Periodontal Osseous Defect Management Modalities: A Literature Review

Ruby Bhatti¹, Janmeet Randhawa², Arun Vashisht³

¹BDS, Gian Sagar Dental College and Hospital, Patiala, Punjab, India.

²BDS, Adesh Institute of Dental Sciences and Research, Bathinda, Punjab, India

³BDS, MDS, PG Prosthodontics, Director, GimmeSmile, PPLC Texas, North America

Abstract: Periodontal procedures aim to prevent further attachment loss and predictably restore the periodontal supporting structures that are lost because of disease or trauma in a way that the architecture and function of the lost structures can be reestablished. Conventional nonsurgical therapy and periodontal flap procedures successfully halt the progression of periodontal disease but result in soft tissue recession that leads to poor esthetics in the anterior dentition. Moreover, conventional periodontal therapy often results in residual pockets usually inaccessible to adequate cleaning, which negatively affects the long - term prognosis of the treated tooth. These compromised outcomes can be avoided or minimized by periodontal regenerative procedures that restore the lost periodontal structures. This article presents a brief review on current knowledge of different periodontal regeneration modalities.

Keywords: Periodontitis, periodontal regeneration; GTR; bone grafts; growth factors; biologics

1. Introduction

Periodontal disease is a multifactorial disease which is characterized by microbially associated, host - mediated inflammation that results in loss of periodontal attachment, eventually leading to tooth loss¹. Periodontitis is commonly associated with soft and hard tissue destruction around teeth. It has been shown that deep residual probing depths in treated patients represent a risk indicator for the disease progression.² The main goal of periodontal therapy is to treat the infection caused by microorganisms in periodontal biofilm and reduce or eliminate further loss of attachment and bone loss, therefore preventing loss of tooth. Once the inflammatory aspect of the disease has been controlled, the goal of periodontal therapy is the regeneration of the destroyed tissue. Ideally, the treatment protocol for intrabony and furcation defects should result not only in reduction of probing depths, clinical attachment level gain and bone-fill but also closure of bony defects because of periodontal regeneration^{2, 3, 4, 5}. The regenerative process aims to use scaffolds, cells, and growth factors to enhance biological activity. Current regenerative techniques are aimed at the treatment of intrabony and furcation defects. The focus of this review paper is to present and update the knowledge of periodontal regeneration protocols. Periodontal regeneration requires new attachment to the root surface, a process that involves the regeneration of periodontal ligament fibres and the insertion of these fibres into newly formed cementum on a root surface that has been exposed previously to periodontal pathogens^{6, 7}. It has been shown that cells derived from the gingival connective tissues and the alveolar bone lack the ability to form such an attachment. On the other hand, if preference is given to repopulation of the root surface by periodontal ligament cells, new connective tissue attachment including new cementum with inserting collagen fibres can be formed.5 Hence, the periodontal ligament is of critical importance in the regenerative process.^{7, 8}.

Techniques used for Periodontal Regeneration

In recent years, various clinical protocols have been shown to enhance periodontal regeneration and improve the clinical outcome in intrabony and furcation defects. These include^{9, 10}:

- a) The use of various surgical techniques in conjunction with the implantation of bone grafts/bone substitutes
- b) Root surface conditioning.
- c) Guided tissue regeneration (GTR)
- d) Biologics
 - Enamel matrix derivative (EMD)
 - Growth and differentiation factors
- e) Combinations of the above.

Bone grafts

Materials to be grafted can be obtained from the same person (autograft), from a different person of the same species (allografts), or from a different species (xenografts). Bone grafts are generally evaluated based on their osteogenic, osteoinductive or osteoconductive potential^{9, 10}.

Classification

Bone replacement grafts are classified as follows^{9, 10, 11, 12}:

Human bone

- a) Autogenous grafts (autografts)
 - Extra oral
 - Intraoral
- b) Allogenic grafts (allografts)
 - Fresh frozen bone
 - Freeze dried bone allografts
 - Demineralized freeze dried bone allografts

Bone substitutes

a) Xenogenic grafts (xenografts)

- Bovine derived hydroxyapatite
- Coralline calcium carbonate
- b) Alloplastic grafts (alloplasts)
 - Polymers
 - Bioceramics
- c) Tricalcium phosphate

Volume 13 Issue 4, April 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

d) Hydroxyapatite

Bioactive glasses

Autografts¹² (Autogenous grafts, intraoral sites)

Some authors have reported the presence of a long junctional epithelium between the regenerated alveolar bone and root surface. Thus, the presence of clinical bone fill does not necessarily indicate periodontal regeneration.

