Random Forest Classifier to Predict Financial Data

Aumkar Wagle

Random Forest Classifier is a powerful machine learning algorithm widely utilized in the field of finance to predict uptrends and downtrends in financial data. By leveraging the collective wisdom of multiple decision trees, the Random Forest Classifier excels in handling complex datasets with numerous features and variables. This ensemble learning technique works by aggregating the predictions of individual decision trees to provide accurate and reliable classifications, making it a popular choice for financial analysts and traders seeking to forecast market movements and make informed investment decisions.

I will be using this algorithm to predict positive moves (up trend).

We will first import all the libraries related to this exercise. The use cases for these libraries ranges from being able to store and manipulate data via dataframes to using learning algorithms on our dataset.

import warnings

warnings.filterwarnings('ignore') warnings.simplefilter(action='ignore', category=FutureWarning) # Data manipulation import pandas as pd import numpy as np # Plotting import matplotlib.pyplot as plt **import** seaborn **as** sns # Preprocessing from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import Pipeline from sklearn.model_selection import (train_test_split, RandomizedSearchCV, TimeSeriesSplit, cross_val_score) # metrics from sklearn.metrics import (precision recall curve, roc curve, RocCurveDisplay,

ConfusionMatrixDisplay

from sklearn.metrics import (accuracy_score, f1_score, recall_score, precision_score, roc_auc_score, auc) from sklearn.metrics import (classification_report, confusion_matrix)

from sklearn.ensemble **import** RandomForestClassifier **from** sklearn.model_selection **import** GridSearchCV, RandomizedSearchCV

I am using a file that has been downloaded from Yahoo Finance onto my work computer. Not pinging the Yahoo Finance API directly to retrieve the data since I believe it is constantly pinged by my company server and hence pulling the data is not easy. Therefore, I downloaded the file directly from the website and will be using Pandas to access it. *#import os to know which directory we are in*

import os
os.getcwd()
'C:\\Users\\waglaum'

#change the directory to the one where the data file from Yahoo Finance has been downloaded os.chdir('C:\\Users\\waglaum\\Downloads')

#confirming the directory has changed successfully
os.getcwd()

'C:\\Users\\waglaum\\Downloads' The dataset that we are working on is that of an Indian index Nifty 50. Data worth 5 years has been drawn on a daily basis.

#reading and plotting the downloaded data

df = pd.read_csv('Nifty50.csv', index_col=0, parse_dates=True)[['Open', 'High', 'Low', 'Close','Adj Close','Volume']] df.shape plt.plot(df['Adj Close']); df.head()

Date	Open	High	Low	Close	Adj Close	Volume
29-10-2018	10078.0996	10275.2998	10020.3496	10250.8496	10250.8496	364400
30-10-2018	10239.4004	10285.0996	10175.3496	10198.4004	10198.4004	289800
31-10-2018	10209.5498	10396	10105.0996	10386.5996	10386.5996	375000
01-11-2018	10441.7002	10441.9004	10341.9004	10380.4502	10380.4502	348500
02-11-2018	10462.2998	10606.9502	10457.7002	10553	10553	421200

As we can see from the above data, the trend is mainly upwards which is coherent with the idea that over a period of time markets usually move upwards. The data also includes the massive downturn that was seen in the market due to the COVID-19 pandemic so it also includes negative territory for returns. This is good for our model building exercise as it encompasses the general idea of pregoressive markets along with a downturn to capture negative returns as well.

df.describe()

	Open	High	Low	Close	Adj Close	Volume
count	1233.00	1233.00	1233.00	1233.00	1233.00	1.23E+03
mean	14634.85544	14706.97444	14535.58445	14624.23452	14624.23452	4.21E+05
std	3228.140787	3228.071332	3225.610422	3228.117879	3228.117879	2.18E+05
min	7735.149902	8036.950195	7511.100098	7610.25	7610.25	0.00E+00
25%	11542.7002	11588.5	11461.84961	11527.4502	11527.4502	2.61E+05
50%	15073.25	15188.5	15008.84961	15108.09961	15108.09961	3.54E+05
75%	17599.90039	17683.15039	17485.84961	17599.15039	17599.15039	5.55E+05
max	20156.44922	20222.44922	20129.69922	20192.34961	20192.34961	1.81E+06

