A Review of Analytical Methods for Determination of Antidiabetic and Antihypertensive Drugs in Pharmaceuticals

Tadvi Nidhi¹, Krishna Kalsara², Umesh Upadhyay³

Department of Pharmaceutical Quality Assurance, Sigma University, Bakrol, Vadodara, Gujarat, India

Abstract: SGLT2 inhibitors are generally well-tolerated, with low rates of hypoglycemia. However, adverse effects such as genital mycotic infections and volume depletion-related events may occur, particularly in older adults. Beta-blockers reduce the workload of the heart by decreasing heart rate and contractility, which can help prevent myocardial ischemia and reduce the risk of further cardiac damage. The rational use of Dapagliflozin and Metoprolol in patients with heart failure is grounded in their distinct yet complementary mechanisms of action. Dapagliflozin is a sodium-glucose co-transporter-2 (SGLT2) inhibitor known for its ability to reduce heart failure hospitalizations and cardiovascular events, particularly in patients with heart failure with reduced ejection fraction (HFrEF). Metoprolol, on the other hand, is a beta-blocker that has been a cornerstone in the treatment of heart failure for years, helping to reduce heart rate and improve cardiac function. Dapagliflozin and Metoprolol combination drug currently in phase 3. Our comprehensive literature survey has revealed an existing gap - there are no reported spectroscopic and chromatographic methods available for the precise determination of Dapagliflozin and Metoprolol, especially when used together. When used in combination, Dapagliflozin and Metoprolol offer a multifaceted approach to managing heart failure. Dapagliflozin addresses issues like fluid retention and cardiovascular risk, while Metoprolol helps to control heart rate and reduce the workload on the heart. This combination can potentially provide greater benefits to patients with heart failure, although its precise use and dosing should be determined by a healthcare professional based on the individual patient's medical history and condition. Clinical studies have shown promising results in the use of these medications together, and ongoing research continues to explore their effectiveness in improving outcomes for heart failure patients.

Keywords: Chromatography, dapagliflozin, metoprolol, analytical methods

1. Introduction

The initiative objectives are to decrease, prevent and control the wide spread of cardiovascular disease, especially in developing countries. Heart failure is a gradual disease categorized by failure of the heart muscles to supply enough blood to meet the nutritious and oxygen need of the body. Dapagliflozin is a medication used in the treatment of type 2 diabetes mellitus. It belongs to a class of drugs known as sodium-glucose co-transporter 2 (SGLT2) inhibitors. The primary mechanism of action of dapagliflozin is to inhibit SGLT2, a protein responsible for reabsorbing glucose in the kidneys. By inhibiting SGLT2, dapagliflozin promotes the excretion of glucose in the urine, leading to a reduction in blood glucose levels. Regarding its metabolism, dapagliflozin undergoes minimal hepatic metabolism. The majority of dapagliflozin is excreted unchanged in the urine, with approximately 75% of the administered dose being eliminated this way. Renal excretion is the primary route of elimination for dapagliflozin. Metoprolol is a medication classified as a beta-blocker, specifically a selective beta-1 adrenergic receptor antagonist. Its mechanism of action involves blocking the effects of catecholamines, particularly adrenaline (epinephrine) and noradrenaline (norepinephrine), on beta-1 adrenergic receptors primarily located in the heart.

When metoprolol is administered orally, it is almost completely absorbed in the gastrointestinal tract. The maximum serum concentration is achieved 20 min after intravenous administration and 1-2 hours after oral administration. The bioavailability of metoprolol is of 100% when administered intravenously and when administered orally it presents about 50% for the tartrate derivative and 40% for the succinate derivative. The prescribed dosage involves Dapagliflozin and Metoprolol at 10 mg and 50 mg, respectively.

2. Diagnosis

Diagnosis of antidiabetes can be by determining the method of blood glucose level. In fasting conditions, the blood glucose level could be >6.7 mmol/L or random glucose levels will be more than 10 mmol/considered as diabetes. If there occur any doubts in the diagnosis, glucose tolerance test must be conducted to measure the glucose level in blood. Before the test, the patient needs to be on fast at least 10–12 h. During the test, the patient is advised to take 75 mg glucose orally the test will be repeated after 2 h.

