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Abstract: Ambient air pollution is one of the big problems of today in perspective of environment and health degradation. The air quality 

of any place is measured in terms of the air quality index (AQI). The AQI of any place is decided by the highest value of one of the air 

pollutants out of the Particulate matter, Nitrogen dioxide, Ammonia, Sulphur Dioxide, Carbon Monoxide and Ozone of that place. Wavelet 

transform has become an important tool in the non-stationary and transient data/signal processing due to its time-frequency localization 

property. In wavelet transform as the scale increases, the resolution decreases, and a better estimate of the unknown trend of the data is 

obtained. We have selected Anand Vihar, Delhi, India as our study area and its daily average AQI data for one year before first lockdown 

(from March 25, 2019 to March 24, 2020) and during lockdown (March 25, 2020 to June 08, 2020) is taken as the raw data. The spectral 

analysis of this AQI data is performed by using Haar wavelet, level-7 with help of MATLAB wavelet toolbox. The highest scale 

approximation i.e. trend of data and histogram of the data are shown and discussed. Some statistical parameter like average, kurtosis, 

skewness and standard deviation are also determined and discussed. 
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1. Introduction 
 

Ambient air pollution is defined by presence of particles and 

gases whose concentration becomes at a harmful level 

because of health-related problems and environmental 

degradation. Particulate matter (PM-2.5 and PM-10), 

Nitrogen dioxide (NO2), Ammonia (NH3), Sulphur Dioxide 

(SO2), Carbon Monoxide (CO) and Ozone (O3) are the main 

air pollutants. The combustion of petroleum products, 

industrialization, urbanization and   anthropogenic activities 

are the main factors behind air pollution. The air pollution is 

measured in terms of Air Quality Index (AQI) based upon 

maximum value of any air pollutant out of PM-2.5, PM-10, 

NO2, NH3, SO2, CO and O3 [1, 2]. Short term exposure of 

poor air quality becomes the reason of sneezing and coughing, 

eye irritation, headaches, and dizziness, while long term 

exposure becomes the reason of severe health problems like 

cancer, heart disease, stroke, and respiratory diseases such as 

asthma, while [3]. On basis of health perspective, the AQI are 

categorize as follows: - 

 

Table 1: AQI categories  
S. No. Category AQI Range 

1 Good 0 - 50 

2 Moderate 51 - 100 

3 Poor 101 - 200 

4 Unhealthy 201 - 300 

5 Severe 301 - 400 

6 Hazardous 400 + 

 

The Fourier transforms analyse stationary signals well but it 

is not capable to analyse the non-stationary and transient 

signals. To analyse the non-stationary and transient signals 

wavelet transforms is frequently being used due to its time-

frequency localization property. Wavelets are a special kind 

of functions which exhibit oscillatory behaviour for a short 

period of time and then die out. For any two real numbers 𝑎 

and 𝑏, a wavelet function is defined as [4, 5]: -      

 

𝜓𝑎,𝑏 =
1

√|𝑎|
𝜓 (

𝑥−𝑏

𝑎
)  

 

If we choose 𝑎 = 2−𝑗 and 𝑏 𝑎⁄ = 𝑘, we get discrete wavelets 

as follows: - 

𝜓𝑗,𝑘  (𝑥)  =  2𝑗 / 2𝜓 (2𝑗  𝑥 −  𝑘) 

 

The wavelet transform of a signal captures the localized time 

frequency information of the signal. Wavelets satisfy the 

Heisenberg inequality, and hence, the time resolution 

becomes arbitrarily good at high frequency, while the 

frequency resolution becomes arbitrarily good at low 

frequencies.  By wavelet transforms a signal is decomposed 

into approximation and detail. The approximation provides 

the average or trend of the signal, while the detail provides 

differential behaviour of the signal [6]. In wavelet analysis 

terms, the trend corresponds to the greatest scale value. As the 

scale increases, the resolution decreases, producing a better 

estimate of the unknown trend. 

 

2. Basics of Spectral Analysis Using Wavelet 

Transforms 
 

The spectral analysis of any data/signal using wavelet 

transforms depends upon the following basis ideas: 

 

2.1 Multi-Resolution Analysis (MRA) 

 

An MRA consists of a sequence 𝑉𝑗  : 𝑗 ∈  ℤ  of closed 

subspaces of L2(ℝ), a Lebesgue space of square integrable 

functions, satisfying the following properties [7, 8]: - 

1) 𝑉𝑗+1   ⊂ 𝑉𝑗      :  𝑗 ∈  ℤ 

2) ∩𝑗∈ℤ 𝑉𝑗 = {0}, ∪𝑗∈ℤ 𝑊𝑗 =   𝐿2(ℝ), 

3) For every 𝐿2(ℝ), 

𝑓 (𝑥)  ∈  𝑉𝑗  ⇒ 𝑓 (
𝑥

2
)  ∈  𝑉𝑗+1, ∀  𝑗 ∈  ℤ 
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4) There exists a function 𝜙(𝑥)  ∈  𝑉0  such that {𝜙(𝑥 −
𝑘): 𝑘 ∈ ℤ} is orthonormal basis of 𝑉0. 