#checking for null values in the dataset df.isnull().sum()

Open 3 High 3 Low 3 Close 3 Adj Close 3 Volume 3 dtype: int64

df['return'] = np.log(df['Adj Close'] / df['Adj Close'].shift(1)) # create logarithmic returns

df['return_sign'] = np.sign(df['return']) # create a variable to check the sign depending on the above define return

#create function to compute exponential moving average

def EMAcreate(price, period): modifiedPrice = price.copy() sma_period = price.rolling(period).mean() modifiedPrice.iloc[0:period] = sma_period[0:period] ema_period = modifiedPrice.ewm(span=period, adjust=False).mean()

return ema_period

df['Adj Close Lagged'] = df['Adj Close'].shift(1) # lagged adjusted close price

df['Open Lagged'] = df.Open.shift(1) # lagged open price df['Close Lagged'] = df.Close.shift(1) # lagged close price df['High Lagged'] = df.High.shift(1) # lagged high price df['Low Lagged'] = df.Low.shift(1) # lagged low price df['Volume Lagged'] = df.Volume.shift(1) # lagged Volume

creating lagged returns

lags = 8
cols = []
for lag in range(1, lags+1):
 col_ret = 'ret_%d' % lag
 df[col_ret] = df['return'].shift(lag)
 cols.append(col_ret)

#creating a list of features that includes rolling and lagged
returns
features_list = []

for r in range(10, 65, 5): df[Pat, || atr(r)] = df[rature]

 $df['Ret_'+str(r)] = df['return'].rolling(r).sum()$

df['Std_'+str(r)] = df['return'].rolling(r).std() features_list.append('Ret_'+str(r)) features_list.append('Std_'+str(r)) features_list.append('ret_over_21d') features_list.append('MOM_1d') features_list.append('MOM_5d') features_list.append('MA_5d') features_list.append('EMA_7d') df.dropna(inplace = **True**)

Close Lagged'].shift(5)) # lagged 5-day return

day adjusted close price difference

Close Lagged'].shift(21)) # lagged 21-day return

df['ret_over_5d'] = np.log(df['Adj Close Lagged'] / df['Adj

df['ret_over_21d'] = np.log(df['Adj Close Lagged'] / df['Adj

df['MOM_1d'] = df['Adj Close Lagged'].diff(1) # lagged 1-

df['MOM_5d'] = df['Adj Close Lagged'].diff(5) # lagged 5day adjusted close price difference

df['MA_5d'] = df['Adj Close Lagged'].rolling(1).mean() # lagged 5-day adjusted close price moving average

df['EMA_7d'] = EMAcreate(df['Adj Close Lagged'], 1) # lagged 7-day adjusted close price exponential moving average

df.dropna(inplace = **True**)

All the 50 reated features are still part of our original dataframe 'df' so we will now create a copy of our dataframe to store the feature set as a new datafram 'features_df'.

create a copy of our dataframe
features_df = df.copy()

features_df.head(5)

9-05-13	2019-05-10	2019-05-09	2019-05-08	2019-05-07	Date	
'00195	11314.150391	11322.400391	11478.700195	11651.500000		Open
200195	11345.799805	11357.599609	11479.099609	11657.049805		High
599609	11251.049805	11255.049805	11346.950195	11484.450195		Low
200195	11278.900391	11301.799805	11359.450195	11497.900391		Close
200195	11278.900391	11301.799805	11359.450195	11497.900391		Adj Close
600.0	387300.0	373000.0	372800.0	337500.0		Volume
1656	-0.002028	-0.005088	-0.012114	-0.008690		return
0.1	-1.0	-1.0	-1.0	-1.0		return_sign
900391	11301.799805	11359.450195	11497.900391	11598.250000		dj Close Lagge
150391	11322.400391	11478.700195	11651.500000	11605.799805		Open Lagged
:	:	:	:	:		:
6740	0.040484	0.037227	0.037295	0.037980		Ret_55
7054	0.006950	0.006988	0.006987	0.006964		Std_55
7722	0.031025	0.035076	0.041870	0.059757		Ret_60
7080	0.007061	0.007056	0.007018	0.006842		Std_60
:7702	-0.036740	-0.033646	-0.022084	-0.003748		ret_over_5d
33741	-0.025871	-0.024737	-0.018552	-0.006094		ret_over_21d
99414	-57.650390	-138.450196	-100.349609	-114.000000		MOM_1d
49609	-422.950195	-388.700196	-256.750000	-43.549805		MOM_5d
900391	11301.799805	11359.450195	11497.900391	11598.250000		MA_5d
900391	11301.799805	11359.450195	11497.900391	11598.250000		EMA_7d

