrix.columns[i]

 col_corr.add(colname)

 return col_corr

total correlated features

drop_correlated_features = correlated_features(features_df)

drop the highly correlated features

New_features_df =

features_df.drop(drop_correlated_features, axis=1)

New_features_df

#creating our explanatory variables set without the explained

variable as a part of it

A = New_features_df.drop(['return_sign'],axis=1) #dropping

return sign as I'm not finding it extremely important to be

added at this point.

X = A.drop(['Target'],axis=1)

X

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1936

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

O
p

en

V
o

lu
m

e

re
tu

rn

V
o

lu
m

e
L

a
g
g

ed

re
t_

1

re
t_

2

re
t_

3

re
t_

4

re
t_

5

re
t_

6

re
t_

7

re
t_

8

R
et

_
1

0

S
td

_
1

0

R
et

_
1

5

R
et

_
2

0

re
t_

o
v

er
_

5
d

re
t_

o
v

er
_

2
1

d

M
O

M
_

1
d

D
a

te

2
0

1
9

-0
5

-0
7

1
1

6
5

1
.5

0
0
0

0
0

3
3

7
5

0
0

.0

-0
.0

0
8
6

9
0

2
9

9
0

0
0

.0

-0
.0

0
9
7

8
1

-0
.0

0
1
0

6
7

-0
.0

0
1
9

9
4

-0
.0

0
0
5

5
3

0
.0

0
9
6

4
7

-0
.0

0
7
2

1
9

0
.0

1
2
8

9
2

-0
.0

0
1
5

9
7

-0
.0

2
1
9

2
7

0
.0

0
8
3

4
3

-0
.0

0
7
4

8
6

-0
.0

1
2
6

2
2

-0
.0

0
3
7

4
8

-0
.0

0
6
0

9
4

-1
1
4

.0
0

0
0

0
0

2
0

1
9

-0
5

-0
8

1
1

4
7

8
.7

0
0
1

9
5

3
7

2
8

0
0

.0

-0
.0

1
2
1

1
4

3
3

7
5

0
0

.0

-0
.0

0
8
6

9
0

-0
.0

0
9
7

8
1

-0
.0

0
1
0

6
7

-0
.0

0
1
9

9
4

-0
.0

0
0
5

5
3

0
.0

0
9
6

4
7

-0
.0

0
7
2

1
9

0
.0

1
2
8

9
2

-0
.0

2
0
4

7
7

0
.0

0
8
1

3
3

-0
.0

2
0
6

7
1

-0
.0

2
0
7

8
3

-0
.0

2
2
0

8
4

-0
.0

1
8
5

5
2

-1
0
0

.3
4

9
6

0
9

2
0

1
9

-0
5

-0
9

1
1

3
2

2
.4

0
0
3

9
1

3
7

3
0

0
0

.0

-0
.0

0
5
0

8
8

3
7

2
8

0
0

.0

-0
.0

1
2
1

1
4

-0
.0

0
8
6

9
0

-0
.0

0
9
7

8
1

-0
.0

0
1
0

6
7

-0
.0

0
1
9

9
4

-0
.0

0
0
5

5
3

0
.0

0
9
6

4
7

-0
.0

0
7
2

1
9

-0
.0

2
3
9

6
8

0
.0

0
8
1

8
7

-0
.0

2
9
7

8
2

-0
.0

3
1
7

1
2

-0
.0

3
3
6

4
6

-0
.0

2
4
7

3
7

-1
3
8

.4
5

0
1

9
6

2
0

1
9

-0
5

-1
0

1
1

3
1

4
.1

5
0
3

9
1

3
8

7
3

0
0

.0

-0
.0

0
2
0

2
8

3
7

3
0

0
0

.0

-0
.0

0
5
0

8
8

-0
.0

1
2
1

1
4

-0
.0

0
8
6

9
0

-0
.0

0
9
7

8
1

-0
.0

0
1
0

6
7

-0
.0

0
1
9

9
4

-0
.0

0
0
5

5
3

0
.0

0
9
6

4
7

-0
.0

3
8
8

8
8

0
.0

0
6
2

1
2

-0
.0

3
5
8

3
0

-0
.0

2
8
4

5
9

-0
.0

3
6
7

4
0

-0
.0

2
5
8

7
1

-5
7

.6
5
0

3
9

0

2
0

1
9

-0
5

-1
3

1
1

2
5

8
.7

0
0
1

9
5

3
5

7
6

0
0

.0

-0
.0

1
1
6

5
6

3
8

7
3

0
0

.0

-0
.0

0
2
0

2
8

-0
.0

0
5
0

8
8

-0
.0

1
2
1

1
4

-0
.0

0
8
6

9
0

-0
.0

0
9
7

8
1

-0
.0

0
1
0

6
7

-0
.0

0
1
9

9
4

-0
.0

0
0
5

5
3

-0
.0

4
3
3

2
4

0
.0

0
6
6

2
1

-0
.0

5
5
7

3
2

-0
.0

4
5
9

1
0

-0
.0

3
7
7

0
2

-0
.0

3
3
7

4
1

-2
2

.8
9
9

4
1

4

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

2
0

2
3

-1
0

-2
0

1
9

5
4

2
.1

5
0
3

9
1

1
9

8
3

0
0

.0

-0
.0

0
4
1

9
0

2
3

0
3

0
0

