
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 4, April 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

Random Forest Classifier to Predict Financial Data 
 

Aumkar Wagle 
 

 

Random Forest Classifier is a powerful machine learning 

algorithm widely utilized in the field of finance to predict 

uptrends and downtrends in financial data. By leveraging the 

collective wisdom of multiple decision trees, the Random 

Forest Classifier excels in handling complex datasets with 

numerous features and variables. This ensemble learning 

technique works by aggregating the predictions of individual 

decision trees to provide accurate and reliable classifications, 

making it a popular choice for financial analysts and traders 

seeking to forecast market movements and make informed 

investment decisions.  

 

I will be using this algorithm to predict positive moves (up 

trend). 

 

We will first import all the libraries related to this exercise. 

The use cases for these libraries ranges from being able to 

store and manipulate data via dataframes to using learning 

algorithms on our dataset. 

 

import warnings 

warnings.filterwarnings('ignore') 

warnings.simplefilter(action='ignore', 

category=FutureWarning) 

# Data manipulation 

import pandas as pd 

import numpy as np 

# Plotting 

import matplotlib.pyplot as plt 

import seaborn as sns 

# Preprocessing 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.pipeline import Pipeline 

from sklearn.model_selection import ( 

train_test_split, 

RandomizedSearchCV, 

TimeSeriesSplit, 

cross_val_score     

) 

# metrics 

from sklearn.metrics import (precision_recall_curve, 

roc_curve, 

RocCurveDisplay, 

ConfusionMatrixDisplay 

) 

from sklearn.metrics import (accuracy_score, 

f1_score, 

recall_score, 

precision_score, 

roc_auc_score, 

auc) 

from sklearn.metrics import (classification_report, 

confusion_matrix 

) 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.model_selection import GridSearchCV, 

RandomizedSearchCV 

 

I am using a file that has been downloaded from Yahoo 

Finance onto my work computer. Not pinging the Yahoo 

Finance API directly to retrieve the data since I believe it is 

constantly pinged by my company server and hence pulling 

the data is not easy. Therefore, I downloaded the file directly 

from the website and will be using Pandas to access it. 

#import os to know which directory we are in 

import os 

os.getcwd() 

'C:\\Users\\waglaum' 

 

#change the directory to the one where the data file from 

Yahoo Finance has been downloaded 

os.chdir('C:\\Users\\waglaum\\Downloads') 

 

#confirming the directory has changed successfully 

os.getcwd() 

 

'C:\\Users\\waglaum\\Downloads' 

The dataset that we are working on is that of an Indian index 

Nifty 50. Data worth 5 years has been drawn on a daily basis. 

 

#reading and plotting the downloaded data  

df = pd.read_csv('Nifty50.csv', index_col=0, 

parse_dates=True)[['Open', 'High', 'Low', 'Close','Adj 

Close','Volume']] 

df.shape 

plt.plot(df['Adj Close']); 

df.head() 

 
Date Open High Low Close Adj Close Volume 

29-10-2018 10078.0996 10275.2998 10020.3496 10250.8496 10250.8496 364400 

30-10-2018 10239.4004 10285.0996 10175.3496 10198.4004 10198.4004 289800 

31-10-2018 10209.5498 10396 10105.0996 10386.5996 10386.5996 375000 

01-11-2018 10441.7002 10441.9004 10341.9004 10380.4502 10380.4502 348500 

02-11-2018 10462.2998 10606.9502 10457.7002 10553 10553 421200 
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As we can see from the above data, the trend is mainly 

upwards which is coherent with the idea that over a period of 

time markets usually move upwards. The data also includes 

the massive downturn that was seen in the market due to the 

COVID-19 pandemic so it also includes negative territory for 

returns. This is good for our model building exercise as it 

encompasses the general idea of pregoressive markets along 

with a downturn to capture negative returns as well. 