5 rows × 50 columns features_df.info() <class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 930 entries, 2019-07-30 to 2023-10-27

Data columns (total 50 columns):

Column Non-Null Count Dtype

----- -----

0	Open	930 non-null float64
1	High	930 non-null float64
2	Low	930 non-null float64
3	Close	930 non-null float64
4	Adj Close	930 non-null float64
5	Volume	930 non-null float64
6	return	930 non-null float64

Volume 13 Issue 4, April 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

<u>www.ijsr.net</u>

7	return_sign	930 non-null	float64
8	Ret_10	930 non-null	float64
9	Std_10	930 non-null	float64
10	Ret_15	930 non-null	float64
11	Std_15	930 non-null	float64
12	Ret_20	930 non-null	float64
13	Std_20	930 non-null	float64
14	Ret_25	930 non-null	float64
15	Std_25	930 non-null	float64
16	Ret_30	930 non-null	float64
17	Std_30	930 non-null	float64
18	Ret_35	930 non-null	float64
19	Std_35	930 non-null	float64
20	Ret_40	930 non-null	float64
21	Std_40	930 non-null	float64
22	Ret_45	930 non-null	float64
23	Std_45	930 non-null	float64
24	Ret_50	930 non-null	float64
25	Std_50	930 non-null	float64
26	Ret_55	930 non-null	float64
27	Std_55	930 non-null	float64
28	Ret_60	930 non-null	float64
29	Std_60	930 non-null	float64
30	Adj Close La	igged 930 non-	null float64
31	Open Lagged	l 930 non-nu	ull float64
32	Close Lagged	1 930 non-nu	ll float64
33	High Lagged	930 non-nu	ll float64
34	Low Lagged	930 non-nu	ıll float64
35	Volume Lagg	ged 930 non-i	null float64
36	ret_1	930 non-null	float64
37	ret_2	930 non-null	float64
38	ret_3	930 non-null	float64
39	ret_4	930 non-null	float64
40	ret_5	930 non-null	float64
41	ret_6	930 non-null	float64
42	ret_7	930 non-null	float64
43	ret_8	930 non-null	float64
44	ret_over_5d	930 non-nul	l float64
45	ret_over_21d	930 non-nu	ll float64
46	MOM_1d	930 non-nu	ll float64
47	MOM_5d	930 non-nu	ll float64
48	MA_5d	930 non-null	float64
49	EMA_7d	930 non-nul	l float64

dtypes: float64(50) memory usage: 370.5 KB

Target or Label Definition

Label or the target variable is the variable we are trying to predict. Here, the target variable is whether Nifty Index price will close up or down on the next trading day. If the tomorrow's closing price is greater than the 0.99995 of today's closing price, then we will buy the Nifty Index, else we will sell the index.

We assign a value of +1 for the buy signal and 0 for the sell signal to target variable. The target can be described as : Target = 1, if pt+1 > 0.99995 * pt

0, if pt+1 Otherwise

where, pt is the Adjusted closing Price of Nifty Index and pt+1 is the 1-day forward Adjusted Closing Price of the index.

features_df['Target'] = np.where(features_df['Adj Close'].shift(-1)> 0.99995 * features_df['Adj Close'],1,0)

#creating set for our explained variable
y = features_df['Target']

Now that we have our list of features, we will try and find which features are correlated above a threshold of 0.9. We do this to remove any redundant features present in our features list as they would not provide a value add to our model.