.0

-0
.0

0
2
3

6
2

-0
.0

0
7
1

1
2

0
.0

0
4
0

3
4

-0
.0

0
0
9

7
8

-0
.0

0
2
1

7
2

-0
.0

0
0
8

7
6

0
.0

0
6
1

5
2

0
.0

0
9
0

5
6

-0
.0

0
5
6

5
6

0
.0

0
5
4

2
7

0
.0

0
0
9

7
8

-0
.0

1
0
1

6
7

-0
.0

0
8
5

9
0

-0
.0

2
5
5

8
6

-4
6

.4
0
0

3
9

0

2
0

2
3

-1
0

-2
3

1
9

5
2

1
.5

9
9
6

0
9

1
7

6
0

0
0

.0

-0
.0

1
3
4

4
0

1
9

8
3

0
0

.0

-0
.0

0
4
1

9
0

-0
.0

0
2
3

6
2

-0
.0

0
7
1

1
2

0
.0

0
4
0

3
4

-0
.0

0
0
9

7
8

-0
.0

0
2
1

7
2

-0
.0

0
0
8

7
6

0
.0

0
6
1

5
2

-0
.0

1
1
8

8
9

0
.0

0
6
5

2
2

-0
.0

1
8
3

2
3

-0
.0

2
0
1

5
2

-0
.0

1
0
6

0
7

-0
.0

1
8
1

9
1

-8
2

.0
4
8

8
2

8

2
0

2
3

-1
0

-2
5

1
9

2
8

6
.4

4
9
2

1
9

2
2

5
3

0
0

.0

-0
.0

0
8
3

1
2

1
7

6
0

0
0

.0

-0
.0

1
3
4

4
0

-0
.0

0
4
1

9
0

-0
.0

0
2
3

6
2

-0
.0

0
7
1

1
2

0
.0

0
4
0

3
4

-0
.0

0
0
9

7
8

-0
.0

0
2
1

7
2

-0
.0

0
0
8

7
6

-0
.0

2
9
2

5
6

0
.0

0
5
7

5
8

-0
.0

2
1
0

4
0

-0
.0

2
8
4

7
9

-0
.0

2
3
0

7
0

-0
.0

2
3
6

0
7

-2
6
0

.9
0

0
3

9
1

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1937

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

O
p

en

V
o

lu
m

e

re
tu

rn

V
o

lu
m

e
L

a
g
g

ed

re
t_

1

re
t_

2

re
t_

3

re
t_

4

re
t_

5

re
t_

6

re
t_

7

re
t_

8

R
et

_
1

0

S
td

_
1

0

R
et

_
1

5

R
et

_
2

0

re
t_

o
v

er
_

5
d

re
t_

o
v

er
_

2
1

d

M
O

M
_

1
d

D
a

te

2
0

2
3

-1
0

-2
6

1
9

0
2

7
.2

5
0
0

0
0

3
0

0
4

0
0

.0

-0
.0

1
3
9

5
0

2
2

5
3

0
0

.0

-0
.0

0
8
3

1
2

-0
.0

1
3
4

4
0

-0
.0

0
4
1

9
0

-0
.0

0
2
3

6
2

-0
.0

0
7
1

1
2

0
.0

0
4
0

3
4

-0
.0

0
0
9

7
8

-0
.0

0
2
1

7
2

-0
.0

4
9
3

5
8

0
.0

0
5
7

4
6

-0
.0

3
0
2

3
5

-0
.0

4
1
9

2
8

-0
.0

3
5
4

1
5

-0
.0

2
8
4

6
3

-1
5
9

.5
9

9
6

0
9

2
0

2
3

-1
0

-2
7

1
8

9
2

8
.7

5
0
0

0
0

2
0

5
2

0
0

.0

0
.0

1
0
0

2
5

3
0

0
4

0
0

.0

-0
.0

1
3
9

5
0

-0
.0

0
8
3

1
2

-0
.0

1
3
4

4
0

-0
.0

0
4
1

9
0

-0
.0

0
2
3

6
2

-0
.0

0
7
1

1
2

0
.0

0
4
0

3
4

-0
.0

0
0
9

7
8

-0
.0

3
8
4

5
6

0
.0

0
7
3

9
8

-0
.0

2
5
8

3
5

-0
.0

3
4
5

3
1

-0
.0

4
2
2

5
3

-0
.0

4
2
4

2
9

-2
6
4

.9
0

0
3

9
1

989 rows × 19 columns

X.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 989 entries, 2019-05-07 to 2023-10-27

Data columns (total 19 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Open 989 non-null float64

 1 Volume 989 non-null float64

 2 return 989 non-null float64

 3 Volume Lagged 989 non-null float64

 4 ret_1 989 non-null float64

 5 ret_2 989 non-null float64

 6 ret_3 989 non-null float64

 7 ret_4 989 non-null float64

 8 ret_5 989 non-null float64

 9 ret_6 989 non-null float64

 10 ret_7 989 non-null float64

 11 ret_8 989 non-null float64

 12 Ret_10 989 non-null float64

 13 Std_10 989 non-null float64

 14 Ret_15 989 non-null float64

 15 Ret_20 989 non-null float64

 16 ret_over_5d 989 non-null float64

 17 ret_over_21d 989 non-null float64

 18 MOM_1d 989 non-null float64