3. Analytical Methods

	Table 1.1: UV spectrophotometr	
Sr No. 1	TitleEstimation of Dapagliflozin from its Tablet	Description Solvent- Methanol with water
1	Formulation by UV-Spectrophotometry	λ max - 224 nm
		Linearity-5-40µg/ml
2	Development and validation of UV Spectroscopic	Solvent- Methanol
	method for Dapagliflozin in its API and its Tablet Formulation	λmax - 226 nm Linearity- 0.5-2.5 μg/ml
	Unique UV spectrophotometric method for reckoning	Solvent- Ethanol, DMSO, and Dimethyl formamide
3	of dapagliflozin in bulk and pharmaceutical dosage	λ max - 233.65 nm
	forms	Linearity- 10-35 µg / ml
4	Quantitative Estimation of Dapagliflozin in Blood Plasma by Using UV Spectroscopy	Solvent- Methanol λmax - 224 nm
	Trasma by Using UV Specifoscopy	Linearity- 20-100 µg/ml
5	Method Development And Validation For The	Solvent- Methanol
	Estimation Of Dapagliflozin In Bulk And Tablet	$\lambda max - 225 \text{ nm}$
	Dosage Formby UV Visible Spectroscopy	Linearity- 2-10µg/ml
6	Development and Validation of UV Spectroscopic First Derivative Method for Simultaneous Estimation	Solvent- Methanol λmax –
	of Dapagliflozin and Metformin Hydrochloride in	DAPA - 235.0 nm
	Synthetic Mixture.	MET at 272.0 nm
		Linearity-
		DAPA- 0.5-2.5 μg/ml MET-25-125 μg/ml
7	Development and Validation of UV Spectroscopic	Solvent- Phosphate buffer pH 6.8
	Method for Simultaneous Estimation of Dapagliflozin	λmax –
	and Saxagliptin in marketed formulation	DAPA- 276 nm SAXA- 222 nm
		Linearity- 5-25µg/ml(Both)
8	Development And Validation Of UV	Solvent- Methanol
	Spectrophotometric Method For Estimation Of	λmax –
	Saxagliptin And Dapagliflozin In Bulk And Dosage	SAXA - 224 nm
	Form	DAPA- 274 nm Linearity-
		SAXA-2-10 µg/ml
		DAPA- 4-20 µg/ml
9	A Novel Method Development and Validation of Dapagliflozin and Metformin Hydrochloride 222 nm	Solvent- Water λmax –
	using Simultaneous Equation Method by UV– Visible	DAPA 222 nm
	Spectroscopy in Bulk and Combined Pharmaceutical	MET 232 nm
	Formulation including Forced Degradation Studies	Linearity-
		DAPA $-2 - 32 \mu g/ml$
	Development and validation of UV spectroscopic	MET- 1 – 20μg/ml Solvent- Methanol
	method for simultaneous estimation of dapagliflozin	$\lambda max -$
	and metformin hydrochloride in synthetic mixture	DAPA - 225.0 nm
		MET at 237.0 nm
		Linearity- DAPA- 0.5-2.5 µg/ml
		MET- 0.5-2.5 μg/ml
11	Ultraviolet-Spectrophotometric Method For	Solvent- Methanol
	Simultaneous Estimation Of Dapagliflozin Propanediol And Metformin Hydrochloride	λmax – 1 -Simultaneous Estimation
		DAPA - 223.0 nm
		MET at 233.0 nm
		2-Area under curve method
		DAPA - 220-229 nm MET- 229-236 nm
		ME1-229-236 nm Linearity-
		DAPA- 2-30 μ g/ml μ g/ml
		MET- 3-15 µg/ml
12	Analytical method development and validation for Simultaneous estimation of Danagliflozin and	Solvent -Water λmax - 223 or 243 nm
	Simultaneous estimation of Dapagliflozin and Teneligliptin hydrobromide hydrate from synthetic	Linearity- 5-75 μ g/ml
	mixture by three different UV spectrophotometric	1)Simultaneous equation method λ max-
	Methods	Dapagliflozin 223nm
		Teneligliptin hydrobromide hydrate 243 nm 2) Q absorbance ratio method λmax -
		2) Q absorbance ratio method Amax - Dapagliflozin 230nm
		Teneligliptin hydrobromide hydrate 223nm

Table 1.1: UV spectrophotometric method of Dapagliflozin

Volume 13 Issue 5, May 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

3) First derivative signal λmax - Dapagliflozin 223nm
Teneligliptin hydrobromide hydrate 243 nm