#create a visualisation of the correlation matrix of features to know which features are highly correlated

sns.heatmap(features_df.corr()>0.9, annot=True, annot_kws={"size": 8}, fmt=".2f", linewidth=.5, cmap="coolwarm", cbar=True); #cmap="crest", virids, magma

plt.title('Features Set Correlations');

remove the first feature that is correlated with any other feature

def correlated_features(data, threshold=0.9):
 col_corr = set()
 corr_matrix = features_df.corr()
 for i in range(len(corr_matrix.columns)):
 for j in range(i):
 if abs(corr_matrix.iloc[i, j]) > threshold:
 colname = corr_matrix.columns[i]
 col_corr.add(colname)

return col_corr

total correlated features
drop_correlated_features = correlated_features(features_df)

drop the highly correlated features
New_features_df
features_df.drop(drop_correlated_features, axis=1)

New_features_df

#creating our explanatory variables set without the explained variable as a part of it

A = New_features_df.drop(['return_sign'],axis=1) #dropping return sign as I'm not finding it extremely important to be added at this point.

X = A.drop(['Target'],axis=1) X

2023-10-25	2023-10-23	2023-10-20	:	2019-05-13	2019-05-10	2019-05-09	2019-05-08	2019-05-07	Date	
19286.449219	19521.599609	19542.150391	÷	11258.700195	11314.150391	11322.400391	11478.700195	11651.500000		Open
225300.0	176000.0	198300.0	:	357600.0	387300.0	373000.0	372800.0	337500.0		Volume
-0.008312	-0.013440	-0.004190	:	-0.011656	-0.002028	-0.005088	-0.012114	-0.008690		return
176000.0	198300.0	230300.0	:	387300.0	373000.0	372800.0	337500.0	299000.0		Volume Lagged
-0.013440	-0.004190	-0.002362	:	-0.002028	-0.005088	-0.012114	-0.008690	-0.009781		ret_1
-0.004190	-0.002362	-0.007112	:	-0.005088	-0.012114	-0.008690	-0.009781	-0.001067		ret_2
-0.002362	-0.007112	0.004034	:	-0.012114	-0.008690	-0.009781	-0.001067	-0.001994		ret_3
-0.007112	0.004034	-0.000978	:	-0.008690	-0.009781	-0.001067	-0.001994	-0.000553		ret_4
0.004034	-0.000978	-0.002172	:	-0.009781	-0.001067	-0.001994	-0.000553	0.009647		ret_5
-0.000978	-0.002172	-0.000876	:	-0.001067	-0.001994	-0.000553	0.009647	-0.007219		ret_6
-0.002172	-0.000876	0.006152	:	-0.001994	-0.000553	0.009647	-0.007219	0.012892		ret_7
-0.000876	0.006152	0.009056	:	-0.000553	0.009647	-0.007219	0.012892	-0.001597		ret_8
-0.029256	-0.011889	-0.005656	:	-0.043324	-0.038888	-0.023968	-0.020477	-0.021927		Ret_10
0.005758	0.006522	0.005427	:	0.006621	0.006212	0.008187	0.008133	0.008343		Std_10
-0.021040	-0.018323	0.000978	:	-0.055732	-0.035830	-0.029782	-0.020671	-0.007486		Ret_15
-0.028479	-0.020152	-0.010167	:	-0.045910	-0.028459	-0.031712	-0.020783	-0.012622		Ret_{20}
-0.023070	-0.010607	-0.008590	:	-0.037702	-0.036740	-0.033646	-0.022084	-0.003748		ret_over_5d
-0.023607	-0.018191	-0.025586	:	-0.033741	-0.025871	-0.024737	-0.018552	-0.006094		ret_over_21d
-260.900391	-82.048828	-46.400390	÷	-22.899414	-57.650390	-138.450196	-100.349609	-114.000000		MOM_1d

