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Abstract: This paper provided a thorough examination of the dynamics of hematopoietic stem cells and leukemic stem cells in acute 

myeloid leukemia through mathematical modeling. AML, a heterogeneous hematologic malignancy characterized by abnormal myeloid 

cell proliferation in the bone marrow, presents significant challenges in understanding disease progression and treatment response. The 

study reviews various mathematical modeling techniques, including agent-based modeling, ordinary differential equations, and stochastic 

models, to analyze the complex interactions between stem cells, their progeny, and the bone marrow microenvironment. Recent advances 

in experimental methodologies for measuring key parameters in stem cell dynamics and integrating these data into mathematical models 

are also highlighted. Furthermore, the paper discussed the potential of mathematical modeling to guide the development of personalized 

therapeutic strategies for AML patients. It aims to unravel the growth dynamics of HSCs and LSCs within the bone marrow, considering 

them as a network of interconnected compartments representing distinct stages of cellular differentiation. The study introduced an 

innovative fractional order derivative-based framework, which re-examined and reformulated classical growth models to better capture 

the intricate interplay between self-renewal and proliferation rates across diverse sub-stages of cellular differentiation. By shedding light 

on the regulatory mechanisms governing stem cell dynamics, this approach provides valuable insights into the pathophysiology of 

hematopoietic disorders, particularly acute myeloid leukemia. 
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1. Introduction 
 

Acute myeloid leukemia (AML) is a devastating hematologic 

malignancy characterized by the rapid proliferation of 

abnormal myeloid precursor cells in the bone marrow. 

Despite advances in therapy, the prognosis for AML remains 

poor, with high rates of relapse and treatment resistance 

[7,34]. The hierarchical organization of AML, with a small 

population of self-renewing leukemic stem cells (LSCs) 

driving disease progression, presents a major challenge for 

treatment. In AML, the balance between hematopoietic stem 

cells (HSCs) and LSCs is disrupted, leading to aberrant 

production of leukemic blasts and impaired normal 

hematopoiesis. Understanding the dynamics of HSCs and 

LSCs is crucial for unraveling the mechanisms underlying 

disease initiation, progression, and relapse. Mathematical 

modeling offers a powerful tool for quantitatively analyzing 

the dynamics of HSCs and LSCs in AML [23,34,44]. Agent-

based modeling allows for the simulation of individual cell 

behaviors and interactions within the bone marrow 

microenvironment. Ordinary differential equations provide a 

framework for describing the rates of change of cell 

populations over time, while stochastic models capture the 

inherent randomness in cellular processes. Recent advances 

in experimental techniques, such as single-cell sequencing 

and lineage tracing, have enabled the measurement of key 

parameters in stem cell dynamics, including proliferation 

rates, differentiation potentials, and interactions with the 

microenvironment [15,34,45]. Integrating these data into 

mathematical models allows for the calibration and validation 

of model predictions against experimental observations. 

Mathematical modeling has been used to investigate various 

aspects of AML pathogenesis and treatment response, 

including clonal evolution, drug resistance, and the efficacy 

of targeted therapies. By simulating different therapeutic 

interventions and treatment strategies, mathematical models 

can help guide clinical decision-making and optimize patient 

outcomes [21,44,50]. In conclusion, quantitative analysis of 

hematopoietic and leukemic stem cell dynamics in AML 

using mathematical modeling offers valuable insights into 

disease pathogenesis and treatment response. By integrating 

experimental data with mathematical models, researchers can 

gain a deeper understanding of the complex interactions 

between stem cells, their progeny, and the bone marrow 

microenvironment [23,45]. This interdisciplinary approach 

holds promise for the development of personalized 

therapeutic strategies and improved outcomes for patients 

with AML. The recent scientific investigations have 

uncovered the presence of stem cell-like populations within 

certain cancers, including leukemia, possessing self-renewal 

and pluripotency capabilities, akin to normal stem cells. This 

revelation has significant implications for understanding 

cancer progression mechanisms, offering insights into tumor 

development and metastasis regulation. Moreover, it opens up 

avenues for novel therapeutic strategies targeting these stem 

cell-like populations, potentially improving treatment 

efficacy and patient outcomes [21,43]. 
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Figure 1: Development of the different blood cells from haematopoietic stem cell to mature cells 

 

The bone marrow houses hematopoietic stem cells (HSCs) 

responsible for maintaining the body's blood cell populations 

throughout life through a balanced process of self-renewal 

and differentiation. Dysregulation of these mechanisms can 

lead to hematopoietic disorders such as acute myeloid 

leukemia (AML), characterized by uncontrolled proliferation 

of leukemic stem cells (LSCs) and impaired differentiation. 