Bone obtained from intra oral sites such as:

- Healing extraction wounds
- Bone from edentulous ridges
- Bone trephined from within the jaw without damaging the roots.
- Newly formed bone in wounds especially created for the purpose.
- Bone removed during osteoplasty or ostectomy.

Autografts¹³ (Autogenous grafts, extraoral sites)

Autogenous iliac cancellous bone and marrow have been shown to possess a high degree of osteogenic potential. Numerous case reports have demonstrated successful bone fill after application of these materials in furcations and intrabony osseousdefects of various morphologies^{13, 14, 15}.

Bone obtained from sites such as:

Iliac cancellous grafts

Disadvantages of extraoral autogenous grafts¹⁵

- Post operative infection
- Exfoliation, sequestration
- Varying rates of healing
- Root resorption
- Rapid recurrence of the defect

Allografts (Allogenic bone grafts)

Several types of bone allografts exist such as iliac cancellous bone and marrow, freeze - dried bone allografts, and decalcified freeze - dried bone allograft. They have potential to provoke immune responses. Radiation, freezing and chemical treatment has been shown to markedly reduce the antigenicity of allografts. Obtained from cortical bone within 12 hours of the death of the donor, defatted and cut in pieces, washed in absolute alcohol, and deep frozen. The material may then be demineralized and subsequently ground and sieved to a particle size of 250 to 750 mm and freeze dried. And finally vacuum sealed in glass vials^{17, 18}.

Mineralized freeze - dried bone allografts (MFDBA)

Freeze drying may partially distort the three - dimensional presentation of human leukocyte antigens on freeze dried bone allografts affecting immune recognition. American academy of periodontology recommends use of cortical rather than cancellous bone allografts since cancellous bone is more antigenic and there is more bone matrix and more bone inductive components in cortical bone. FDBA is regarded as osteoconductive.

Demineralized freeze - dried bone allografts (DFDBA)

Demineralization in cold, dilute hydrochloric acid exposes the components of bone matrix, closely associated with collagen fibrils, that have been termed bone morphogenetic proteins. FDDBA has superior bone induction properties and clinical studies indicate that sites grafted with this material produce more than 50% bony in fill in 78% of sites, compared with

only 38% of sites for debridement alone^{18, 19}. The material consists of a combination of human freeze - dried powder with human tendon collagen. Following rehydration, it can be layered into a defect and expands to fill it.

Xenografts

Xenogenic materials have also been used for grafting around periodontal defects. These grafting materials are also referred to as inorganic bone, probably because all cells and proteinaceous material are removed during processing. Inorganic bovine bone is the hydroxyapatite skeleton that retains the macro porous and microporus structure of cortical and cancellous bone remaining after chemical or low heat extraction of the organic component²⁰. The advantage of this product is they provide structural components similar to the human bone with improved osteoconductive capability compared with synthetically derived materials²¹. Yukna and coworkers have used a natural, anorganic, microporous, bovine derived hydroxyapatite bone matrix in combination with a cell binding polypeptide that is a synthetic clone of the 15 amino acid sequence of type I collagen²². The addition of cell binding polypeptide was shown to enhance the bone regenerative results of the matrix alone in periodontal defects.

Alloplasts

Alloplasts are synthetic, inorganic, biocompatible bone substitutes which promote bone healing. There are presently six types of allo - plastic materials used in clinical practice which are as follows: nonporous hydroxyapa - tite (nonresorbable), porous hydroxyapatite or replamineform (nonresorbable), hydroxyapa - tite cement, beta tricalcium phosphate (resorbable), HTR (a calcium layered polymer of polymethylmethacrylate and hydroxyethyl - methacrylate, nonresobable) and bioactive glass. The clinical findings appear promising, histologically the grafts tend to be encapsu - lated by connective tissue with minimal or no bone formation. Microscopic studies have found limited new bone in proximity to the implanted materials^{23, 24, 25}.