 

df.describe() 

 
  Open High Low Close Adj Close Volume 

count 1233.00 1233.00 1233.00 1233.00 1233.00 1.23E+03 

mean 14634.85544 14706.97444 14535.58445 14624.23452 14624.23452 4.21E+05 

std 3228.140787 3228.071332 3225.610422 3228.117879 3228.117879 2.18E+05 

min 7735.149902 8036.950195 7511.100098 7610.25 7610.25 0.00E+00 

25% 11542.7002 11588.5 11461.84961 11527.4502 11527.4502 2.61E+05 

50% 15073.25 15188.5 15008.84961 15108.09961 15108.09961 3.54E+05 

75% 17599.90039 17683.15039 17485.84961 17599.15039 17599.15039 5.55E+05 

max 20156.44922 20222.44922 20129.69922 20192.34961 20192.34961 1.81E+06 

 

#checking for null values in the dataset 

df.isnull().sum() 

 

Open         3 

High         3 

Low          3 

Close        3 

Adj Close    3 

Volume       3 

dtype: int64 

 

df['return'] = np.log(df['Adj Close'] / df['Adj Close'].shift(1)) 

# create logarithmic returns 

df['return_sign'] = np.sign(df['return']) # create a variable to 

check the sign depending on the above define return 

 

#create function to compute exponential moving average 

 

def EMAcreate(price, period): 

    modifiedPrice = price.copy() 

    sma_period = price.rolling(period).mean() 

    modifiedPrice.iloc[0:period] = sma_period[0:period] 

    ema_period = modifiedPrice.ewm(span=period, 

adjust=False).mean() 

    return ema_period 

 

df['Adj Close Lagged'] = df['Adj Close'].shift(1) # lagged 

adjusted close price 

df['Open Lagged'] = df.Open.shift(1) # lagged open price 

df['Close Lagged'] = df.Close.shift(1) # lagged close price 

df['High Lagged'] = df.High.shift(1) # lagged high price 

df['Low Lagged'] = df.Low.shift(1) # lagged low price 

df['Volume Lagged'] = df.Volume.shift(1) # lagged Volume 

 

# creating lagged returns 

 

lags = 8 

cols = [] 

for lag in range(1, lags+1): 

    col_ret = 'ret_%d' % lag 

    df[col_ret] = df['return'].shift(lag) 

    cols.append(col_ret) 

 

#creating a list of features that includes rolling and lagged 

returns 

features_list = [] 

for r in range(10, 65, 5): 

    df['Ret_'+str(r)] = df['return'].rolling(r).sum() 
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    df['Std_'+str(r)] = df['return'].rolling(r).std() 

    features_list.append('Ret_'+str(r)) 

    features_list.append('Std_'+str(r)) 

features_list.append('ret_over_21d') 

features_list.append('MOM_1d') 

features_list.append('MOM_5d') 

features_list.append('MA_5d') 

features_list.append('EMA_7d') 

df.dropna(inplace = True) 

 

df['ret_over_5d'] = np.log(df['Adj Close Lagged'] / df['Adj 

Close Lagged'].shift(5)) # lagged 5-day return 

df['ret_over_21d'] = np.log(df['Adj Close Lagged'] / df['Adj 

Close Lagged'].shift(21)) # lagged 21-day return 

df['MOM_1d'] = df['Adj Close Lagged'].diff(1) # lagged 1-

day adjusted close price difference 

df['MOM_5d'] = df['Adj Close Lagged'].diff(5) # lagged 5-

day adjusted close price difference 

df['MA_5d'] = df['Adj Close Lagged'].rolling(1).mean() # 

lagged 5-day adjusted close price moving average  

df['EMA_7d'] = EMAcreate(df['Adj Close Lagged'], 1) # 

lagged 7-day adjusted close price exponential moving 

average  

df.dropna(inplace = True) 

All the 50 reated features are still part of our original 

dataframe 'df' so we will now create a copy of our dataframe 

to store the feature set as a new datafram 'features_df'. 

 

# create a copy of our dataframe 

features_df = df.copy() 

 

features_df.head(5) 
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5 rows × 50 columns 

features_df.info() 

<class 'pandas.core.frame.DataFrame'> 

DatetimeIndex: 930 entries, 2019-07-30 to 2023-10-27 

Data columns (total 50 columns): 

 #   Column            Non-Null Count  Dtype   

---  ------            --------------  -----   

 0   Open              930 non-null    float64 

 1   High              930 non-null    float64 

 2   Low               930 non-null    float64 

 3   Close             930 non-null    float64 

 4   Adj Close         930 non-null    float64 

 5   Volume            930 non-null    float64 

 6   return            930 non-null    float64 
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 7   return_sign       930 non-null    float64 