	Table 1.2: HPLC method of Dapagiffozin	
Sr No.	Title	Description
1	RP-HPLC Method for Estimation of	Mobile Phase- Acetonitrile: 0.1% Triethylamine (pH-5.0) in the ratio of
	Dapagliflozin from its Tablet.	(50:50%v/v)
		Stationary phase = C18
		λmax - 224nm
		Flow Rate: 1mL/min
		Retention time-5.16min
		Linearity - 10-70µg/ml
2	Development and validation of	Mobile Phase- Buffer: Acetonitrile (%60:40V/V)
	Dapagliflozin by reversed-phase	Stationary phase = BDS (250 mm \times 4.6 mm, 5 μ),
	high-performance liquid	λmax - 245 nm
	chromatography method and it's	Flow Rate: 1mL/min
	forced degradation studies.	Retention time - 2.789 min
		Linearity – 25-150µg/ml
3	Development and Stability Indicating	Mobile Phase - Acetonitrile: Di-potassium hydrogen phosphate with pH-
	HPLC Method for Dapagliflozin in	6.5 adjusted with OPA (40:60 $\%$ v/v)
	Api and Pharmaceutical Dosage	Stationary phase : C18 (4.6, 150mm,5 µm)
	Form.	λmax - 222 nm
		Flow Rate: 1ml/min
		Retention time-
		Dapa API-3.160 min
		Dapagliflozin tablet- 3.067 min
		Linearity - 50-150µg/ml
4	Development and Validation of	Mobile Phase- Acetonitrile: Ortho phosphoric acid (55:45% v/v)
	stability-Indicating RP-HPLC method	Stationary phase = BDS column
	for determination of Dapagliflozin.	λmax -245nm
		Flow Rate: 1mL/min
		Retention time -2.873 min
		Linearity - 10-70µg/ml
5	Stability-indicating HPLC method	Mobile Phase- Phosphate buffer ($pH = 3$) Acetonitrile (60:40% v/v)
	development and validation for	Stationary phase -Kromasil C18 column ($150 \times 4.6 \text{ mm}, 5 \mu \text{m}$)
	simultaneous estimation of	λmax -230 nm
	metformin, dapagliflozin, and	Flow Rate: 1mL/min
	saxagliptin in bulk drug and	Retention time - 4 min
	pharmaceutical dosage form.	Linearity –
		MET-125–750 μg/mL,
		DAPA-1.25–7.5 μg/mL
		SAXA-0.625 -3.75 μg/mL

 Table 1.2: HPLC method of Dapagliflozin

Table 1.3 HPTLC method of Dapagliflozin

S. No.	Title	Description	
1	A New High-Performance Thin	Mobile Phase-Chloroform: Methanol (90:10% v/v)	
	Layer Chromatographic Method	Stationary phase: Merck precoated silica gel aluminum plate 60 F254	
	Development and Validation of	λmax -223nm	
	Dapagliflozin In Bulk And Tablet	Concentration range= 400 ng/band to 1200 ng/band	
	Dosage Form.		
2	HPTLC Method for the	Mobile Phase- acetonitrile : 1% w/v Ammonium Acetate in Methanol (90: 10, v/v%)	
	Determination of Metformin	Stationary Phase : HPTLC sheets coated with silica gel 60 F254	
	Hydrochloride, Saxagliptin	λmax -210 nm.	
	Hydrochloride, and Dapagliflozin in	Concentration range- 0.25-10 µg/band for SAXA and DAPA	
	Pharmaceuticals	MET-0.25-25 µg/band	
3	Development and validation of	Mobile Phase- Methanol: 0.5 % aqueous ammonium sulphate (8:2, %v/v), pH 5.5	
	stability-indicating HPTLC method	Stationary phase: pre-coated silica gel 60 F254 HPTLC aluminum plates,	
	for simultaneous estimation of	λmax -222 nm	
	Metformin, Saxagliptin, and	Concentration range= 50,000–150,000 ng/band for MET and 250–750 ng/band for	
	Dapagliflozin in their combined	SAXA and DAPA	
	matrix using AQbD		
4	Development and validation of hptlc	Mobile Phase- Toluene, ethyl acetate, and formic acid (3: 6.5: 0.5 v/v/v)	
	Technique for assessment of	Stationary phase: TLC aluminium plate precoated with silica gel 60 F254	
	dapagliflozin	λmax -235 nm	
	And metformin hcl	Concentration range= DAPA-50-300	
		MET-2500-15000 ng band	
5	Development and Validation of	Mobile Phase- Toluene: Ethyl Acetate: Methanol: Ammonia (6.0: 2.0: 2.0: 0.1,	
	HPTLC Method for Simultaneous	v/v/v/v)	
_	1		

Quantification of Dapagliflozin and	Stationary phase: TLC aluminium plate precoated with silica gel 60 F ²⁵⁴
Vildagliptin in Tablet Dosage Form	λmax -217 nm
	Concentration range= DAPA-200-1400
	VILG-2000-14000 ng/band

Table 1.4 LC-MS Method of Dapagliflozin

Sr no.	Title	Description
1	Development and Validation of a	Stationary phase- hypersil Gold C 18 (50mmx3.0mm, 5µm)
	LC-ESI-MS/MS Based Bioanalytical	Mobile Phase: Ammonium acetate and methanol (20:80,% v/v)
	Method for Dapagliflozin and	Flow rate: 0.5 ml/min
	Saxagliptin in Human Plasma	Detection: Quantification was achieved using an electro spray ion interface operating
		in positive mode, under multiple reaction monitoring (MRM) conditions.