2023-10-27	2023-10-26	Date	
18928.750000	19027.250000		Open
205200.0	300400.0		Volume
0.010025	-0.013950		return
300400.0	225300.0		Volume Lagged
-0.013950	-0.008312		ret_1
-0.008312	-0.013440		ret_2
-0.013440	-0.004190		ret_3
-0.004190	-0.002362		ret_4
-0.002362	-0.007112		ret_5
-0.007112	0.004034		ret_6
0.004034	-0.000978		ret_7
-0.000978	-0.002172		ret_8
-0.038456	-0.049358		Ret_10
0.007398	0.005746		Std_10
-0.025835	-0.030235		Ret_15
-0.034531	-0.041928		Ret_20
-0.042253	-0.035415		ret_over_5d
-0.042429	-0.028463		ret_over_21d
-264.900391	-159.599609		p1_MOM

989 rows \times 19 columns

X.info()

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 989 entries, 2019-05-07 to 2023-10-27 Data columns (total 19 columns): # Column Non-Null Count Dtype

0	Open	989 non-null float64
1	Volume	989 non-null float64
2	return	989 non-null float64
3	Volume La	agged 989 non-null float64
4	ret_1	989 non-null float64
5	ret_2	989 non-null float64
6	ret_3	989 non-null float64
7	ret_4	989 non-null float64
8	ret_5	989 non-null float64
9	ret_6	989 non-null float64
10	ret_7	989 non-null float64
11	ret_8	989 non-null float64
12	Ret_10	989 non-null float64
13	Std_10	989 non-null float64
14	Ret_15	989 non-null float64
15	Ret_20	989 non-null float64
16	ret_over_5	5d 989 non-null float64
17	ret_over_2	21d 989 non-null float64
18	MOM_1d	989 non-null float64
dty	pes: float64	(19)
me	mory usage	: 154.5 KB

Value counts for class 1 and 0
pd.Series(y).value_counts()

1 533

0 456

Name: Target, dtype: int64

Above we see that the two classes are not perfectly balanced i.e. there are more values for class 1 as compared to class 0. Although this could be addressed by changing our earlier threshold for what get's classifed as 1 or 0, it has been kept as is. This is because we see that the general trend in the data is upwards i.e. positive return and that is also the characteristic of the equity market since the economy of a developing country is expected to grow over time (unless it is part of a depression cycle).

That being said, there isnt too severe of a class imbalance in this case.

Splitting the datasets into training and testing data.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=**False**)

Output the train and test data size

print(f"Train and Test Size {len(X_train)}, {len(X_test)}")

Train and Test Size 791, 198

Above we have split the data into training and test data with a 80-20 ratio and shuffle has been set to False because Time Series data is sequential in nature.

The training data is used to fit the model. The algorithm that we are going to use will use the training data to learn the relationship between the features and the target. The test data will then be used to evaluate the performance of the model that we have built.

Base Model

We now build a base model with the default parameters. Our base model will be built using the Random Forest Classifier which is a machine learning algorithm that creates a forest of decision trees and combines their predictions to make a final prediction i.e it is an ensemble learning technique combining numerous classifiers to enhance a model's performance.

model = RandomForestClassifier() #default parameters model.fit(X_train,y_train) # Predicting the test dataset y_pred = model.predict(X_test) # Predict Probabilities y_proba = model.predict_proba(X_test) Now that we have fitted our model and added the application

Now that we have fitted our model and added the code to predict as well, we will need to know if the model is any good at making these predictions.

acc_train = accuracy_score(y_train, model.predict(X_train))
acc_test = accuracy_score(y_test, y_pred)

print(f'Train Accuracy: {acc_train:0.4}, Test Accuracy: {acc_test:0.4}')

Train Accuracy: 1.0, Test Accuracy: 0.5101

Comparing the Train Accuracy to the Test Accuracy, we can see that clearly the data is overffiting.