Mathematical modeling emerges as a powerful tool for 

investigating the dynamics of both normal and leukemic stem 

cells within the bone marrow microenvironment. In this 

study, we adopt a compartmental modeling approach, 

building upon classical models of stem cell growth by 

incorporating fractional order derivatives for more accurate 

representation of biological systems. Through computational 

analyses, we aim to explore the dependence of cellular 

behavior on key parameters such as self-renewal and 

proliferation rates [28,41]. By comparing the predictions of 

our fractional order derivative-based models with traditional 

ordinary differential equation models, we seek deeper insights 

into the regulatory networks governing hematopoietic and 

leukemic stem cell dynamics. Leukemic stem cells, with their 

high self-renewal capacity and multi-directional 

differentiation potential, can give rise to various types of 

leukemia, further complicating disease characterization and 

treatment. Mathematical modeling holds significant potential 

in oncology research, especially in blood cancer studies, 

facilitating disease characterization, tumor analysis, and 

personalized treatment strategies. Hematopoietic stem cells 

are crucial for the continuous production of blood cells, 

characterized by efficient proliferation, self-renewal, 

resistance to apoptosis, and differentiation potential 

[22,45,51]. Understanding these processes is essential for 

maintaining tissue homeostasis and regulating immune 

function. Mathematical modeling offers a valuable approach 

for investigating the growth dynamics of hematopoietic and 

leukemic stem cells, providing insights into disease 

pathogenesis and guiding the development of personalized 

therapeutic strategies for AML and other hematopoietic 

disorders. 

 

 

2. Formulation of the Problem 
 

The following mathematical model developed by Thomas 

Steihl and A. Marciniak-Czochra [6-11] describes the 

dynamics of hematopoietic and leukemic cells in acute 

myeloid leukaemia based on three primary parameters, self-

renewal rate (𝑎𝑖
𝑐 𝑜𝑟 𝑙), proliferation rate (𝑝𝑖

𝑐 𝑜𝑟 𝑙), and death 

rate (𝑑𝑖
𝑐 𝑜𝑟 𝑙). The model is based on the understanding of the 

haematopoiesis process such that stages of cell differentiation 

were assumed as compartments (ordered sequence of 

differentiation). The time-dependent ordinary differential 

equations were developed to describe the cell densities (or 

population) for hematopoietic and leukemic cells. 

 

Hematopoietic cell line:   
𝑑𝑐1

𝑑𝑡
= (2𝑎1,𝑚𝑎𝑥

𝑐 𝑠(𝑡) − 1)𝑝1
𝑐𝑐1(𝑡) − 𝑑1

𝑐𝑐1(𝑡) 

𝑑𝑐𝑖

𝑑𝑡
= 2 (1 − 𝑎𝑖−1,𝑚𝑎𝑥

𝑐 𝑠(𝑡)) 𝑝𝑖−1
𝑐 𝑐𝑖−1(𝑡)

+ (2𝑎𝑖,𝑚𝑎𝑥
𝑐 𝑠(𝑡) − 1)𝑝𝑖

𝑐𝑐𝑖(𝑡) − 𝑑𝑖
𝑐𝑐𝑖(𝑡) 

𝑑𝑐𝑛

𝑑𝑡
= 2 (1 − 𝑎𝑛−1,𝑚𝑎𝑥

𝑐 𝑠(𝑡)) 𝑝𝑛−1
𝑐 𝑐𝑛−1(𝑡) − 𝑑𝑛

𝑐 𝑐𝑛(𝑡) 

 

Leukemic cell line: 
𝑑𝑙1

𝑑𝑡
= (2𝑎1,𝑚𝑎𝑥

𝑙 𝑠(𝑡) − 1)𝑝1
𝑙 𝑙1(𝑡) − 𝑑1

𝑙 𝑙1(𝑡) 

𝑑𝑙𝑖

𝑑𝑡
= 2 (1 − 𝑎𝑖−1,𝑚𝑎𝑥

𝑙 𝑠(𝑡)) 𝑝𝑖−1
𝑙 𝑙𝑖−1(𝑡)