dtypes: float64(19)

memory usage: 154.5 KB

Value counts for class 1 and 0

pd.Series(y).value_counts()

1 533

0 456

Name: Target, dtype: int64

Above we see that the two classes are not perfectly balanced

i.e. there are more values for class 1 as compared to class 0.

Although this could be addressed by changing our earlier

threshold for what get's classifed as 1 or 0, it has been kept as

is. This is because we see that the general trend in the data is

upwards i.e. positive return and that is also the characteristic

of the equity market since the economy of a developing

country is expected to grow over time (unless it is part of a

depression cycle).

That being said, there isnt too severe of a class imbalance in

this case.

Splitting the datasets into training and testing data.

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, shuffle=False)

Output the train and test data size

print(f"Train and Test Size {len(X_train)}, {len(X_test)}")

Train and Test Size 791, 198

Above we have split the data into training and test data with

a 80-20 ratio and shuffle has been set to False because Time

Series data is sequential in nature.

The training data is used to fit the model. The algorithm that

we are going to use will use the training data to learn the

relationship between the features and the target. The test data

will then be used to evaluate the performance of the model

that we have built.

Base Model

We now build a base model with the default parameters. Our

base model will be built using the Random Forest Classifier

which is a machine learning algorithm that creates a forest of

decision trees and combines their predictions to make a final

prediction i.e it is an ensemble learning technique combining

numerous classifiers to enhance a model's performance.

model = RandomForestClassifier() #default parameters

model.fit(X_train,y_train)

Predicting the test dataset

y_pred = model.predict(X_test)

Predict Probabilities

y_proba = model.predict_proba(X_test)

Now that we have fitted our model and added the code to

predict as well, we will need to know if the model is any good

at making these predictions.

acc_train = accuracy_score(y_train, model.predict(X_train))

acc_test = accuracy_score(y_test, y_pred)

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1938

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

print(f'Train Accuracy: {acc_train:0.4}, Test Accuracy:

{acc_test:0.4}')

Train Accuracy: 1.0, Test Accuracy: 0.5101

Comparing the Train Accuracy to the Test Accuracy, we can

see that clearly the data is overffiting.

Taking a step back, Accuracy is essentially checking the

predictions that the model made against the actual values in

the set. In other words we are comparing the prediction that

was made with the actual values from our dataset. Keeping

this in mind, we see that the Train Accuracy is 1.0 and Test

Accuracy is 0.5101. This means that our model is memorizing

the training data and is not able to generalize on a test dataset.