 8   Ret_10            930 non-null    float64 

 9   Std_10            930 non-null    float64 

 10  Ret_15            930 non-null    float64 

 11  Std_15            930 non-null    float64 

 12  Ret_20            930 non-null    float64 

 13  Std_20            930 non-null    float64 

 14  Ret_25            930 non-null    float64 

 15  Std_25            930 non-null    float64 

 16  Ret_30            930 non-null    float64 

 17  Std_30            930 non-null    float64 

 18  Ret_35            930 non-null    float64 

 19  Std_35            930 non-null    float64 

 20  Ret_40            930 non-null    float64 

 21  Std_40            930 non-null    float64 

 22  Ret_45            930 non-null    float64 

 23  Std_45            930 non-null    float64 

 24  Ret_50            930 non-null    float64 

 25  Std_50            930 non-null    float64 

 26  Ret_55            930 non-null    float64 

 27  Std_55            930 non-null    float64 

 28  Ret_60            930 non-null    float64 

 29  Std_60            930 non-null    float64 

 30  Adj Close Lagged  930 non-null    float64 

 31  Open Lagged       930 non-null    float64 

 32  Close Lagged      930 non-null    float64 

 33  High Lagged       930 non-null    float64 

 34  Low Lagged        930 non-null    float64 

 35  Volume Lagged     930 non-null    float64 

 36  ret_1             930 non-null    float64 

 37  ret_2             930 non-null    float64 

 38  ret_3             930 non-null    float64 

 39  ret_4             930 non-null    float64 

 40  ret_5             930 non-null    float64 

 41  ret_6             930 non-null    float64 

 42  ret_7             930 non-null    float64 

 43  ret_8             930 non-null    float64 

 44  ret_over_5d       930 non-null    float64 

 45  ret_over_21d      930 non-null    float64 

 46  MOM_1d            930 non-null    float64 

 47  MOM_5d            930 non-null    float64 

 48  MA_5d             930 non-null    float64 

 49  EMA_7d            930 non-null    float64 

dtypes: float64(50) 

memory usage: 370.5 KB 

 

Target or Label Definition 

Label or the target variable is the variable we are trying to 

predict. Here, the target variable is whether Nifty Index price 

will close up or down on the next trading day. If the 

tomorrow’s closing price is greater than the 0.99995 of 

today’s closing price, then we will buy the Nifty Index, else 

we will sell the index. 

 

We assign a value of +1 for the buy signal and 0 for the sell 

signal to target variable. The target can be described as : 

Target = 1, if pt+1 > 0.99995 ∗ pt 

 

0, if pt+1 Otherwise 

 

where, pt is the Adjusted closing Price of Nifty Index and 

pt+1 is the 1-day forward Adjusted Closing Price of the index. 

 

features_df['Target'] = np.where(features_df['Adj 

Close'].shift(-1)> 0.99995 * features_df['Adj Close'],1,0) 

 

#creating set for our explained variable  

y = features_df['Target'] 

Now that we have our list of features, we will try and find 

which features are correlated above a threshold of 0.9. We do 

this to remove any redundant features present in our features 

list as they would not provide a value add to our model. 

 

#create a visualisation of the correlation matrix of features to 

know which features are highly correlated 

sns.heatmap(features_df.corr()>0.9, 

    annot=True, 

    annot_kws={"size": 8}, 

    fmt=".2f", 

    linewidth=.5, 

    cmap="coolwarm", 

    cbar=True); #cmap="crest", virids, magma 

 

plt.title('Features Set Correlations'); 
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 # remove the first feature that is correlated with any other 

feature 

def correlated_features(data, threshold=0.9): 

    col_corr = set() 

    corr_matrix = features_df.corr() 

    for i in range(len(corr_matrix.columns)): 

        for j in range(i): 

            if abs(corr_matrix.iloc[i, j]) > threshold: 

                colname = corr_matrix.columns[i] 

                col_corr.add(colname) 

    return col_corr 

 

# total correlated features 

drop_correlated_features = correlated_features(features_df) 

# drop the highly correlated features 

New_features_df = 

features_df.drop(drop_correlated_features, axis=1) 

 

New_features_df 

 

#creating our explanatory variables set without the explained 

variable as a part of it 

A = New_features_df.drop(['return_sign'],axis=1) #dropping 

return sign as I'm not finding it extremely important to be 

added at this point. 