Technical implications in bone grafting techniques

- Preparation of graft material
- Promotion of a bleeding surface
- Presuturing
- Adequate condensation of graft material
- Fill to a realistic level
- Achievement of tissue coverage
- Placement of periodontal dressing
- Administration of antibiotics

Root Surface Conditioning/ Root Surface Biomodification The topical application of chemical agents to modify the root

The topical application of chemical agents to modify the root surface is one of the earliest reported clinical approaches to prepare root surfaces for optimal attachment of periodontal tissues and regeneration. Several agents, such as citric acid, tetracycline, and ethylenediamine tetra - acetic acid (EDTA), have been shown to result in surface biomodification, including detoxification, demineralization, and collagen fiber exposure^{26, 27, 28, 29}. A recent systematic review, however, concluded that chemical root modifiers do not enhance reductions in probing depth or gains in clinical attachment level following periodontal surgery²⁶. Because improvements in clinical measures can occur following periodontal repair via a long junctional epithelium, connective tissue

Volume 13 Issue 4, April 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2022): 7.942

attachment, or both as well as periodontal regeneration, many clinicians continue to routinely apply root modifiers to promote true regeneration, namely the formation of new bone, cementum, and periodontal ligament. Root surface conditioning with tetracycline or citric acid has been used as a part of regenerative procedures. Root surface conditioning was originally suggested because of the ability of acid to modify the root surface by 'detoxifying'' it. Root surface conditioning also showed that collagen fibrils were exposed within the cementum or dentin matrix. Recent studies showed that using ETDA, which has a less acidic pH, may also expose collagen fibers, and thus promote cell attachment without having a damaging effect on the surrounding tissues. Results from clinical trials using any type of root conditioning agent indicate no additional improvement in clinical conditions^{30, 31,} ³². Therefore, the use of root surface conditioning as an adjunct to surgical debridement for the purpose of promoting periodontal regeneration is not supported by the literature.

Guided cell repopulation/guided tissue regeneration (GTR)

Guided tissue regeneration describes procedures attempting to regenerate lost periodontal structures through differential tissue responses and typically refers to regeneration of periodontal attachment.

Barrier techniques are used for excluding connective tissue and gingiva from the root in the belief that they interfere with regeneration.

Biologic basis of GTR

GTR has successfully been shown to prevent the migration of epithelial and gingival connective tissue cells into previously diseased root surfaces. The biologic basis of GTR assumes that the placement of physical barriers prevents apical migration of the epithelium and gingival connective tissue cells of the flap and provides a secluded space for the inward migration of periodontal ligament cells (PDL) and mesenchymal cells on the exposed root surface, which in turn promote periodontal regeneration³³. Besides favoring selective repopulation of the wound area, physical barriers are also thought to provide protection of the blood clot during the early phases of healing and to ensure space maintenance for ingrowth of a new periodontal apparatus. GTR membranes, as physical barriers, however, provide no biologic effects on differentiation and proliferation of mesenchymal and PDL cells, which is likely to limit their clinical efficacy.

Indications³³:

- · Narrow two wall / three wall intrabony defect
- Class II furcation involvement
- Osseous fill around immediate implant placement.
- Repair of osseous defect around failing implants.
- Ridge augmentation.
- Root coverage.
- Repair of apicoectomy defects

Contraindications³³:

- Patients with poor oral hygiene.
- Generalized horizontal bone defects
- Class III furcations.
- Multiple adjacent defects.
- In areas of inadequate zone of attached gingiva

Design criteria for guided tissue regeneration devices³⁴ (Scantlebury)

- Biocompatible
- Cell occlusiveness
- Integration with host tissues
- Clinical manageability
- Ease of use
- For bioresorbable membrane, tissue reaction resulting from the resorption of membrane should be minimal.

Properties of an ideal barrier membrane^{33, 34}

- 1) Should fulfill the occlusive requirements of the GTR principle
- 2) Should be biocompatible and allows for tissue integrity
- 3) Should be non toxic, non carcinogenic
- 4) Should be non antigenic and chemically inert
- 5) Should be sterile and have the ability to be sterilized easily
- 6) Should have easy handing characteristics during surgery.
- 7) Should be sufficiently stiff, so that it does not adhere to the tooth surface
- 8) Should have design based on each specific clinical rationale
- 9) Should have long shelf life and easily be stored
- 10) Should preferably be bioresorbable
- 11) Should be retrievable in case of complications
- 12) Should be inexpensive.

