Trying to Recreate the Cubic Formula

Rishikesh Biswas
KVS
Email: rishikesh13611[at]gmail.com

Abstract

In this paper, we are going to see a variation in calculating a new cubic formula. As you may have read the title, suggests that I am going to try to recreate the cubic formula. This paper, along with the formula, also tries to avoid the occurrence of imaginary unit i. I am going to carry out the work with the help of quadratic equations and quadratic formulas.

Keywords: Equation: A mathematical expression/statement with an equal sign. Cubic Equation: An equation with the highest degree of 3.

Quadratic Equation: An equation with the highest power of 2.
Quadratic formula: A formula that is used to find the variable x in any quadratic polynomial.
Cubic formula: A formula that is used to find the variable x in any cubic function/polynomial/equation.

1. Introduction

In this paper, we are going to see a variation in calculating a new cubic formula [1]. As you may have read the title, suggests that I am going to try to recreate the cubic formula by transposing and using quadratic formulas in the cubic equation [2]. This paper, along with the formula, also tries to avoid the occurrence of imaginary unit i. I am going to carry out this work with the help of quadratic equations [3] and quadratic formulas [4].

2. Work

Variation One; General Form 1

$a x^{3}+b x^{2}+c x+d=0$
$\left(a x^{3}+b x^{2}+c x\right)+d=0$
$x\left(a x^{2}+b x+c\right)+d=0$
Here I am going to put the quadratic formula in the bracket equation.

$$
\begin{gathered}
x\left(a\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 b}\right]^{2}+b\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 b}\right]+c\right)=-d \\
x\left(a\left[\frac{(-b)^{2}+b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}}{2 b}\right]^{2}+b\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 b}\right]+c\right)=-d \\
x\left(a\left[\frac{\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}\right.}{4 b^{2}}\right]+b\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 b}\right]+c\right)=-d \\
x=\frac{-d}{\left(a\left[\frac{2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}}{4 b^{2}}\right]+b\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 b}\right]+c\right)}
\end{gathered}
$$

If $\frac{2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}}{4 b^{2}}=\frac{p}{q}$,
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 b}=\frac{m}{n}$
$x=\frac{-d}{\frac{a p}{q}+\frac{b m}{n}+c}$
$x=\frac{-d}{\frac{a p n+b q m}{q n}+c}$
$x=\frac{-d}{\frac{a p n+b q m}{q n}+c}$
$x=\frac{-d}{\frac{a p n+b q m+q n c}{q n}}$
$x=-d \cdot \frac{q n}{a p n+b q m+q n c}$
$x=\frac{-d q n}{a p n+b q m+q n c}$

Putting p, q, m and n

Variation Two; Form 2; Leading Coefficient 1

Volume 13 Issue 5, May 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

$$
\begin{aligned}
& x=\frac{-d\left(4 b^{2}\right)(2 b)}{a\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}[2 b]\right)+b\left(4 b^{2}\left[-b \pm \sqrt{b^{2}-4 a c}\right]\right)+c\left(4 b^{2}[2 b]\right)} \\
& x=\frac{-8 d b^{3}}{a\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}[2 b]\right)+b\left(4 b^{2}\left[-b \pm \sqrt{b^{2}-4 a c}\right]\right)+8 c b^{3}} \\
& x=\frac{-8 d b^{3}}{\left\{a\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}[2 b]\right)+b\left(4 b^{2}\left[-b \pm \sqrt{b^{2}-4 a c}\right]\right)\right\}+8 c b^{3}} \\
& x=\frac{-d}{\left\{a\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}[2 b]\right)+b\left(4 b^{2}\left[-b \pm \sqrt{b^{2}-4 a c}\right]\right)\right\}+c} \\
& x=\frac{-d}{\left\{a\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}[2 b]\right)+b\left(4 b^{2}\left[-b \pm \sqrt{b^{2}-4 a c}\right]\right)\right\}+c} \\
& x=\frac{-d q n}{a p n+a m q+q n c} \\
& x=\frac{-d}{a p n+a m q+c}
\end{aligned}
$$