Taking a step back, Accuracy is essentially checking the predictions that the model made against the actual values in the set. In other words we are comparing the prediction that was made with the actual values from our dataset. Keeping this in mind, we see that the Train Accuracy is 1.0 and Test Accuracy is 0.5101. This means that our model is memorizing the training data and is not able to generalize on a test dataset. This occurs when the model is too complex and is thus unable to generalize well on data points outside of what is learnt from the training data. It also indicates that the model has low bias meaning that it is overly expressive. In the Bias - Variance tradeoff, this model has high Variance and low Bias.

Thus, in the following part of this exercise we look to reduce the complexity of this model i.e. reduce the variance problem so that it is able to generalize on a test dataset. This can be achieved through hyperparameter tuning.

But let us first look at some more interesting observations about how the algorithm has performed.

disp = ConfusionMatrixDisplay.from_estimator(
 model,
 X_test,
 y_test,
 display_labels=model.classes_,
 cmap=plt.cm.Blues
)
 disp.ax_.set_title('Confusion matrix')
 pt shear()

From the above confusion matrix we can see that the true positive values are greater than the false positive i.e. the model is predicting the uptrend (class 1) correctly more times than it is misclassifying it. The same is with the case with the downtrend (class 0).

This is another indication that we would need to fine tune our model some more.

We will now take a look at the Classification Report which will give us a table of additional metrics we can use to guage the performance of the model.

print(c	lassif	ficati	on_re	eport	(y_tes	st, y_	pred)))
	pre	ecisic	on r	ecall	f1-sc	core	supp	oort
	0	0.45	5 ().52	0.4	8	87	
	1	0.57	7 (0.50	0.5	4	111	
accu	iracy				0.5	1	198	
macr	o av	g	0.51	0	.51	0.5	1	198
weight	ed av	vg	0.52	2 (0.51	0.5	51	198

Building from the comments about the confusion matrix wherein the true positives were predicted greater than the true negatives is also visible in the accuracy report when we take a look at the 'precision' column. Precision tells us how many selected items are relevant whereas 'recall' tells us how many relevant items are selected.

We will now look at another metric called the ROC (Receiver Operating Characteristic) Curve below.

Display ROCCurve disp_roc = RocCurveDisplay.from_estimator(model, X_test, y_test, name='Random Forest Classifier') disp_roc.ax_.set_title('ROC Curve') plt.plot([0,1], [0,1], linestyle='--') plt.show()

The ROC Curve tells us the tradeoff netween the True Positive Rate and the False Positive Rate and hence we check for the steepness of the curve. The graph shows us the performance of the model at all classification thresholds.

The objective is to defeat randomness with our model so an ROC curve greater than 0.5 would mean that it is working better than a fair coin toss. In our case we see that the value is greater than 0.5. Although the value isnt extremely high and signifies a week learning algorithm, it will perform better than a coint toss for predictions.

Now that we have seen how our base model is performing, we will try and enhance it's performance. This is done through hyperparameter tuning. Hyperparameters are parameters that are not directly learnt within estimators. It is possible and recommended to search the hyperparameter space for the best cross validation score. Any parameter provided when constructing an estimator may be optimized in this manner. Hyperparameter tuning is a method to choose the best loss minimizing function to maximize Accuracy or whatever function we are scoring for (example F1 score, etc.)

First we will get a list of parameters used in our model, then we will tune the hyperparameters to select the best score by TimeSeriesSplit cross-validation. Once we get a list of the best parameters and best score, we will tune our base model to use these parameters. Once we have fitted the model with the best parameters, we will go through all the above metrics again to see if the model has improved or not.

Get params list
model.get_params()

{'bootstrap': True,

'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n estimators': 100, 'n jobs': None, 'oob score': False, 'random state': None, 'verbose': 0, 'warm_start': False}

Timeseries CV 3-split
tscv = TimeSeriesSplit(n_splits=5, gap=1)

Hyper parameter optimization
param_grid = {
 'n_estimators': [25, 50, 100, 150],
 'max_features': ['sqrt', 'log2', None],
 'max_depth': [3, 6, 9],
 'max_leaf_nodes': [3, 6, 9],

The RandomizedSearchCV implements a "fit" and a "score" method and perform randomized search on hyperparameters. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. Not all parameter values are tried out, but rather a

fixed number of parameter settings is sampled from the specified distributions.