Classification of GTR membranes

- 1) First generation membranes (non absorbable)
- 2) Second generation membranes (absorbable)
- 3) Third generation membrane (1st and 2nd generation membranes with adhesion molecules and growth factors.)

Non resorbable membranes³⁵:

Advantage

• Semi permeable allowing only the passage of liquids and excluded cell passage.

Disadvantages

- Needs a second surgical procedure to remove it.
- Increased risk of loss of regenerated attachment owing to reentry surgery.
- Increased time, cost and morbidity.

Resorbable membranes:

- Collagen
- Polymers
- Calcium sulfate
- Periosteum, Connective tissue graft, freeze dried duramater
- Alloderm
- Lambone
- Gelfoam, Surgicel, Gengiflex
- Cementum impregnated gelatin membrane
- Cargile membranes
- Elastin fibrin matrix

Disadvantages of resorbable membranes³⁶

- Tissue reaction
- Tendency to collapse toward the root surface

Volume 13 Issue 4, April 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

<u>www.ijsr.</u>

Recommended technique for GTR

The GTR technique for its use is as follows^{37, 38}

- 1) Mucoperiosteal flap raised with vertical incisions, extending a minimum of two teeth anteriorly and one tooth distally to the tooth being treated.
- 2) Degranulation of the osseous defect.
- 3) Meticulous scaling and root planning of the root surface
- 4) Trim the membrane with sharp scissors to the approximate size of the area being treated. The apical border of the material should extend 3 to 4 mm apical to the margin of the defect and laterally 2 to 3 mm beyond the defect; the occlusal border of the membrane should be placed 2 mm apical to the cementoenamel junction.
- 5) Suture the membrane tightly around the tooth with a sling suture.
- 6) Suture the flap back in its original position or slightly coronal to it, using independent sutures interdentally and in the vertical incisions. The flap should cover the membrane completely.
- 7) The use of periodontal dressings is optional, and the patient is placed on antibiotic therapy for 1 week.

Factors affecting GTR Clinical Outcomes

Regeneration of periodontal defects, although possible, is not always a predictable outcome. Several local and patient related factors may account for the variability in the clinical responses to GTR. To increase the predictability and clinical success of GTR, factors related to the patient, the defect, and the surgical treatment should be evaluated during treatment planning.

Patient Factors³⁸

Patient factors affecting Periodontal Regeneration with GTR Many patient - related factors may adversely affect the healing outcomes after GTR procedures of which smoking, poor plaque control, and residual periodontal disease actively receive special attention, as these can be controlled through behavioral and therapeutic interventions.

- 1) Smoking
- Smoking negatively affects the regenerative outcomes of GTR. Various mechanisms can contribute to the detrimental effects of smoking on healing after GTR, including
 - decreased vascular flow,
 - altered neutrophil function,
 - decreased IgG production and lymphocyte proliferation,
 - impaired fibroblast function, and increased prevalence of periodontal pathogens.
 - The frequency and duration of smoking inversely correlate to clinical attachment gains after GTR.
- 3) The level of postoperative plaque control and residual periodontal infection, evaluated by the number of residual periodontal pockets and percentage of sites with bleeding on probing, also affects the clinical responses to GTR
- 4) Barrier membranes are at a higher risk of becoming contaminated in individuals with high levels of periodontal pathogens and multiple sites with bleeding on probing. Therefore, patients should undergo GTR procedures only after periodontal infection has been treated.

5) Although there is not enough evidence that diabetes, immunosuppression, and stress impair the efficacy of GTR, it was reported that these patient - related systemic conditions could negatively interfere with the clinical outcomes of GTR.

Local Factors

Case selection is of paramount importance and represents one of the most significant factors in predicting the clinical outcomes of GTR procedures³⁸.

- The presence of cervical enamel projections and enamel pearls interferes with periodontal regeneration and should be removed during regenerative procedures.
- The gingival thickness around the affected area should also be analyzed, as gingival thickness less than 1 mm is associated with increased prevalence and severity of flap dehiscence over GTR membranes.
- Presurgical tooth mobility has a negative effect on the clinical outcome of GTR and should be controlled through splinting and/or occlusal adjustments.
- Local factors that favor plaque accumulation, such as calculus and overhanging restorations, need to be removed before GTR procedures.
- In addition to these considerations, specific factors related to the regeneration of furcation and intrabony defects should be evaluated.