Table 1.5: Official methods of Metoprolol

Sr No	Title	Description	
1	BP-2018 (HPLC)	Mobile Phase –	
		(1) Trifluoro acetic acid Acetonitrile For Chromatography -Water For Chromatography (1:29:70, %v/v)	
		(2) Trifluoro acetic acid R Acetonitrile For Chromatography -Water For Chromatography (1:24:75, v/v)	
		Stationary phase- 0.15m,=3.0mm	
		Base detective end-capped octadecylsilane silica gel for chometographyR3µm)	
		λ max - 242 nm	
		Flow Rate: - 0.75 ml/min	
		Retention time – 25min	
2	IP-2018 (RP-	Mobile Phase: 58 vol of a buffer sol prepared by dissolving 1.54 g of ammonium acetate in 900ml of	
	HPLC)	water adjust with 4.00ph glacial acetic acid and dilute to 1000mk of water, 360 vol of acetonitrile and 50	
		vol of tetrahydrofuran.	
		Stationary phase :	
		$(25 \text{cm} \times 4.6 \text{mm}, \text{packed with octadecylsilane bonded to porous silica 5 μm})$	
		λmax: 248 nm	
		Flow rate: 1.5 ml/min	
3.	Liquid	Stationary Phase: (3.2 mm× 25 cm;5µm) L1.	
	Chromatographic	Mobile Phase: Acetonitrile, Sol A. and Water (37:1:62)	
	Method (USP 2020)	Sol A: 1% Trifluoroacetic acid in water	
		Flow Rate: 0.75 ml/min	
		Injection Volume: 10µ1	
		λmax:242nm	

Table 1.6: UV spectrophotometric method of Metoprolol

S. No.	Title	Description
1	UV- Spectrophotometric Determination of Metoprolol Succinate	Solvent- Methanol
	• • • • • • • • • • • • • • • • • • •	λ max - 222 nm
		Linearity-2-16 µg/mL
2	UV spectrophotometric method development and validation for the	Solvent- Methanol
	determination of metoprolol succinate in bulk and its pharmaceutical	λmax - 275 nm
	dosage form	Linearity-50-250 µg/mL
3	Spectrophotometric Determination of Metoprolol Tartrate in	Solvent- Methanol/water (1:1 v/v)
	Pharmaceutical Dosage Forms on Complex Formation with Cu(II)	Amax- 675 nm
		Linearity- 8.5-70 µg/mL
4	Development And Validation of Spectrophotometric Method	Solvent- D/W
	For Determination of Metoprolol Succinate	Amax - 223 nm
		Linearity- 5-25 µg/ml.
5	Development and validation of UV spectrophotometric method for	Solvent- Methanol
	simultaneous estimation of cilnidipine and metoprolol succinate in	λ max –
	bulk drugs and combined dosage form	MET-230 nm
		CLI-223.40nm
		Linearity-
		MET-2-10 µg/ml
		CLI-10-50 µg/ml
6	Development and validation of the simultaneous UV	Solvent- D/W
	spectrophotometric method for estimation of metoprolol succinate and	λmax –
	olmesartan medoxomil in the tablet dosage form	MET-221nm
		OLM-257nm
		Linearity-
		MET-5-25 µg/ml
		OLM -4-20 μg/ml
7	Sensitive and Reproducible Study for UVSpectrophotometric Method	Solvent- Ethanol: Water 60: 40% v/v
	for Analysis of Clopidogrel and Metoprolol in a Combined Tablet	λmax -
	Dosage Form	MET- 276.13 nm
		CLO- 245.7nm