This occurs when the model is too complex and is thus unable

to generalize well on data points outside of what is learnt from

the training data. It also indicates that the model has low bias

meaning that it is overly expressive. In the Bias - Variance

tradeoff, this model has high Variance and low Bias.

Thus, in the following part of this exercise we look to reduce

the complexity of this model i.e. reduce the variance problem

so that it is able to generalize on a test dataset. This can be

achieved through hyperparameter tuning.

But let us first look at some more interesting observations

about how the algorithm has performed.

disp = ConfusionMatrixDisplay.from_estimator(

model,

X_test,

y_test,

display_labels=model.classes_,

cmap=plt.cm.Blues

)

disp.ax_.set_title('Confusion matrix')

plt.show()

From the above confusion matrix we can see that the true

positive values are greater than the false positive i.e. the

model is predicting the uptrend (class 1) correctly more times

than it is misclassifying it. The same is with the case with the

downtrend (class 0).

This is another indication that we would need to fine tune our

model some more.

We will now take a look at the Classification Report which

will give us a table of addtional metrics we can use to guage

the performance of the model.

print(classification_report(y_test, y_pred))

 precision recall f1-score support

 0 0.45 0.52 0.48 87

 1 0.57 0.50 0.54 111

 accuracy 0.51 198

 macro avg 0.51 0.51 0.51 198

weighted avg 0.52 0.51 0.51 198

Building from the comments about the confusion matrix

wherein the true positives were predicted greater than the true

negatives is also visible in the accuracy report when we take

a look at the 'precision' column. Precision tells us how many

selected items are relevant whereas 'recall' tells us how many

relevant items are selected.

We will now look at another metric called the ROC (Receiver

Operating Characteristic) Curve below.

Display ROCCurve

disp_roc = RocCurveDisplay.from_estimator(

model,

X_test,

y_test,

name='Random Forest Classifier')

disp_roc.ax_.set_title('ROC Curve')

plt.plot([0,1], [0,1], linestyle='--')

plt.show()

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1939

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The ROC Curve tells us the tradeoff netween the True

Positive Rate and the False Positive Rate and hence we check

for the steepness of the curve. The graph shows us the

performance of the model at all classification thresholds.

The objective is to defeat randomness with our model so an

ROC curve greater than 0.5 would mean that it is working

better than a fair coin toss. In our case we see that the value is

greater than 0.5. Although the value isnt extremely high and

signifies a week learning algorithm, it will perform better than

a coint toss for predictions.

Now that we have seen how our base model is performing, we

will try and enhance it's performance. This is done through

hyperparameter tuning. Hyperparameters are parameters that

are not directly learnt within estimators. It is possible and

recommended to search the hyperparameter space for the best

cross validation score. Any parameter provided when

constructing an estimator may be optimized in this manner.

Hyperparameter tuning is a method to choose the best loss

minimizing function to maximize Accuracy or whatever

function we are scoring for (example F1 score, etc.)

First we will get a list of parameters used in our model, then

we will tune the hyperparameters to select the best score by

TimeSeriesSplit cross-validation. Once we get a list of the

best parameters and best score, we will tune our base model

to use these parameters. Once we have fitted the model with

the best parameters, we will go through all the above metrics

again to see if the model has improved or not.

Get params list

model.get_params()

{'bootstrap': True,

 'ccp_alpha': 0.0,

 'class_weight': None,

 'criterion': 'gini',

 'max_depth': None,

 'max_features': 'auto',

 'max_leaf_nodes': None,

 'max_samples': None,

 'min_impurity_decrease': 0.0,

 'min_samples_leaf': 1,

 'min_samples_split': 2,

 'min_weight_fraction_leaf': 0.0,

 'n_estimators': 100,

 'n_jobs': None,

 'oob_score': False,

 'random_state': None,

 'verbose': 0,

 'warm_start': False}

Timeseries CV 3-split

tscv = TimeSeriesSplit(n_splits=5, gap=1)

Hyper parameter optimization

param_grid = {

 'n_estimators': [25, 50, 100, 150],

 'max_features': ['sqrt', 'log2', None],

 'max_depth': [3, 6, 9],

 'max_leaf_nodes': [3, 6, 9],

}

The RandomizedSearchCV implements a “fit” and a “score”

method and perform randomized search on hyperparameters.