Complications.

Exposure of GTR membrane

- Most common complication.
- Membranes can get exposed anytime after flap surgery and should not be considered as failure of the procedure.
- Plaque accumulation, however, becomes a problem. Gentle brushing & chlorhexidine mouthrinses are recommended.

Biologics

According to the Food and Drug Administration (FDA), biologics are a wide range of products, proteins, growth factors, or a complex combination of these substances used to treat various diseases or to enhance the regenerative process, as periodontal regeneration, via the activation and stimulation of periodontal cells. Enamel matrix derivative (EMD), recombinant human platelet - derived growth factor - BB (PDGF—BB), and bone morphogenic proteins (BMP) are currently available on the market.^{39, 40, 41, 42}

Enamel matrix derivative (EMD)

EMD (Emdogain - Straumann, Basel, Switzerland) is the most widely studied commercially available bioactive agent used for the purpose of promoting periodontal regeneration. It is derived from the tooth pouches of unerupted porcine teeth and composed of amelogenins and enzyme components. This material is only sold as Emdogain®. The first study to show the efficacy of this material was conducted by Heiji et al. in 1997, in which EMD was compared to open flap debridement of intraosseous defects⁴³. EMD was associated with significant CAL gains and pocket depth reduction. Another series of studies compared EMD to GTR with comparable results. The biological rationale for the use of EMD is to recapitulate developmental mechanisms whereby enamel matrix proteins are proposed to play a critical role in stimulating cementogenesis. Based on this rationale,

Volume 13 Issue 4, April 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR24420004919

preliminary studies were carried out in animal and human models^{44, 45, 46}, and histoogical evidence of regeneration was demonstrated. The defect's anatomy also plays important role in the regenerative potential of this molecule.

Growth factors and differentiation factors

Platelet derived growth factor (PDGF)

The use of polypeptide growth factors has been proposed based on their ability to promote a variety of cellular functions that are associated with wound healing, including migration, proliferation. attachment and differentiation. The disadvantage is in its handling, which requires the use of scaffold and fillers. PDGF has also been used in association with allogenic bone grafts and shown to induce substantial attachment gain and probing depth reduction in case reports on the treatment of Class II furcation and intrabony defects. Several studies have evaluated the use of this molecule as an adjunct to Beta - tricalcium phosphate (B - TCP), EMD, and bone allograft, with positive results for EMD and allograft. PDGF has been characterized as a "competence factor", which means that it makes a cell competent for cell division; a "progression factor", such as IGF - 1 or dexamethasone, is then necessary to induce mitosis, although in some osteoblast and periodontal ligament cell cultures PDGF alone stimulates proliferation.46

Bone Morphogenic Protiens (BMP's)

BMP are proteins found in bone and showed bone regeneration in an animal model. The most studied forms of this type of molecule are BMP - 2, BMP - 6, and BMP - 12. Interesting data came from a study by Wikesjo et al. in a canine model, where the use of BMP - 12 showed a regenerated and well - oriented periodontal ligament with newly formed bone and cementum⁴².

Complications associated with the use of these molecules include:

- Possible ankylosis
- Root resorption

Platelet Rich Plasma (PRP)

PRP is a platelet concentrate which contains several different growth factors including PDGF, TGF - β and IGF that have been shown to exert a positive effect on periodontal wound healing. PRP has the advantage of being able to prepare chairside and safety issues are minimal. There are no randomized controlled clinical trials evaluating the clinical effect of PRP alone in periodontal regeneration. However, the use of PRP combined with several types of grafts for the treatment of intrabony defects resulted in contradictory results ranging from a significant enhancement of clinical attachment gain to no gain.

Tissue engineering

Considering the clinical unpredictability of currently available surgical techniques to treat all types of periodontal defects, it would appear that these approaches are too simplistic to facilitate the coordinated wound healing events required for the regeneration of a complex organ such as the periodontium. Consequently, a tissue engineering approach has been proposed, whereby periodontal tissues would be constructed in the laboratory under controlled conditions and then surgically implanted into defects.⁴⁷ In principle,

evidence for the viability of this approach has been demonstrated in animal studies showing that autologous cultured periodontal cells can support regeneration. This approach is further supported by evidence that periodontal ligament cells have stem cell properties^{47, 48, 49}.