Linearity-MET & CLO 5-30 µg/ml

		e 1.7: HPLC method of Metoprolol
S. No.	Title	Description
1	Estimation of metoprolol in human plasma by hplc method	Mobile Phase - acetonitrile-potassium phosphate (pH 3.0) buffer in the ratio of (60:40 %v/v) Stationary phase -C18
		λ max - 262 nm
		Flow Rate: - 1. ml/min Retention time – 4.07±0.02 min
		Linearity $- 0.2-20 (\mu g/ml)$
2	Rp-hplc method for the estimation of	Mobile Phase - Aqueous phosphoric acid solution (0.1% v/v)
2	metoprolol succinate in bulk and in dosage forms	Stationary phase - 150 mm ×4.6 mm zorbax SB phenyl RP 18, 5 μ m λ max -252 nm
	101113	Flow Rate:- 0.8 ml/min
		Retention time – 3.765 mins
		Linearity - 50-300 µg/m
3	Development and validation of a stability	Mobile Phase- 0.05% Trifluoro acetic acid (TFA) and Acetonitrile (ACN) (70:30%
	indicating RP-HPLC method for	v/v)
	simultaneous estimation of Olmesartan	Stationary phase- YMC-Pack CN (250 × 4.6 mm, 5.0 µm)
	Medoxomil and Metoprolol Succinate in	λ max - 220 nm
	pharmaceutical dosage form	Flow Rate:- 1.0 ml/min Retention time –METO-7.9 min
		OLM-4.1min
		Linearity –METO- & OLM
		5-35µg/ml
4	Analytical Method for the Simultaneous	Mobile Phase- mixture of buffer and methanol in the proportion (60:40 % v/v)
	Estimation of Hydrochlorothiazide and	Stationary phase- C18, 5µm 4.6 mm×250 mm column
	Metoprolol Tartrate using RP HPLC	λ max - 226 nm
		Flow Rate:- 1.0 ml/min
		Retention time – HCL-4.13min
		MET-10.81min Linearity –
		HCL- a 0.013 to 0.075 mg/ml
		MET- d 0.10 to 0.60 mg/ml
5	Development of Reverse-Phase HPLC	Mobile Phase - Di-sodium hydrogen phosphate:methanol:acetonitrile in a ratio of
	Method for Simultaneous Analysis of	(525:225:250)
	Metoprolol Succinate and Hydrochlorothiazide in a Tablet	Stationary phase- RP C8 (4.6mm x 100mm, 5μm) column λmax - 222 nm
	Hydrochlorothiazide in a Tablet Formulation	Flow Rate:- 1.0 ml/min
	Tormulation	Retention time – HCL-3.04min
		MET-5.38 min
		Linearity –
		2 to 32 μ g/ml for both drugs
6	Simultaneous determination of metoprolol succinate and amlodipine besylate in pharmaceutical dosage form by HPLC.	Mobile Phase -buffer (aqueous triethylamine pH 3) and acetonitrile in the ratio of 85:15 ((v/v)) Stationary phase - n Hypersil BDS cyano (250 mm × 4.6 mm, 5m) column
		λmax - 254 nm
		Retention time – AMI- 16.838min
		MET-4.99min
		Linearity – $\Delta ML = 0.013 \text{ to } 0.075 \text{ mg/m}$
		AMI- a 0.013 to 0.075 mg/ml MET- d 0.10 to 0.60 mg/ml
7	Method development and validation for the simultaneous determination of metoprolol	Mobile Phase - phosphate buffer 4.8 pH: acetonitrile (35:65% v/v), Stationary phase- Inertsil ODS-3 (4.6×150 mm, 5 μm).
	and atorvastatin by reversed-phase high-	λ max -224 nm
	performance liquid chromatography in its	Flow Rate: - 1.00 ml/min
	bulk and pharmaceutical tablet dosage form	Retention time –
	using biorelevant dissolution media (fasted	MET- 2.227 min
	state small intestinal fluid)	ATO - 5.819 min
		Linearity –
		MET- 50–250 µg/ml
		ATO - 10–50 μg/m

 Table 1.8: HPTLC method of Metoprolol

Sr no.	Title	Description
1	Comparative HPTLC study	Mobile Phase- chloroform: methanol: formic acid: ammonia (8.5:1.5:0.2:0.1, v/v)
	for simultaneous determination	Stationary phase : TLC silica 60 F254 plates and non-fuorescent TLC silica gel 60

	of ivabradine and metoprolol using UV	plates
	and fluorescence detectors	λ max - 275 nm
		Concentrationrange-
		IVA- 50.0–600.0 ng/band
		MET- 50.0–900.0 ng/band
2	A robust high-performance thin-layer	Mobile Phase- Toluene-methanol-triethylamine (8:2:0.5, V/V)
	chromatography method	Stationary phase: silica gel GF254
	for the simultaneous estimation	λmax - 230 nm
	of chlorthalidone and metoprolol	Concentration range-
	succinate using quality risk assessment	CLO - 200–1000 ng/band
	and design of experiments-based	MET - 800-4000 ng/band
	enhanced analytical quality by design	
	approach	
3	Development and Validation of HPTLC	Mobile Phase- toluene:ethyl acetate:methanol:triethylamine (4:1:1:0.4 v/v/v)
	Method for Simultaneous	Stationary phase: HPTLC aluminum plates precoated with silica gel 60F-254 (10×10)
	Determination of Amlodipine Besylate	Concentration range-
	and Metoprolol Succinate in Bulk and	AMB - e 400-1400 ng /spot
	Tablets	MET- 3800–13300 ng /spot.
4	High-performance thin-layer	Mobile Phase- Methanol ethyl acetate-water-toluene-25% ammonia 1.5:5.0:0.3:3.0:0.3
	chromatographic method for	(v/v)
	simultaneous analysis of metoprolol	Stationary phase: silica gel 60 F 254 plates
	succinate and amlodipine besylate in	Concentration range-
	pharmaceutical preparations	AMLO - 180 to 280 µg mL -1
		MET- 18 to 28 μg mL -1
5	Validated HPTLC method for	Mobile Phase- Methanol: Toluene: Ethyl Acetate: Ammonia (2.5:3:5:0.7v/v/v/v)
	simultaneous estimation of metoprolol	λ max – 209 nm
	succinate and ramipril in bulk drug and	Stationary phase: silica gel 60 F 254 plates
	marketed formulation	Concentration range-
		AMLO - 2000-12000 ng/spot
		RAM- 200–1200 ng/spot