 

The function 𝜙 (𝑥) is called scaling function of given MRA 

and property 3 implies a dilation equation as follows: - 

𝜙(𝑥) = √2 ∑ ℎ𝑘  

𝑘∈ℤ

𝜙(2𝑥 − 𝑘) 

where ℎ𝑘 is low pass filter and is defined as: - 

ℎ𝑘 = ∫ 𝜙 (𝑥)𝜙 (2𝑥 − 𝑘)

∞

−∞

𝑑𝑥 

The wavelet function 𝜓  is expressed as: - 

𝜓(𝑥) = √2 ∑ 𝑔𝑘  

𝑘∈ℤ

𝜙(2𝑥 − 𝑘) 

where 𝑔𝑘   is high pass filter and is defined as: - 

𝑔𝑘 = ∫ 𝜓 (𝑥)𝜙 (2𝑥 − 𝑘)

∞

−∞

𝑑𝑥 

where, 𝑔𝑘  = (−1)𝑘+1ℎ1−𝑘 . From conditions of multi-

resolution analysis (MRA) and elementary functional 

analysis, each space 𝑉𝑗−1 can be decomposed into subspace 

𝑉𝑗  and 𝑊𝑗  such that every function 𝑓 in 𝑉𝑗−1 can be uniquely 

decomposed into 𝑓 =  𝑢 +  𝑣  with 𝑢 ∈  𝑉𝑗  and 𝑣 ∈  𝑊𝑗 . 

We write this as follows: - 

 

  𝑉𝑗−1  =  𝑉𝑗 ⊕  𝑊𝑗 , ∀𝑗 ∈  ℤ 

 

If all such functions 𝑢  and 𝑣  are orthogonal (⟨𝑢, 𝑣⟩  =  0), 

then 𝑊𝑗  is the orthogonal complement of 𝑉𝑗  in 𝑉𝑗−1 (𝑉𝑗 ⊥ 𝑊𝑗) 

and the construction below will give the scaling function and 

mother wavelet of an orthonormal wavelet basis for 𝐿2((ℝ) 

[9]. By MRA, the orthogonal decomposition of space 𝐿2(ℝ) 

is as follows: - 

𝐿2(ℝ) = ∑ 𝑉𝑗 =

𝑗

∑ (𝑉𝑗+𝑝⨁ ∑ 𝑊𝑗+𝑝

∞

𝑝=1
)

𝑗

 

2.2 Haar Wavelet 

 

Haar discovered the simplest solution and at the same time 

open one of the routes leading to wavelets [10]. Haar begins 

with the function that is equal to 1 on [0,
1

2
] and -1 on [

1

2
, 1] , 

and 0 outside the interval [0, 1]. 

 

 
Figure 1: Haar wavelet and scaling function 

 

Haar wavelet is constructed from the MRA generated by 

scaling function 𝜙(𝑥)=𝜒[0,1](𝑥). Since, 

𝜙(𝑥)  = 𝜙(2𝑥) + 𝜙(2𝑥 − 1) = 𝜒
[
1

2
,1]

 + 𝜒
[0,

1

2
]
 

𝜓(𝑥) =  𝜙(2𝑥) − 𝜙(2𝑥 − 1) = 𝜒
[
1

2
,1]

 - 𝜒
[0,

1

2
]
 

 

2.3 Data Analysis 

 

We can approximate the data in space of square summable 

sequences ℓ2(ℤ) as follows [11]: - 

𝑓[𝑛] =
1

√𝑀
∑ 𝑐[𝑗 + 𝑝, 𝑘]𝜙𝑗+𝑝,𝑘

𝑘

[𝑛]

+  
1

√𝑀
∑ ∑ 𝑤[𝑗 + 𝑝, 𝑘]𝜓𝑗+𝑝,𝑘

𝑘

[𝑛]

∞

𝑝=1

 

where  𝑓[𝑛] , 𝜙𝑗,𝑘[𝑛]  and 𝜓𝑗,𝑘[𝑛]  are discrete functions 

defined in [0, 𝑀 − 1], totally 𝑀 points. We can simply take 

the inner product to obtain the wavelet coefficients, 

𝑐[𝑗 + 𝑝, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜙𝑗+𝑝,𝑘

𝑛

[𝑛] 

𝑤[𝑗 + 𝑝, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜓𝑗+𝑝,𝑘

𝑛

[𝑛] 

where  𝑐[𝑗 + 𝑝, 𝑘] and 𝑤[𝑗 + 𝑝, 𝑘] are called approximation 

and detailed coefficients respectively. From property of 

scaling function, 

𝜙𝑗,𝑘[𝑛] = 2𝑗 2⁄ 𝜙[2𝑗𝑛 − 𝑘] 

= ∑ ℎ

𝑛′

[𝑛′]√2𝜙[2(2𝑗𝑛 − 𝑘) − 𝑛′] 

Let 𝑛′ = 𝑚 − 2𝑘 , we have 𝜙𝑗,𝑘[𝑛] = ∑ ℎ[𝑚 −𝑚

2𝑘]√2𝜙[2(𝑗+1)𝑛 − 𝑚]. 