A new and promising approach to periodontal tissue engineering involves using periodontal cell sheets prepared *in vitro* and subsequently transplanted into periodontal defects. It has been reported that periodontal ligament cells cultured using this cell sheet technique can regenerate periodontal ligament tissues after transplantation in animal models^{50, 51}.

Gene therapy

One of the major drawbacks related to the use of biologically active agents, such as growth factors, is their short biological half - life which results in their rapid degradation following application. Gene therapy can be used to facilitate extended local delivery of growth factors by transferring the growth factor genes into the local cell population^{52, 53}. Gene delivery of PDGF has been accomplished by the successful transfer of the platelet - derived growth factor gene into cementoblast and other periodontal cell types. Animal studies have demonstrated that gene delivery of PDGF stimulated more cementoblast activity and improved regeneration compared with a single application of recombinant platelet derived growth factor^{53, 54}. Although our understanding of gene regulation of PDGF has improved with experimental gene therapy studies, the safety and efficacy of using gene therapy for regeneration have yet to be fully evaluated.

2. Conclusion

Periodontitis results in destructive changes in the component hard and soft tissues of the periodontium, culminating in loss of supporting alveolar bone and periodontal attachment. Horizontal patterns of alveolar bone loss are not amenable to periodontal regeneration with current regenerative therapies, including bone grafts. Vertical or angular bony defects, including furcation defects, are often responsive to periodontal regeneration.

References

- [1] American Academy of periodontology. Glossary of periodontic terms.3rd edition.1992.
- [2] Claffey, N.; Egelberg, J. Clinical indicators of probing attachment loss following initial periodontal treatment in advanced periodontitis patients. J. Clin. Periodontol.1995, 22, 690–696.
- [3] Bowers GM, Schallhorn RG, Mellonig JT. Histologic evaluation of new attachment in human intrabony defects. A literature review. J Perio - dontol 1982 Aug; 53 (8): 509 - 14.
- [4] Bowers, GM, Chadroff B, Camevale R. Histological evaluation of new attachment apparatus formation in humans. Part I. J Periodontol 1989; 60: 664 - 74.
- [5] Cole RT, Crigger M, Bogle G, Egelberg J, Selvig KA. Connective tissue regeneration to periodontally diseased teeth. A histological study. J Periodontal Res 1980 Jan; 15 (1): 1 - 9.
- [6] Karring T, Nyman S, Lindhe J. Healing following implantation of periodontitis affected roots into bone

Volume 13 Issue 4, April 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

tissue. J Clin Period - ontol 1980; 7: 96–105.