+ (2𝑎𝑖,𝑚𝑎𝑥
𝑙 𝑠(𝑡) − 1)𝑝𝑖

𝑙𝑙𝑖(𝑡) − 𝑑𝑖
𝑙𝑙𝑖(𝑡) 

𝑑𝑙𝑚

𝑑𝑡
= 2 (1 − 𝑎𝑚−1,𝑚𝑎𝑥

𝑙 𝑠(𝑡)) 𝑝𝑚−1
𝑙 𝑙𝑚−1(𝑡) − 𝑑𝑚

𝑙 𝑙𝑚(𝑡) 

 

The number of compartments is denoted by 𝑛. In the 

hematopoietic cell line, the first compartment denotes the 

hematopoietic stem cell population, while the 𝑛𝑡ℎ 

compartment denotes the post mitotic mature population. The 

number of cell compartments in between 1 and 𝑛 is denoted 

by 𝑖, where 𝑖 ∈ [2, 𝑛 − 1]. Similarly, the first compartment in 

the leukemic cell line denotes leukemic stem cell population 

and the post mitotic mature blasts are denoted by 𝑚𝑡ℎ 

compartment. The cell densities of hematopoietic cell 
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population in the compartment 𝑗 at time 𝑡 are denoted by 

𝑐𝑗(𝑡)(𝑗 = 1, 2, . . . . 𝑛), while 𝑙𝑗(𝑡)(𝑗 = 1, 2, . . . . 𝑛) denotes the 

cell densities for leukemic cell population [20,32]. Fraction of 

self-renewal rate (𝑎𝑖
𝑐 𝑜𝑟 𝑙(𝑡)): Self-renewal rate is the fraction 

of daughter cells returning to the compartment where the 

mother cell is present. It is also assumed that the self-renewal 

rate is linearly related to the negative feedback signalling. 

Thus, 𝑎𝑖 = 𝑎𝑖,𝑚𝑎𝑥𝑠(𝑡), where 𝑎𝑖,𝑚𝑎𝑥 is the maximum self-

renewal fraction [31,50]. Fraction of proliferation rate 

(𝑝𝑖
𝑐 𝑜𝑟 𝑙(𝑡)): Proliferation rate depicts the fraction of cells 

divide per unit time such that the proliferation rate for the 

nature post-mitotic cells is identical to zero, i.e., 𝑝𝑛
𝑐(𝑡) ≡ 0 

and 𝑝𝑚
𝑙 (𝑡) ≡ 0 [4, 7]. Death rate (𝑑𝑖

𝑐 𝑜𝑟 𝑙(𝑡)): Death rate is the 

fraction of cells die per unit time for each compartment. [12, 

17] The classical time-based differential equations are based 

on the treatment of cell cycle as a well-mixed population, 

from which cell may either proliferate at the rate 𝑝(𝑡) or die 

at the death rate 𝑑. For simplicity, death rate can be 

considered zero for every compartment except the post 

mitotic cell compartment, i.e., 𝑛𝑡ℎ compartment [21,30]. For 

the 𝑖𝑡ℎcompartment where 𝑖 < 𝑛, the flux to mitosis is given 

by 𝑝𝑖(𝑡)𝑐𝑖(𝑡), while the outflux to mitosis, in which the 

mother cell divides to produce two daughter cells, equals to 

2𝑝𝑖(𝑡)𝑐𝑖(𝑡). In the following process, the fraction of cells that 

stays within the compartment 𝑖, referred to as self-renewal, is 

given by 2𝑎𝑖(𝑡)𝑝𝑖(𝑡)𝑐𝑖(𝑡)[2, 18]. It is also assumed that 

[1 − 𝑎𝑖(𝑡)] is the probability of each daughter cells to move 

to the next compartment, while 𝑎𝑖(𝑡) fraction ensures that cell 

population stay in the same compartment from where they 

have formed. Further, the fraction of cells that differentiates 

and moves to compartment 𝑖 + 1 is given by 2(1 −
𝑎𝑖(𝑡))𝑝𝑖(𝑡)𝑐𝑖(𝑡). [8, 16] Cells in the 𝑛𝑡ℎ compartment have 

zero proliferation rate, but a non-zero death rate. Therefore, 

the cell population in the mature compartment depends on the 

flux of differentiated cells from (𝑛 − 1)𝑡ℎ compartment 

(1𝑠𝑡term) and death of the mature cells (2𝑛𝑑term) [40,53]. 