Now the approximation coefficient, 

𝑐[𝑗 + 1, 𝑘] =
1

√𝑀
∑ 𝑓[𝑛] 𝜙𝑗+1,𝑘

𝑛

[𝑛] 

=
1

√𝑀
∑ 𝑓[𝑛] 2(𝑗+1) 2⁄ 𝜙[2(𝑗+1)𝑛 − 𝑘]

𝑛

 

Therefore, we can write, 
1

√𝑀
∑ 𝑓[𝑛] 2(𝑗+1) 2⁄

𝑛

∑ ℎ[𝑚 − 2𝑘] 

𝑚

√2𝜙[2𝑗𝑛 − 𝑚] 

= ∑  

𝑚

ℎ[𝑚 − 2𝑘] (
1

√𝑀
∑ 𝑓[𝑛] 2𝑗 2⁄

𝑛

𝜙[2𝑗𝑛 − 𝑚]) 

= ∑  

𝑚

ℎ[𝑚 − 2𝑘]𝑐[𝑗, 𝑛] 

= ℎ[𝑛′] ∗ 𝑐[𝑗, 𝑛] 
where  𝑘 ≥ 0. Similarly, for the detail coefficients, we can 

write, 

𝑤[𝑗 + 1, 𝑘] = 𝑔[𝑛′] ∗ 𝑐[𝑗, 𝑛] , where  𝑘 ≥ 0. 

 
Figure 2: Pyramidal algorithm of data decomposition 
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3. Study Area and Methodology 
 

The average daily record of AQI of Anand Vihar, Delhi from 

March 25, 2019 to June 08, 2020 has been taken as the 

primary data. The data of AQI from March 25, 2019 to March 

24, 2020 represents to one year data before the lockdown 

imposed, while from March 25, 2020 to June 08, 2020 to the 

lockdown period.  

 

 
Figure 3: AQI from March 25, 2019 to June 08, 2020 

 

Wavelet transform of the signal is performed using Haar 

wavelet up to level 7 using wavelet toolbox of software 

MATLAB. The trend of the AQI is shown by 7th order 

approximation. Approximation describes the average 

behaviour of signal and represents to the trend of signal. A 

further characterization of the data includes skewness and 

kurtosis [12]. Skewness is a measure of the lack of symmetry. 

Kurtosis is a measure of whether the data are peaked or flat 

relative to a normal distribution. That is, data sets with high 

kurtosis tend to have a distinct peak near the mean, decline 

rather rapidly, and have heavy tails. Data sets with low 

kurtosis tend to have a flat top near the mean rather than a 

sharp peak. A uniform distribution would be the extreme case. 

The skewness for a normal distribution is zero, and any 

symmetric data should have skewness near zero. The standard 

deviation indicates how the data points are spread out over a 

wide range of values.  

 

4. Results and Discussion  
 

The wavelet transform of AQI data from March 25, 2019 to 

June 08, 2020 is performed using Haar wavelet, level 

7average because the trend of any data corresponds to the 

greatest scale value. The trend of any signal represents the 

slowest part of the signal. 

 

 
Figure 4: Trend of AQI  

 

It is clear from the figure 4, that there is a decreased trend of 

AQI during the first lockdown. The histogram is an 

approximate representation of the distribution of numerical 

data. The statistical parameters for AQI are determined and 

enlisted as follows. 

 

 

Table 2: Statistical Parameters of AQI  

S. No. Statistical Parameter 
Before 

Lockdown 

During 

Lockdown 

1 Average 233.37978 146.28947 

2 Kurtosis -0.7302068 0.007787823 

3 Skewness 0.322225784 0.236379653 

4 Standard deviation 109.1409069 47.23919722 
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The average value of AQI is decreased very much due to 

lockdown imposed. The kurtosis which represents the 

peakedness of data is nearly equal to zero during the 

lockdown. The skewness of AQI data has low value during 

the lockdown which represents the more symmetry of data 

points. The standard deviation of AQI during the lockdown is 

also low, which indicates the spreading of data points is closer 

to mean value during lockdown.  

 

5. Conclusion 
 

In wavelet transforms the signal is decomposed into the 

approximation and detail, where approximation describes the 

average behaviour or trends of the signal. It is clear from 

wavelet analysis of AQI that during the first lockdown the 

trend of AQI is in the decreased mode. During the lockdown, 

the determined value of average, kurtosis, skewness and 

standard deviation indicates the decreased, less peaked, 

symmetric and less spreading of data to the mean value. On 

basis of above results, it is possible to conjecture that the 

wavelet analytical approach provides a simple and accurate 

framework for modelling the spectral and statistical 

behaviour of AQI variation.  
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