The parameters of the estimator used to apply these methods

are optimized by cross-validated search over parameter

settings. Not all parameter values are tried out, but rather a

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1940

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

fixed number of parameter settings is sampled from the

specified distributions.

perform random search

rs = RandomizedSearchCV(model, param_grid, n_iter=100,

scoring='f1', cv=tscv,verbose=0)

rs.fit(X_train, y_train)

RandomizedSearchCV(cv=TimeSeriesSplit(gap=1, max_trai

n_size=None, n_splits=5, test_size=None),

 estimator=RandomForestClassifier(), n_iter=100

,

 param_distributions={'max_depth': [3, 6, 9],

 'max_features': ['sqrt', 'log2', None],

 'max_leaf_nodes': [3, 6, 9],

 'n_estimators': [25, 50, 100, 150]},

 scoring='f1')

best parameters

rs.best_params_

{'n_estimators': 25,

 'max_leaf_nodes': 3,

 'max_features': 'sqrt',

 'max_depth': 9}

best score

rs.best_score_

0.6387682740908026

Tuned Model

Now that we have our best parameters and score, we will refit

our base modeel to use these parameters to check for

improvements in the performance of our model.

Refit the Random Forest Classifier with the best params

cls = RandomForestClassifier(**rs.best_params_)

cls.fit(X_train, y_train)

eval_set=[(X_train, y_train), (X_test, y_test)]

score = cross_val_score(cls,X_train,y_train,cv=tscv)

print(f'Mean CV Score : {score.mean():0.4}')

Mean CV Score : 0.5145

Predicting the test dataset

y_pred = cls.predict(X_test)

Measure Accuracy

acc_train = accuracy_score(y_train, cls.predict(X_train))

acc_test = accuracy_score(y_test, y_pred)

Print Accuracy

print(f'\n Training Accuracy \t: {acc_train :0.4} \n Test

Accuracy \t\t:{acc_test :0.4}')

 Training Accuracy : 0.6106

 Test Accuracy :0.5657

We can now see that the Training and Test Accuracy scores

have changed as compared to our base model. The Training

score has drastically reduced meaning that our algorithm is

not memorizing the dataset anymore. It has come down

severly from a perfect score of 1 which indicates that the

algorithm has been simplified and isnt as complex as before.

The score is also extremely close to the Test Accuracy Score,

although the Test Accuracy score is still a little lower than

Training Accuracy score, there isnt as much of a gap between

the two anymore. This means that although there is slight

overfitting taking place, the tuned model is performaing better

than the base model which is the purpose of hyperparameter

tuning. This is also visible in the fact that the Test Accuracy

score of the tuned model is greater than the base model.

Display confussion matrix

disp = ConfusionMatrixDisplay.from_estimator(

cls,

X_test,

y_test,

display_labels=model.classes_,

cmap=plt.cm.Blues

)

disp.ax_.set_title('Confusion matrix')

plt.show()

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1941

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

We can see that the True Positives VS False Positive ratio has

increased as compared to that from the base model. This is one

of the indicators that the model is performing better as it is able

to classify the positive class better.

Classification Report

print(classification_report(y_test, y_pred))

 precision recall f1-score support

 0 0.52 0.15 0.23 87

 1 0.57 0.89 0.70 111

 accuracy 0.57 198

 macro avg 0.55 0.52 0.46 198

weighted avg 0.55 0.57 0.49 198

Display ROCCurve

disp_roc = RocCurveDisplay.from_estimator(

cls,

X_test,

y_test,

name='Tuned Random Forest Classifier')

disp_roc.ax_.set_title('ROC Curve')

plt.plot([0,1], [0,1], linestyle='--')

plt.show()

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1942

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 4, April 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The ROC Curve metric now has a greater score of 0.57

compared to the score of 0.56 of the base model. Although it

is only slightly better and the results arent extremely

promising, it still shows an improvement in our model.

Concluding Remarks

We can see from our Training and Test Accuracy Scores for

the base and tuned model that this algorithm is indeed a week

learner. However, if the features are further refined and

selected, then the accuracy score would improve. It takes

quite a lot of time (can take 6 months or so) to try and get the

correct set of features to improve the model.

No random seed parameter has been applied through this

exercise so rerunning the code could lead to different results

since the data would be split randomly on the rerun. This

would give different training and test datasets on every run.

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1943

https://www.ijsr.net/