perform random search

rs = RandomizedSearchCV(model, param_grid, n_iter=100, scoring='f1', cv=tscv,verbose=0) rs.fit(X_train, y_train)

RandomizedSearchCV(cv=TimeSeriesSplit(gap=1, max_trai n_size=None, n_splits=5, test_size=None), estimator=RandomForestClassifier(), n_iter=100

> param_distributions={'max_depth': [3, 6, 9], 'max_features': ['sqrt', 'log2', None], 'max_leaf_nodes': [3, 6, 9], 'n_estimators': [25, 50, 100, 150]}, scoring='f1')

best parameters

rs.best_params_

{'n_estimators': 25, 'max_leaf_nodes': 3, 'max_features': 'sqrt', 'max_depth': 9}

best score
rs.best_score_

0.6387682740908026

Tuned Model

Now that we have our best parameters and score, we will refit our base modeel to use these parameters to check for improvements in the performance of our model.

Refit the Random Forest Classifier with the best params
cls = RandomForestClassifier(**rs.best_params_)
cls.fit(X_train, y_train)

eval_set=[(X_train, y_train), (X_test, y_test)]

score = cross_val_score(cls,X_train,y_train,cv=tscv)
print(fMean CV Score : {score.mean():0.4}')
Mean CV Score : 0.5145

Predicting the test dataset
y_pred = cls.predict(X_test)
Measure Accuracy
acc_train = accuracy_score(y_train, cls.predict(X_train))
acc_test = accuracy_score(y_test, y_pred)
Print Accuracy
print(f\n Training Accuracy \t: {acc_train :0.4} \n Test
Accuracy \t\t:{acc_test :0.4}')
Training Accuracy : 0.6106
Test Accuracy :0.5657
Wa can now see that the Training and Test Accuracy

We can now see that the Training and Test Accuracy scores have changed as compared to our base model. The Training score has drastically reduced meaning that our algorithm is not memorizing the dataset anymore. It has come down severly from a perfect score of 1 which indicates that the algorithm has been simplified and isnt as complex as before. The score is also extremely close to the Test Accuracy Score, although the Test Accuracy score is still a little lower than Training Accuracy score, there isnt as much of a gap between the two anymore. This means that although there is slight overfitting taking place, the tuned model is performaing better than the base model which is the purpose of hyperparameter tuning. This is also visible in the fact that the Test Accuracy score of the tuned model is greater than the base model.

Display confussion matrix

disp = ConfusionMatrixDisplay.from_estimator(
 cls,
 X_test,
 y_test,
 display_labels=model.classes_,
 cmap=plt.cm.Blues
)
 disp.ax_.set_title('Confusion matrix')
 plt.show()

We can see that the True Positives VS False Positive ratio has increased as compared to that from the base model. This is one of the indicators that the model is performing better as it is able to classify the positive class better.

0.23

0.70

87

111

Classification Report

0.52

0.57

0

1

accuracy

print(classification_report(y_test, y_pred)) precision recall f1-score support

0.15

0.89

macro avg	0.55	0.52	0.46	198
weighted avg	0.55	0.57	0.49	198

Display ROCCurve

disp_roc = RocCurveDisplay.from_estimator(
 cls,
 X_test,
 y_test,
 name='Tuned Random Forest Classifier')
 disp_roc.ax_.set_title('ROC Curve')
 plt.plot([0,1], [0,1], linestyle='--')
 plt.show()

The ROC Curve metric now has a greater score of 0.57 compared to the score of 0.56 of the base model. Although it is only slightly better and the results arent extremely promising, it still shows an improvement in our model.

Concluding Remarks

We can see from our Training and Test Accuracy Scores for the base and tuned model that this algorithm is indeed a week learner. However, if the features are further refined and selected, then the accuracy score would improve. It takes quite a lot of time (can take 6 months or so) to try and get the correct set of features to improve the model.

No random seed parameter has been applied through this exercise so rerunning the code could lead to different results since the data would be split randomly on the rerun. This would give different training and test datasets on every run.