X = A.drop(['Target'],axis=1) 

X 
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989 rows × 19 columns 

 

X.info() 

<class 'pandas.core.frame.DataFrame'> 

DatetimeIndex: 989 entries, 2019-05-07 to 2023-10-27 

Data columns (total 19 columns): 

 #   Column         Non-Null Count  Dtype   

---  ------         --------------  -----   

 0   Open           989 non-null    float64 

 1   Volume         989 non-null    float64 

 2   return         989 non-null    float64 

 3   Volume Lagged  989 non-null    float64 

 4   ret_1          989 non-null    float64 

 5   ret_2          989 non-null    float64 

 6   ret_3          989 non-null    float64 

 7   ret_4          989 non-null    float64 

 8   ret_5          989 non-null    float64 

 9   ret_6          989 non-null    float64 

 10  ret_7          989 non-null    float64 

 11  ret_8          989 non-null    float64 

 12  Ret_10         989 non-null    float64 

 13  Std_10         989 non-null    float64 

 14  Ret_15         989 non-null    float64 

 15  Ret_20         989 non-null    float64 

 16  ret_over_5d    989 non-null    float64 

 17  ret_over_21d   989 non-null    float64 

 18  MOM_1d         989 non-null    float64 

dtypes: float64(19) 

memory usage: 154.5 KB 

 

# Value counts for class 1 and 0 

pd.Series(y).value_counts() 

1    533 

0    456 

Name: Target, dtype: int64 

Above we see that the two classes are not perfectly balanced 

i.e. there are more values for class 1 as compared to class 0. 

Although this could be addressed by changing our earlier 

threshold for what get's classifed as 1 or 0, it has been kept as 

is. This is because we see that the general trend in the data is 

upwards i.e. positive return and that is also the characteristic 

of the equity market since the economy of a developing 

country is expected to grow over time (unless it is part of a 

depression cycle). 

That being said, there isnt too severe of a class imbalance in 

this case. 

 

# Splitting the datasets into training and testing data. 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, shuffle=False) 

# Output the train and test data size 

print(f"Train and Test Size {len(X_train)}, {len(X_test)}") 

Train and Test Size 791, 198 

Above we have split the data into training and test data with 

a 80-20 ratio and shuffle has been set to False because Time 

Series data is sequential in nature. 

The training data is used to fit the model. The algorithm that 

we are going to use will use the training data to learn the 

relationship between the features and the target. The test data 

will then be used to evaluate the performance of the model 

that we have built. 

 

Base Model 

We now build a base model with the default parameters. Our 

base model will be built using the Random Forest Classifier 

which is a machine learning algorithm that creates a forest of 

decision trees and combines their predictions to make a final 

prediction i.e it is an ensemble learning technique combining 

numerous classifiers to enhance a model's performance. 

 

model = RandomForestClassifier() #default parameters 

model.fit(X_train,y_train) 

# Predicting the test dataset 

y_pred = model.predict(X_test) 

# Predict Probabilities 

y_proba = model.predict_proba(X_test) 

Now that we have fitted our model and added the code to 

predict as well, we will need to know if the model is any good 

at making these predictions. 

 

acc_train = accuracy_score(y_train, model.predict(X_train)) 

acc_test = accuracy_score(y_test, y_pred) 
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print(f'Train Accuracy: {acc_train:0.4}, Test Accuracy: 

{acc_test:0.4}') 

Train Accuracy: 1.0, Test Accuracy: 0.5101 

Comparing the Train Accuracy to the Test Accuracy, we can 

see that clearly the data is overffiting. 

 

Taking a step back, Accuracy is essentially checking the 

predictions that the model made against the actual values in 

the set. In other words we are comparing the prediction that 

was made with the actual values from our dataset. Keeping 

this in mind, we see that the Train Accuracy is 1.0 and Test 

Accuracy is 0.5101. This means that our model is memorizing 

the training data and is not able to generalize on a test dataset. 

This occurs when the model is too complex and is thus unable 

to generalize well on data points outside of what is learnt from 

the training data. It also indicates that the model has low bias 

meaning that it is overly expressive. In the Bias - Variance 

tradeoff, this model has high Variance and low Bias. 

 

Thus, in the following part of this exercise we look to reduce 

the complexity of this model i.e. reduce the variance problem 

so that it is able to generalize on a test dataset. This can be 

achieved through hyperparameter tuning. 

 

But let us first look at some more interesting observations 

about how the algorithm has performed. 

 

disp = ConfusionMatrixDisplay.from_estimator( 

model, 

X_test, 

y_test, 

display_labels=model.classes_, 

cmap=plt.cm.Blues 

) 

disp.ax_.set_title('Confusion matrix') 

plt.show() 

 

From the above confusion matrix we can see that the true 

positive values are greater than the false positive i.e. the 

model is predicting the uptrend (class 1) correctly more times 

than it is misclassifying it. The same is with the case with the 

downtrend (class 0). 