- [7] Nyman S, Karring T, Lindhe J, Planten S. Healing following implantation of periodontitis - affected roots into gingival connective tissue. J Clin Periodontol 1980; 7: 394–401.
- [8] Melcher AH. On the repair potential of periodontal tissues. J Periodontol 1976; 47: 256–260.
- [9] Fermin A. Carranza, Henry H. Takei, David L. Cochran. Reconstructive periodontal surgery. In: Fermin A. Carranza, Klokkevold, Henry. H. Takei. Clinical Periodontology. Philadelphia: W. B. Saunders; 2006; p.968.
- [10] Jan Lindhe, Thorklid karring, Pierpaolo cortellini. Regenerative periodontal therapy. In: Jan Lindhe, Tharklid karring, Niklaus P. Lang. Clinical periodontology and Implant Dentistry. New Jersey: Blackwell; 2002. p.650.
- Polson AM, Heijl LC. Osseous repair in infrabony periodontal defects. J Clin Periodontol 1978 Feb; 5 (1): 13 - 23.
- [12] Nabers Cl, O'leary TJ. Autogenous Bone Transplants in the treatment of Osseous Defects. J Periodontol 1965 Jan - Feb; 36: 5 - 14.
- [13] Gantes B, Martin M, Garrett S, Egelberg J. Treatment of periodontal furcation defects. (II). Bone regeneration in mandibular class II defects. J Clin Periodontol 1988 Apr; 15 (4): 232 - 9.
- [14] Schallhorn RG. Eradication of bifurcation defects utilizing frozen autogenous hip marrow implants. Periodontal Abstr 1967 Sep; 15 (3): 101 5.15 Dragoo MR, Sullivan HC. A clinical and histological evaluation of autogenous iliac bone grafts in humans. I. Wound healing 2 to 8 months. J Periodontol 1973 Oct; 44 (10): 599 613.
- [15] Schallhorn RG, Hiatt WH, Boyce W. Iliac transplants in periodontal therapy. J Periodontol 1970 Oct; 41 (10): 566 - 80.
- [16] Schallhorn RG. Postoperative problems associated with iliac transplants. J Periodontol 1972 Jan; 43 (1): 3
 - 9.
- [17] Quattlebaum JB, Mellonig JT, Hensel NF. Antigenicity of freeze - dried cortical bone allograft in human periodontal osseous defects. J Periodontol 1988 Jun; 59 (6): 394 - 7.
- [18] Mabry TW, Yukna RA, Sepe WW. Freeze dried bone allografts combined with tetracycline in the treatment of juvenile periodontitis. J Periodontol 1985 Feb; 56 (2): 74 - 81.
- [19] Mellonig JT, Bowers GM, Bailey RC. Comparison of bone graft materials. Part I. New bone formation with autografts and allografts determined by Strontium - 85. J Periodontol 1981 Jun; 52 (6): 291 - 6.
- [20] Spector M. Anorganic bovine bone and ceramic analogs of bone mineral as implants to facilitate bone regeneration. Clin Plast Surg 1994 Jul; 21 (3): 437 - 44.
- [21] Mellonig JT. Human histologic evaluation of a bovine
 derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent 2000 Feb; 20 (1): 19 - 29.
- [22] Yukna RA. HTR polymer grafts in human periodontal osseous defects. I.6 - month clinical results. J Periodontol 1990 Oct; 61 (10): 633 - 42.
- [23] Lekovic V, Kenney EB, Carranza FA Jr, Danilovic V.

Treatment of class II furcation d efects using porous hydroxylapatite in conjunction with a polytetrafluoroethylene membrane. J Periodontol 1990 Sep; 61 (9): 575 - 8.

- [24] Baldock WT, Hutchens LH Jr, McFall WT Jr, Simpson DM. An evaluation of tricalcium phosphate implants in human periodontal osseous defects of two patients. J Periodontol 1985 Jan; 56 (1): 1 - 7.
- [25] Stahl SS, Froum S. Histological evaluation of human intraosseous healing responses to the placement of tricalcium phosphate ceramic implants. I. Three to eight months. J Periodontol 1986 Apr; 57 (4): 211 - 7.
- [26] Mariotti A. Efficacy of chemical root surface modifiers in the treatment of periodontal disease. A systematic review. Ann Periodontol 2003; 8: 205–226.
- [27] Crigger M, Bogle G, Nilveus R, Egelberg J, Selvig KA. The effect of topical citric acid application on the healing of experimental furcation defects in dogs. J Periodontal Res 1978; 13: 538–549.
- [28] Polson AM, Proye MP. Effect of root surface alterations on periodontal healing. II. Citric acid treatment of the denuded root. J Clin Periodontol 1982; 9: 441–454.
- [29] Blomlof L, Jonsson B, Blomlof J, Lindskog S. A clinical study of root surface conditioning with an EDTA gel. II. Surgical periodontal treatment. Int J Periodontics Restorative Dent 2000; 20: 566–573.
- [30] Erdinc M, Efeoglu A, Demirel K. Clinical evaluation of the effect of tetracycline hydrochloride root conditioning during flap surgery. Periodontal Clin Investig 1995; 17: 6–9.
- [31] Fuentes P, Garrett S, Nilveus R, Egelberg J. Treatment of periodontal furcation defects. Coronally positioned flap with or without citric acid root conditioning in class II defects. J Clin Periodontol 1993; 20: 425–430.
- [32] Parashis AO, Tsiklakis K, Tatakis DN. EDTA gel root conditioning: lack of effect on clinical and radiographic outcomes of intrabony defect treatment with enamel matrix derivative. J Periodontol 2006 Jan; 77 (1): 103 - 10.
- [33] Needleman, I. G.; Worthington, H. V.; Giedrys -Leeper, E.; Tucker, R. J. Guided tissue regeneration for periodontal infra - bony defects. Cochrane Database Syst. Rev.2006, CD001724.
- [34] Scantlebury TV.1982 1992: a decade of technology development for guided tissue regene ration. J Periodontol 1993; 64 (11 Suppl): 1129 37.51 Gottlow J. Guided tissue regeneration using bioresorbable and non resorbable devices: initial healing and long term results. J Periodontol 1993 Nov; 64 (11 Suppl): 1157 65.
- [35] Gray JL, Hancock EB. Guided tissue regeneration. Nonabsorbable barriers. Dent Clin North Am 1998 Jul; 42 (3): 523 - 41.
- [36] Simion M, Scarano A, Gionso L, Piattelli A. Guided bone regeneration using resorbable and nonresorbable membranes: a comparative histologic study in humans. Int J Oral Maxillofac Implants 1996 Nov - Dec; 11 (6): 735 - 42.
- [37] Wang HL, MacNeil RL. Guided tissue regeneration. Absorbable barriers. Dent Clin North Am 1998 Jul; 42 (3): 505 - 22.
- [38] Polson AM, Southard GL, Dunn RL, Polson AP, Billen