 

The negative feedback signal of cytokines regulates the 

formation of blood cells. Cytokines are crucial external 

signalling molecules in stem cells that regulate the dynamics 

of cell differentiation and proliferation, but the precise nature 

is still unknown. When released, cytokines such as 

erythropoietin (EPO) in erythropoiesis and granulocyte 

colony stimulating factor (G-CSF) for granulopoiesis in 

hematopoietic stem cells, and NF-B and phosphatidyl-

inositide-3 kinase (PI3K) in leukemic stem cells regulate the 

growth of cells in the body [10,39]. The increase in the 

concentration of cytokines indicates that there is a need for 

more blood cells of a certain type such that it stimulates the 

formation of mature cells [4,38]. It is also assumed that their 

densities depend majorly on postmitotic cell densities and 

leukemic and hematopoietic cells respond to the same 

cytokines and complete for them. In the following model, 

cytokine is denoted by 𝑠(𝑡) and given by: 

𝑠(𝑡) =
1

1 + 𝑘𝑐𝑐𝑛(𝑡) + 𝑘𝑙𝑙𝑛(𝑡)
∈ (0, 1] 

where 𝑘𝑐 and 𝑘𝑙 are positive constants.   

 

If we consider the cell lines as 3-compartment system, the 

healthy cell line consists of the following: hematopoietic stem 

cells (HSC), hematopoietic progenitor cells (HPC), and post-

mitotic mature cells [43,46]. Similarly, the leukemic cell line 

consists of the following: leukemic stem cells (HSC), 

leukemic progenitor cells (HPC), and mature blast cells. For 

3-compartment system, it was also assumed that the self-

renewal rate for stem cells is higher than the progenitor (non-

stem) cells given the condition that all mitotic cells have self-

renewal ability and stem cells divide less frequently than 

progenitor cells [2,26]. Healthy cell line, when treated as the 

6-compartment system, moves through successive stages of 

maturation where cell replication and differentiation are 

coupled with cells [9,29]. For our work, we considered that 

the division starts from long-term repopulating stem cells 

with self-renewal rate of 0.7, then proceeds with stages such 

as sort-term repopulating stem cells, multipotent progenitor 

cells, and committed progenitor cells, the self-renewal rate is 

reduced to 0.65 [42,51]. Finally, the precursor has the self-

renewal rate of 0.55. Alongside, for each stage, the cell 

division occurs at every 4 days for LT-HSC (proliferation rate 

= 0.25), 3 days for ST-HSC (proliferation rate = 0.33), 2 days 

for MPC (proliferation rate = 0.5), 1 day for CPC 

(proliferation rate = 1.0), and 0.5 days for precursors 

(proliferation rate = 1.5). For the production and 

differentiation of cells in each stage, the cytokine signaling is 

the majority regulator [1,27,49]. 

 

Fractional order derivative-based model: Fractional 

ordered differential equation, in the recent times, has gained 

attention due to its ability to provide a better precision 

between the actual and simulated data as compared to the 

classical models [35,48].  

 

The fractional order derivative is advantageous due to its 

memory effect property which indicate that future state of the 

system depends on the current state, as well as, the past state 

[36,47]. FDE is not a new concept, it was introduced back in 

1695 by Gottfried Leibniz in a letter written to Guillaume de 

L’Hôpital [14,25]. Over the years, mathematicians, namely 

Riemann–Liouville, Caputo, Jumarie, Hadamard, and Weyl 

have introduced their own definitions of FDE with some 

advantages and disadvantages, but the best known is 

Riemann–Liouville definition [7, 16]. The derivate of order 𝛼 

is given by: 

𝐷0+
𝛼 𝑓(𝑡) =  

1

Γ(1 − 𝛼)
(

𝑑

𝑑𝑡
)

𝑛

∫
𝑓(𝑠)

(𝑡 − 𝑠)𝛼−𝑛+1
𝑑𝑠,

𝑡

0

    𝑛

= [𝛼] + 1, 
Where 𝛼 ∈ 𝑅, [𝑛 − 1, 𝑛) and 0 < 𝛼 < 1 for 𝑛 ∈ 𝑄, Γ is the 

gamma function, and [𝛼] is the greatest integer value of 𝛼 

[24,33]. Riemann–Liouville satisfies the linear property of 

fractional derivates, but failed to solve the differentiation of a 

constant value when replaced by Riemann–Liouville 

differential operator of order 𝛼 [13,15]. 