 

This is another indication that we would need to fine tune our 

model some more. 

 

We will now take a look at the Classification Report which 

will give us a table of addtional metrics we can use to guage 

the performance of the model. 

 

print(classification_report(y_test, y_pred)) 

              precision    recall  f1-score   support 

 

           0       0.45      0.52      0.48        87 

           1       0.57      0.50      0.54       111 

 

    accuracy                           0.51       198 

   macro avg       0.51      0.51      0.51       198 

weighted avg       0.52      0.51      0.51       198 

 

Building from the comments about the confusion matrix 

wherein the true positives were predicted greater than the true 

negatives is also visible in the accuracy report when we take 

a look at the 'precision' column. Precision tells us how many 

selected items are relevant whereas 'recall' tells us how many 

relevant items are selected. 

 

We will now look at another metric called the ROC (Receiver 

Operating Characteristic) Curve below. 

# Display ROCCurve 

disp_roc = RocCurveDisplay.from_estimator( 

model, 

X_test, 

y_test, 

name='Random Forest Classifier') 

disp_roc.ax_.set_title('ROC Curve') 

plt.plot([0,1], [0,1], linestyle='--') 

plt.show() 
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The ROC Curve tells us the tradeoff netween the True 

Positive Rate and the False Positive Rate and hence we check 

for the steepness of the curve. The graph shows us the 

performance of the model at all classification thresholds. 

The objective is to defeat randomness with our model so an 

ROC curve greater than 0.5 would mean that it is working 

better than a fair coin toss. In our case we see that the value is 

greater than 0.5. Although the value isnt extremely high and 

signifies a week learning algorithm, it will perform better than 

a coint toss for predictions. 

 

Now that we have seen how our base model is performing, we 

will try and enhance it's performance. This is done through 

hyperparameter tuning. Hyperparameters are parameters that 

are not directly learnt within estimators. It is possible and 

recommended to search the hyperparameter space for the best 

cross validation score. Any parameter provided when 

constructing an estimator may be optimized in this manner. 

Hyperparameter tuning is a method to choose the best loss 

minimizing function to maximize Accuracy or whatever 

function we are scoring for (example F1 score, etc.) 

 

First we will get a list of parameters used in our model, then 

we will tune the hyperparameters to select the best score by 

TimeSeriesSplit cross-validation. Once we get a list of the 

best parameters and best score, we will tune our base model 

to use these parameters. Once we have fitted the model with 

the best parameters, we will go through all the above metrics 

again to see if the model has improved or not. 

 

# Get params list 

model.get_params() 

 

{'bootstrap': True, 

 'ccp_alpha': 0.0, 

 'class_weight': None, 

 'criterion': 'gini', 

 'max_depth': None, 

 'max_features': 'auto', 

 'max_leaf_nodes': None, 

 'max_samples': None, 

 'min_impurity_decrease': 0.0, 

 'min_samples_leaf': 1, 

 'min_samples_split': 2, 

 'min_weight_fraction_leaf': 0.0, 

 'n_estimators': 100, 

 'n_jobs': None, 

 'oob_score': False, 

 'random_state': None, 

 'verbose': 0, 

 'warm_start': False} 

 

# Timeseries CV 3-split 

tscv = TimeSeriesSplit(n_splits=5, gap=1) 

 

# Hyper parameter optimization 

param_grid = {  

    'n_estimators': [25, 50, 100, 150],  

    'max_features': ['sqrt', 'log2', None],  

    'max_depth': [3, 6, 9],  

    'max_leaf_nodes': [3, 6, 9],  

}  

The RandomizedSearchCV implements a “fit” and a “score” 

method and perform randomized search on hyperparameters. 

The parameters of the estimator used to apply these methods 

are optimized by cross-validated search over parameter 

settings. Not all parameter values are tried out, but rather a 
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fixed number of parameter settings is sampled from the 

specified distributions. 