Volume 13 Issue 4, April 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net DOI: https://dx.doi.org/10.21275/SR24420004919 JR, Laster LL. Initial study of guided tissue regeneration in Class II furcation defects after use of a biodegradable barrier. Int J Periodontics Restorative Dent 1995; 15 (1): 42 - 55.

- [39] Hammarström L. Enamel matrix, cementum development and regeneration. J Clin Periodontol 1997 Sep; 24 (9 Pt 2): 658 - 68.
- [40] Venezia E, Goldstein M, Boyan BD, Schwartz Z. The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta analysis. Crit Rev Oral Biol Med 2004 Nov 1; 15 (6): 382 - 402.
- [41] Heard RH, Mellonig JT, Brunsvold MA, Lasho DJ, Meffert RM, Cochran DL. Clinical evaluation of wound healing following multiple exposures to enamel matrix protein derivative in the treatment of intrabony periodontal defects. J Periodontol 2000 Nov; 71 (11): 1715 - 21.
- [42] Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res 1971; 50 (6): 1392 - 406.
- [43] Heijl L. Periodontal regeneration with enamel matrix derivative in one human experimental defect. A case report. J Clin Periodontol 1997 Sep; 24 (9 Pt 2): 693 -6.
- [44] Haghighati F, khoshkhoonejad AA, Ziaee AE. Clinical comparison of sub epithelial connective tissue grafts and coronally advanced Flaps with Emdogain in the treatment of Gingival Recessions. J of Dentistry 2007; 4 (1): 1 8.
- [45] Pilloni A, Paolantonio M, Camargo PM. Root coverage with a coronally positioned flap used in combination with enamel matrix derivative: 18 - month clinical evaluation. J Periodontol 2006 Dec; 77 (12): 2031 - 9.
- [46] Chong CH, Carnes DL, Moritz AJ, Oates T, Ryu OH, Simmer J, Cochran DL. Human perio - dontal fibroblast response to enamel matrix deriva tive, amelogenin, and platelet - derived growth factor - BB. J Periodontol 2006 Jul; 77 (7): 1242 - 52.
- [47] Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 2000; 24: 253–269.
- [48] Seo BM, Miura M, Gronthos S, et al. Investigation of multi - potent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149–155.
- [49] Lin N H, Gronthos S, Bartold PM. Stem cells and periodontal regeneration. Aust Dent J 2008; 53: 108– 121.
- [50] Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi layered periodontal ligament derived cell sheets in a canine model. Biomaterials 2009; 30: 2716–2723.
- [51] Flores MG, Yashiro R, Washio K, Yamato M, Okano T, Ishikawa I. Periodontal ligament cell sheet promotes periodontal regeneration in athymic rats. J Clin Periodontol 2008; 35: 1066–1072.
- [52] Grover V, Malhotra R, Kapoor A, Verma N, Sahota JK. Future of Periodontal Regeneration. Journal of Oral Health and Community Dentistry 2010; 4 (Spl) 38 47.
- [53] Anusaksathien O, Webb SA, Jin QM, Giannobile WV. Platelet - derived growth factor gene delivery

Volume 13 Issue 4, April 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

stimulates ex vivo gingival repair. Tissue Eng 2003; 9: 745–756.

[54] Chang PC, Cirelli JA, Jin Q, et al. Adenovirus encoding human platelet - derived growth factor - B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum Gene Ther 2009.