Table 1.9: LC-MS method of Metoprolol

S. no.	Title	Description
1	Rapid and Sensitive LC-MS/MS Method for the	Column - Ultimate XB-C18 ($150 \times 2.1 \text{ mm ID}, 5 \mu \text{m}$
	Determination of Metoprolol in Beagle Dog Plasma with	Mobile Phase- methanol-water containing 0.2% formic acid (65:35, v/v)
	a Simple Protein Precipitation Treatment and Its	Flow rate- 0.2 mL/min
	Pharmacokinetic Applications	Monitoring ions- 268.1/115.6 and m/z 373.1/150.2
		Linearity Range- 3.03-416.35 ng/mL

Table	1.10:	Literature	Summary
-------	-------	------------	---------

METHOD	DAPA	MET	DAPA+ MET
UV SPECTROPHOTOMETRY		\checkmark	-
HPLC		\checkmark	-
RP-HPLC		\checkmark	-
LC-MS/MS		\checkmark	-
HPTLC		\checkmark	-
STABILITY INDICATING HPLC METHOD		\checkmark	-

Table 1.11: PSARS Report

S. No.	Patent Application Number	Title of Patent			
1.	US 2016/0214953 A1	Process for the preparation of dapagliflozin			
2.	WO2018/029611A1,2018	Novel processes for preparation of dapagliflozin or its solvates or co - crystals thereof			
3.	US 2005/0107635A1	Metoprolol manufacturing process			
4.	US 2009/0247642 A1	Synthesis and preparations of metoprolol and its salts			
5.	WO2013/137839 A1	Tablet formulation comprising dapagliflozin and extended-release metformin			

- 1) As per described in patent 1: The present invention provides an improved process for the preparation of dapagliflozin of Formula (II) wherein the pro cess comprises the step of hydrolyzing the compound of Formula (III) in the presence of an amine base.
- 2) As per described in patent 2: The present generally relates to an improved process for the preparation of dapagliflozin of Formula I or its solvates or co crystals thereof. The present invention also encompasses the novel intermediates and their use in the preparation of dapagliflozin.
- **3)** As per described in patent **3**: Metoprolol manufacturing process with optimized reaction temperatures and reactant molar ratios, to avoid the manu facture of excessive epoxide intermediates, thus avoiding the need for purification of epoxide intermediates, thus achieving higher yields and higher-purity product than that Seen in the prior art teachings.
- **4)** As per described in patent **4**: The invention relates to an improved process for preparing metoprolol and its salts.
- 5) As per described in patent 5: The present invention is

Volume 13 Issue 5, May 2024 Fully Refereed | Open Access | Double Blind Peer Reviewed Journal www.ijsr.net

Paper ID: SR24501143623

related to combination formulation prepared by being coated with a coating solution comprising dapagliflozin or pharmaceutically acceptable salts , solvents or hydrates thereof on the extended release metformin tablet.

4. Conclusion

From the above Literature review, all Spectroscopic methods for Dapagliflozin and Metoprolol were done by using Methanol as a common solvent.

References

- [1] Drug bank DB06292 Dapagliflozin https://go.drugbank.com/drugs/DB06292
- [2] Drug bank DB00264 Metoprolol https://go.drugbank.com/drugs/DB00264
- [3] Gajanan V.M, Krishna Radheshyam G. et al, "Estimation of Dapagliflozin from its Tablet Formulation by UV-Spectrophotometry." *Pharm Methods.* **2017**, *8*(2), 102-107.
- [4] Vidhi S. Dave, Dr. Paresh U. "Development and validation of UV Spectroscopic method for Dapagliflozin in its API and its Tablet Formulation." *aegaeum journal.***2020**, *8*(5), 840-846.
- [5] K. Priya, M, et al, "Unique UV spectrophotometric method for reckoning of dapagliflozin in bulk and pharmaceutical dosage forms." *Journal of Chemical and Pharmaceutical Research*. **2015**, *7*(*9*) 45-49.
- [6] Bhagwat JB ,et al, "Quantitative Estimation of Dapagliflozin in Blood Plasma by Using UV Spectroscopy." *Pharmaceutica Analytica Acta*.**2010**, *2*, 1-3.
- [7] Bhavyasri K ,et al "Method Development and Validation For The Estimation Of Dapagliflozin In Bulk And Tablet Dosage Formby UV Visible Spectroscopy." *International Journal of Recent Scientific Research.***2019**, *1*(08G), 34419-34422.
- [8] Jani BR and Shah K, "Development and Validation of UV Spectroscopic First Derivative Method for Simultaneous Estimation of Dapagliflozin and Metformin Hydrochloride in Synthetic Mixture." *Journal of Bioequivalence Studies*.**2015**, *1*(1),1-8.
- [9] Raghvendra SB and Vikas A, "Development and Validation of UV Spectroscopic Method for Simultaneous Estimation of Dapagliflozin and Saxagliptin in marketed formulation." *Journal of Drug Delivery and Therapeutics.* 2019, 9(4-s), 1160-1164.
- [10] Sufiyan Ahmad and, M.D. Rageeb Usman, et al "Development and Validation Of UV Spectrophotometric Method For Estimation Of Saxagliptin And Dapagliflozin In Bulk And Dosage Form." *International Journal of Pharmaceutical Sciences and Research.* **2021**,*12*(4),2185-2192.
- [11] KBhavya Sri ,and T.Surekha , "A Novel Method Development and Validation of Dapagliflozin and Metormin Hydrochloride using Simultaneous Equation Method by UV– Visible Spectroscopy in Bulk and Combined Pharmaceutical Formulation including Forced Degradation Studies." *Journal of pharmaceutical science and research.* 2020,12(8),1100-1105.