$$
\begin{aligned}
& x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0 \\
& x\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)+\frac{d}{a}=0 \\
& x\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)=-\frac{d}{a} \\
& x=-\frac{d}{a} \times \frac{1}{x^{2}+\frac{b}{a} x+\frac{c}{a}} \\
& x=-\frac{d}{a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)} \\
& x=-\frac{d}{a\left(\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]+\frac{b}{a}\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]+\frac{c}{a}\right)} \\
& x=-\frac{d}{a\left(\left[\frac{\left(-b \pm \sqrt{\left.b^{2}-4 a c\right)^{2}}\right.}{(2 a]^{2}}\right]+\frac{b}{a}\left[\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]+\frac{c}{a}\right)} \\
& \left.\left.x=-\frac{d}{a\left(\left[\frac{(-b)^{2}+b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}}{4 a^{2}}\right]+\frac{b}{a}\left[-b \pm \sqrt{b^{2}-4 a c}\right.\right.} \frac{d}{2 a}\right]+\frac{c}{a}\right) \\
& x=-\frac{d}{a\left(\left[\frac{2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}}{4 a^{2}}\right]+\left[\frac{b\left(-b \pm \sqrt{\left.b^{2}-4 a c\right)}\right.}{2 a^{2}}\right]+\frac{c}{a}\right)}
\end{aligned}
$$

$$
\text { Let } \frac{2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}}{4 a^{2}} \text { be } \frac{p}{q} \text {, and }
$$

$$
\frac{b\left(-b \pm \sqrt{\left.b^{2}-4 a c\right)}\right.}{2 a^{2}} \text { be } \frac{m}{n}
$$

$$
x=-\frac{d}{a\left(\left[\frac{p}{q}\right]+\left[\frac{m}{n}\right]+\frac{c}{a}\right)}
$$

$$
\boldsymbol{x}=-\frac{d}{a\left[\frac{p}{q}\right]+a\left[\frac{m}{n}\right]+a\left[\frac{c}{a}\right]}
$$

$$
x=-\frac{d}{\frac{a p}{q}+\frac{a m}{n}+c}
$$

$$
x=-\frac{d}{\left(\frac{a p}{q}+\frac{a m}{n}\right)+c}
$$

$$
x=-\frac{d}{\frac{a p n+a m q}{q n}+c}
$$

$$
x=-\frac{d}{\frac{a p n+a m q+q n c}{q n}}
$$

Putting p, q, m and n

$$
\begin{aligned}
& x=\frac{-d}{a\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}\left[2 a^{2}\right]\right)+a\left(b\left(-b \pm \sqrt{b^{2}-4 a c}\right)\left[4 a^{2}\right]\right)+c} \\
& x=\frac{-d}{a\left[\left(2 b^{2}-4 a c \pm-2 b \sqrt{b^{2}-4 a c}\left[2 a^{2}\right]\right)+\left(b\left(-b \pm \sqrt{\left.b^{2}-4 a c\right)}\left[4 a^{2}\right]\right)\right]+c\right.}
\end{aligned}
$$

3. Conclusion

In summary, I have tried to recreate the cubic formula using quadratic formulas and certain algebraic properties. I have performed the calculations on two different forms of cubic equations. The first form was the most common and popular form, the general form; and the

In the second form, I used the Lead Coefficient One.
Here I didn't use constant $=0$ or otherwise the whole calculation will be 0 .

For example, let my calculation in the denominator be h. So it would Be
$x=\frac{0}{h}=0$
That is completely true.

References

[1] Cubic Formula by Gerolamo Cardano, near about 1545]
[2] Cubic equations: Babylonians(20th - 16th Century BC), Greeks, Chinese, Indians, and Egyptians..]
[3] Babylonian mathematicians, 2000 BC] [4: René Descartes in La Géométrie in 1637]

Author Profile

Rishikesh Biswas, a superordinary 8th grader in India, has contributed little to the field of mathematics by doing nothing much by just publishing four research papers (excluding this one) and a book. Besides that, the author plays tabla (Indian Classical Musical Instrument) and has a national scholarship in it from the Ministry of Culture. The author has played chess in nationals as well.

Volume 13 Issue 5, May 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