𝐷𝛼𝑐 =  
𝑐

Γ(1 − 𝛼)
𝑡−𝛼 ≠ 0, c = constant  

While, the Caputo definition for FDE is as follows.  

𝐷0+
𝛼 𝑓(𝑡) =  

1

Γ(1 − 𝛼)
∫

𝑓𝑛(𝑠)

(𝑡 − 𝑠)𝛼−𝑛+1
𝑑𝑠,

𝑡

0

    𝑛 = [𝛼] + 1, 

Following the Caputo type fractional derivative of order 𝛼, 

the modified model for stem cell growth of hematopoietic and 

leukemic cell lines is: 

Hematopoietic cell line: 
𝑑𝛼𝑐1

𝑑𝑡𝛼
= (2(𝑎1,𝑚𝑎𝑥

𝑐 )𝛼𝑠(𝑡) − 1)(𝑝1
𝑐)𝛼𝑐1(𝑡) − (𝑑1

𝑐)𝛼𝑐1(𝑡) 
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𝑑𝛼𝑐𝑖

𝑑𝑡𝛼
= 2 (1 − (𝑎𝑖−1,𝑚𝑎𝑥

𝑐 )𝛼𝑠(𝑡)) (𝑝𝑖−1
𝑐 )𝛼𝑐𝑖−1(𝑡)

+ (2(𝑎𝑖,𝑚𝑎𝑥
𝑐 )𝛼𝑠(𝑡) − 1)(𝑝𝑖

𝑐)𝛼𝑐𝑖(𝑡)

− (𝑑𝑖
𝑐)𝛼𝑐𝑖(𝑡) 

𝑑𝛼𝑐𝑛

𝑑𝑡𝛼
= 2 (1 − (𝑎𝑛−1,𝑚𝑎𝑥

𝑐 )𝛼𝑠(𝑡)) (𝑝𝑛−1
𝑐 )𝛼𝑐𝑛−1(𝑡)

− (𝑑𝑛
𝑐 )𝛼𝑐𝑛(𝑡) 

Leukemic cell line: 
𝑑𝛼𝑙1

𝑑𝑡𝛼
= (2(𝑎1,𝑚𝑎𝑥

𝑙 )𝛼𝑠(𝑡) − 1)(𝑝1
𝑙 )𝛼𝑙1(𝑡) − (𝑑1

𝑙 )𝛼𝑙1(𝑡) 

𝑑𝛼𝑙𝑖

𝑑𝑡𝛼
= 2 (1 − (𝑎𝑖−1,𝑚𝑎𝑥

𝑙 )𝛼𝑠(𝑡)) (𝑝𝑖−1
𝑙 )𝛼𝑙𝑖−1(𝑡)

+ (2(𝑎𝑖,𝑚𝑎𝑥
𝑙 )𝛼𝑠(𝑡) − 1)(𝑝𝑖

𝑙)𝛼𝑙𝑖(𝑡)

− (𝑑𝑖
𝑙)𝛼𝑙𝑖(𝑡) 

𝑑𝛼𝑙𝑚

𝑑𝑡𝛼
= 2 (1 − (𝑎𝑚−1,𝑚𝑎𝑥

𝑐 )𝛼𝑠(𝑡)) (𝑝𝑚−1
𝑙 )𝛼𝑙𝑚−1(𝑡)

− (𝑑𝑚
𝑙 )𝛼𝑙𝑚(𝑡) 

The above model is based on the simple dimensional analysis 

that the both, left-hand and right-hand side, has the same 

dimension of (time)−𝛼. To maintain the dimensionality, we 

introduced the order 𝛼 on the constants, viz, self-renewal rate, 

proliferation rate, and death rate at the right-hand side, and 

changed the order of differentiation to 𝛼 on the left-hand side.   