 

# perform random search 

rs = RandomizedSearchCV(model, param_grid, n_iter=100, 

scoring='f1', cv=tscv,verbose=0) 

rs.fit(X_train, y_train) 

 

RandomizedSearchCV(cv=TimeSeriesSplit(gap=1, max_trai

n_size=None, n_splits=5, test_size=None), 

                   estimator=RandomForestClassifier(), n_iter=100

, 

                   param_distributions={'max_depth': [3, 6, 9], 

                                        'max_features': ['sqrt', 'log2', None], 

                                        'max_leaf_nodes': [3, 6, 9], 

                                        'n_estimators': [25, 50, 100, 150]}, 

                   scoring='f1') 

 

# best parameters 

 

rs.best_params_ 

 

{'n_estimators': 25, 

 'max_leaf_nodes': 3, 

 'max_features': 'sqrt', 

 'max_depth': 9} 

 

# best score 

rs.best_score_ 

 

0.6387682740908026 

Tuned Model 

Now that we have our best parameters and score, we will refit 

our base modeel to use these parameters to check for 

improvements in the performance of our model. 

 

# Refit the Random Forest Classifier with the best params 

cls = RandomForestClassifier(**rs.best_params_) 

cls.fit(X_train, y_train) 

eval_set=[(X_train, y_train), (X_test, y_test)] 

 

score = cross_val_score(cls,X_train,y_train,cv=tscv) 

print(f'Mean CV Score : {score.mean():0.4}') 

Mean CV Score : 0.5145 

 

# Predicting the test dataset 

y_pred = cls.predict(X_test) 

# Measure Accuracy 

acc_train = accuracy_score(y_train, cls.predict(X_train)) 

acc_test = accuracy_score(y_test, y_pred) 

# Print Accuracy 

print(f'\n Training Accuracy \t: {acc_train :0.4} \n Test 

Accuracy \t\t:{acc_test :0.4}') 

 Training Accuracy  : 0.6106  

 Test Accuracy   :0.5657 

We can now see that the Training and Test Accuracy scores 

have changed as compared to our base model. The Training 

score has drastically reduced meaning that our algorithm is 

not memorizing the dataset anymore. It has come down 

severly from a perfect score of 1 which indicates that the 

algorithm has been simplified and isnt as complex as before. 

The score is also extremely close to the Test Accuracy Score, 

although the Test Accuracy score is still a little lower than 

Training Accuracy score, there isnt as much of a gap between 

the two anymore. This means that although there is slight 

overfitting taking place, the tuned model is performaing better 

than the base model which is the purpose of hyperparameter 

tuning. This is also visible in the fact that the Test Accuracy 

score of the tuned model is greater than the base model. 

 

# Display confussion matrix 

disp = ConfusionMatrixDisplay.from_estimator( 

cls, 

X_test, 

y_test, 

display_labels=model.classes_, 

cmap=plt.cm.Blues 

) 

disp.ax_.set_title('Confusion matrix') 

plt.show() 

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1941 

https://www.ijsr.net/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 13 Issue 4, April 2024 
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 

www.ijsr.net 

 
 

We can see that the True Positives VS False Positive ratio has 

increased as compared to that from the base model. This is one 

of the indicators that the model is performing better as it is able 

to classify the positive class better. 

 

# Classification Report 

print(classification_report(y_test, y_pred)) 

              precision    recall  f1-score   support 

 

           0       0.52      0.15      0.23        87 

           1       0.57      0.89      0.70       111 

 

    accuracy                           0.57       198 

   macro avg       0.55      0.52      0.46       198 

weighted avg       0.55      0.57      0.49       198 

 

# Display ROCCurve 

disp_roc = RocCurveDisplay.from_estimator( 

cls, 

X_test, 

y_test, 

name='Tuned Random Forest Classifier') 

disp_roc.ax_.set_title('ROC Curve') 

plt.plot([0,1], [0,1], linestyle='--') 

plt.show() 
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The ROC Curve metric now has a greater score of 0.57 

compared to the score of 0.56 of the base model. Although it 

is only slightly better and the results arent extremely 

promising, it still shows an improvement in our model. 

 

Concluding Remarks 
 

We can see from our Training and Test Accuracy Scores for 

the base and tuned model that this algorithm is indeed a week 

learner. However, if the features are further refined and 

selected, then the accuracy score would improve. It takes 

quite a lot of time (can take 6 months or so ) to try and get the 

correct set of features to improve the model. 

 

No random seed parameter has been applied through this 

exercise so rerunning the code could lead to different results 

since the data would be split randomly on the rerun. This 

would give different training and test datasets on every run. 

Paper ID: SR24418155701 DOI: https://dx.doi.org/10.21275/SR24418155701 1943 

https://www.ijsr.net/