- [12] Jani BR, and Shah K, Kapupara PP "Development And Validation Of Uv Spectroscopic Method For Simultaneous Estimation Of Dapagliflozin And Metformin Hydrochloride In Synthetic Mixture." International Journal of Research and Development in Pharmacy and Life Sciences. 2015, 4(3), 1569-1576.
- [13] Minal H, et al, "Ultraviolet-Spectrophotometric Method For Simultaneous Estimation Of Dapagliflozin Propanediol And Metformin Hydrochloride." *International Research Journal Of Pharmacy.* 2019,10(4),90-94.
- [14] Anokhi P et al "Analytical Method Development And Validation For Simultaneous Estimation Of Dapagliflozin And Teneligliptin Hydrobromide Hydrate From Synthetic Mixture By Three Different Uv Spectrophotometric Methods." World Journal of Pharmaceutical Research.2022,11(7), 770-783.
- [15] G. V. Mante, , et al ,"RP-HPLC Method for Estimation of Dapagliflozin from its Tablet." *International Journal* of ChemTech Research .2018, 11 (1), 242-248.
- [16] Shakir B. S., Sravanthi P "Development and Validation of Dapagliflozin by Reversed-Phase High-Performance Liquid Chromatography Method and It's Forced Degradation Studies." Asian J Pharm Clin Res, 2017, 10(11), 101-105.
- [17] Mitali V. V et al, "Development and Stability Indicating Hplc Method for Dapagliflozin in Api And Pharmaceutical Dosage Form." *International Journal of Applied Pharmaceutics*. **2017** *9*(*5*), 33-41.
- [18] Manasa s, et al, "Development and Validation of stability-Indicating RP-HPLC method for determination of Dapagliflozin." *Journal of Advanced Pharmacy Education & Research*.2014, *4* (3), 350-353.
- [19] Vankalapati .,et al, "Stability-indicating HPLC method development and validation for simultaneous estimation of metformin, dapagliflozin, and saxagliptin in bulk drug and pharmaceutical dosage form." *Biomedical chromatography.* **2022**, 36, 7.
- [20] B V Suma, and Deveswaran R, "A New highperformance thin layer chromatographic method development and validation of dapagliflozin in bulk and tablet dosage form." *Int J Pharm Pharm Sci.* 2019,11(8), 58-63.
- [21] Abdelrahman, et al "HPTLC Method for the Determination of Metformin Hydrochloride, Saxagliptin Hydrochloride, and Dapagliflozin in Pharmaceuticals." Current *Analytical Chemistry*, **2020**, *16*(5),609-619.
- [22] A Saloni, et al "Development and validation of stabilityindicating HPTLC method for simultaneous estimation of Metformin, Saxagliptin, and Dapagliflozin in their combined matrix using AQbD." *Bepls* .2022,12,32-42.
- [23] A Soudamini, et al, "Development and validation of hptlc technique for assessment of dapagliflozin and metformin hcl." *Eur. Chem. Bull.* **2023**,*12*,7676-7692.
- [24] P Parixit, et al, "Development and Validation of HPTLC Method for Simultaneous "Quantification of Dapagliflozin and Vildagliptin in Tablet Dosage Form." *Jchr.* 2023, 13(6), 3643-3649
- [25] Goday, and Swapna, "Development and Validation of a LC-ESI-MS/MS Based Bioanalytical Method for Dapagliflozin and Saxagliptin in Human Plasma."

Indian Journal of Pharmaceutical Education and Research. **2018**, *52*, S277-S286.