 

3. Results and Discussion 
 

The development of a system comprising six compartments, 

each representing distinct maturation stages of hematopoietic 

cells, unveils the complex dynamics occurring within the 

bone marrow microenvironment. As stem cells traverse 

through these stages, they undergo a series of changes, 

intricately governed by the interplay of different signaling 

molecules and environmental signals. Figure (2) illustrates 

the crucial stages in the progression of leukemia, highlighting 

the establishment of a leukemic steady state and the extinction 

of healthy cells as pivotal outcomes revealed by the model. In 

the leukemic steady state, the model demonstrates a sustained 

equilibrium where leukemic stem cells maintain a stable 

population size, leading to the predominance of leukemic cell 

populations within the bone marrow microenvironment 

[5,6,12,37]. This equilibrium arises from a delicate balance 

between self-renewal and differentiation processes, where 

leukemic stem cells continuously regenerate themselves 

while also generating leukemic progenitor cells. Conversely, 

the extinction of healthy cells indicates the loss of normal 

hematopoietic function due to the overwhelming presence of 

leukemic cells. As the leukemic population proliferates and 

displaces healthy hematopoietic cells, the bone marrow 

microenvironment becomes increasingly favorable for the 

growth of leukemic cells, resulting in the gradual depletion of 

normal cell populations [17,23,52]. 

 

 
Figure 2: Establishment of a leukemic steady state and extinction of healthy cells 
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Figure 3: Cell number dependency on self-renewal rate with time  

 

The model offers insights into the factors that contribute to 

the emergence of critical states, shedding light on the 

mechanisms driving leukemic expansion and the competitive 

advantage over healthy hematopoietic cells. Dysregulated 

self-renewal and proliferation rates play a pivotal role in this 

process, fueling the growth of leukemic cells while 

suppressing healthy cell populations. Additionally, the model 

highlights the impact of microenvironmental factors, such as 

cytokine signaling and interactions within the niche, on the 

dynamics of both leukemic and healthy cell populations 

[11,34]. Understanding the underlying mechanisms behind 

the establishment of a leukemic steady state and the decline 

of healthy cells is crucial for devising targeted therapeutic 

approaches aimed at disrupting leukemic growth and 

restoring normal hematopoietic function. By pinpointing key 

regulatory nodes and vulnerabilities within the system, 

interventions can be customized to selectively target leukemic 

cells while preserving the integrity of healthy hematopoietic 

function. This tailored approach holds promise for improving 

treatment outcomes and enhancing the quality of life for 

patients battling leukemia. 

 

In Figure (3), the examination of how the number of cells 

changes in response to variations in self-renewal rates over 

time offers valuable insights into the behavior of stem cell 

populations and their impact on maintaining a balanced blood 

cell production or facilitating the progression of leukemia 

[3,18]. In the context of hematopoiesis, the model provides 

clarity on how modifications in self-renewal rates influence 

the size and composition of stem cell populations as time 

progresses. When self-renewal rates are higher, there is a 

notable increase in stem cell proliferation and expansion, 

leading to the enlargement of stem cell populations [8,19,22]. 

This effect becomes particularly significant in situations 

demanding swift hematopoietic recovery, such as instances of 

heightened blood cell production demand or in response to 

treatments like chemotherapy or radiation therapy. 

Conversely, lower self-renewal rates result in diminished 

stem cell proliferation and slower population growth.  

 

 

4. Conclusion 
 

This research offers valuable insights into the dynamics of 

hematopoietic cells and their significance in both health and 

disease. By developing a model consisting of six 

compartments representing distinct maturation stages of 

hematopoietic cells, we've gained a clearer understanding of 

the intricate processes governing hematopoiesis and the 

maturation of blood cell lineages. This model enables us to 

simulate and explore the differentiation and proliferation of 

hematopoietic stem and progenitor cells, providing insights 

into the factors influencing normal hematopoietic function. 

This analysis of the leukemic steady state and the decline of 

healthy cells underscores the crucial role of self-renewal rates 

in driving leukemic progression and disrupting hematopoietic 

balance. Through modeling the dynamics of leukemic stem 

cells and their interaction with healthy hematopoietic cells, 

we've identified key factors contributing to the dominance of 

leukemia within the bone marrow microenvironment. This 

examination of the relationship between cell numbers and 

self-renewal rates over time highlights the significance of 

self-renewal pathways in regulating stem cell behavior and 

preserving hematopoietic function. Changes in self-renewal 

rates can significantly impact stem cell proliferation, 

population dynamics, and ultimately, the progression of 

diseases. These findings deepen our understanding of the 

mechanisms governing hematopoietic regulation and the 

development of leukemia. They contribute to the growing 

body of knowledge aimed at elucidating the complexities of 

hematopoiesis and identifying potential targets for 

therapeutic intervention in hematopoietic disorders. 
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