- [26] British Pharmacopeia 2018 -HPLC
- [27] Indian Pharmacopeia 2018 RP-HPLC
- [28] United state pharmacopeia 2018 RP-HPLC
- [29] V Navneet, et al, "UV- Spectrophotometric Determination of Metoprolol Succinate." Research J. Pharm. and Tech.**2011**, *4*(2),271-272.
- [30] K abhinaya et al, "UV spectrophotometric method development and validation for the determination of metoprolol succinate in bulk and its pharmaceutical dosage form." Annals of Phytomedicine. 2023, 12(1),628-631,
- [31] C Mustafa, et al, "Spectrophotometric Determination of Metoprolol Tartrate in Pharmaceutical Dosage Forms on Complex Formation with Cu (II)." *Pharmaceuticals*. 2011, 4, 964-975
- [32] SA pagar et al, "Development and validation of spectrophotometric method for determination of metoprolol succinate." *IJPBS*. 2013,3,224-228.
- [33] A Madhuri et al, "Development and validation of UV spectrophotometric method for simultaneous estimation of cilnidipine and metoprolol succinate in bulk drugs and combined dosage form." *Der Pharmacia Lettre*. 2015, 7 (7),299-306.
- [34] N Bindi et al, "Development and validation of the simultaneous UV spectrophotometric method for estimation of metoprolol succinate and olmesartan medoxomil in the tablet dosage form." *Pharmaceutical Methods*.**2012**,*31*(1),44-47.
- [35] Lakavath Suryanarayana, "Sensitive and Reproducible Study for UV- Spectrophotometric Method for Analysis of Clopidogrel and Metoprolol in a Combined Tablet Dosage Form." *International Journal of Pharmaceutical Science Invention*.**2022**,*11*(6),1-5.
- [36] M Iram, S Rani, "Estimation of Metoprolol In Human Plasma By Hplc Method." *Ijpps.* **2015**,*7*, 443-446.
- [37] C Avjit et al, "Rp-Hplc method for the estimation of metoprolol succinate in bulk and in dosage forms." Int J Adv Pharm Biol Sci.2012,2(1), 116-123.
- [38] M Nirma et al, "Development and validation of a stability indicating RP-HPLC method for simultaneous estimation of Olmesartan Medoxomil and Metoprolol Succinate in pharmaceutical dosage form." *Pharmaceutical Method*.**2012**,*3*,84-89.
- [39] ND. rawool and A venkatchalam, "Analytical Method for the Simultaneous Estimation of Hydrochlorothiazide and Metoprolol Tartrate using RP HPLC." *Ijps*.**2011**,219-223.
- [40] S Brijesh et al, "Development of Reverse-Phase HPLC Method for Simultaneous Analysis of Metoprolol Succinate and Hydrochlorothiazide in a Tablet Formulation." *Trop J Pharm Res*, 2009; 8(6),539-543.
- [41] G Vaijanath et al, "Simultaneous determination of metoprolol succinate and amlodipine besylate in pharmaceutical dosage form by HPLC." *Jpba.*2007,584-586.
- [42] S palani, SK kamarapu, "Method Development And Validation For The Simultaneous Determination Of Metoprolol And Atorvastatin By Reversed-Phase High-Performance Liquid Chromatography In Its Bulk And Pharmaceutical Tablet Dosage Form Using Biorelevant

Dissolution Media Fasted State Small Intestinal Fluid." *Asian J Pharm Clin Res.***2018**,*11*,1-8.

- [43] M risk, et al, "Comparative HPTLC study for simultaneous determination of ivabradine and metoprolol using UV and fluorescence detectors." *Bmc Chemistry*.**2023**,*17*,1-13.
- [44] P Pintu, et al, "A robust high-performance thin-layer chromatography method for the simultaneous estimation of chlorthalidone and metoprolol succinate using quality risk assessment and design of experiments-based enhanced analytical quality by design approach." *JPC*.**2021**,27-39.
- [45] P.S Jain, et al, "Development and Validation of HPTLC Method for Simultaneous Determination of Amlodipine Besylate and Metoprolol Succinate in Bulk and Tablets." *Ijps*.**2012**,152-156.
- [46] K Rajendra et al, "High-Performance Thin-Layer Chromatographic Method for Simultaneous Analysis of Metoprolol Succinate and Amlodipine Besylate in Pharmaceutical Preparations." *JPC*.**2009**,115-119.
- [47] S kamini, et al, "Validated HPTLC method for simultaneous estimation of metoprolol succinate and ramipril in bulk drug and marketed formulation." *Clin Med Rep.* **2019**,2,1-4.
- [48] Li Sha, et al, "Rapid and Sensitive LC-MS/MS Method for the Determination of Metoprolol in Beagle Dog Plasma with a Simple Protein Precipitation Treatment and Its Pharmacokinetic Applications." *Molecules* .2012, *17*, 2663-2674.
- [49] Suresh Babu, Jayachandra, Devendra Prakash, Process for The Preparation of Dapagliflozin, USP US 2016/0214953 A1,2016
- [50] Vasireddi,Uma Maheswari Rao, Novel processes for preparation of dapagliflozin or its solvates or cocrystals thereof, WO2018/029611A1,2018
- [51] Janakraj Karamchand Mahera, jit Choubey, bimal Kumar, Rajendra Kumar, Prasant Gautam, Metoprolol manufacturing process, US 2005/0107635 A1,2005.
- [52] Carmen Arnalot Aguilar, Jordi Bosch I Llado, synthesis and preparations of metoprololand its salts, US 2009/0247642 A1,2009.
- [53] Ali Raif Ilac Sanayi Ve ticaret anomin Sirketi, Tablet formulation comprising dapagliflozin and extended-release metformin, WO2013/137839 A1,2013.