
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

The Importance of Fixing Transitive Vulnerabilities

in Java Libraries

Frolikov Evgenii

Team Lead - Cloud Linux, Turkey Mersin

Email: frolikov123[at]gmail.com

Abstract: In the context of rapidly evolving technologies, ensuring software security is becoming an increasingly relevant task. One

critical aspect of this task is addressing transitive vulnerabilities in Java libraries. Transitive vulnerabilities arise when libraries depend

on other libraries that contain vulnerabilities, creating a complex web of interdependencies. These vulnerabilities can be difficult to detect

and pose significant risks to application security. This paper examines the causes of transitive vulnerabilities, their impact on software

security, and methods for their detection and mitigation. The importance of using automated dependency analysis tools, regularly updating

libraries, and maintaining strict version control is emphasized. Additionally, measures to minimize risks associated with transitive

vulnerabilities are discussed, including continuous security monitoring and the implementation of best practices in software development.

Keywords: vulnerabilities, java libraries, transitive vulnerabilities, correction of transitive vulnerabilities, programming

1. Introduction

In a rapidly evolving world, achieving excellence demands

continuous progress. Recent reports on the state of the

software supply chain indicate that developer productivity

significantly increases when they have access to superior

tools and high-quality open-source components. This, in turn,

enhances the security and quality of the products [1].

In this context, the Java programming language and its

numerous libraries play a central role, being used to develop

a wide range of software solutions, from mobile applications

to enterprise systems. However, as the functionality of Java

libraries expands, vulnerabilities inevitably arise, which can

be exploited by attackers for various attacks [2].

Developing secure Java applications, free from

vulnerabilities, is the best way to ensure their reliability and

protection against threats. Integrating security measures into

the development process helps prevent the creation of

vulnerabilities; addressing potential vulnerabilities during the

development stage is significantly less time-consuming and

resource-intensive than fixing them once they are deployed in

a production environment.

Moreover, the interest in this research topic is driven by the

patented technology for monitoring vulnerabilities in Java

libraries, patent number 508178618.

This paper aims to highlight the importance of addressing

transitive vulnerabilities in Java libraries.

2. Literature Review

There is a vast amount of research focused on analyzing the

source code of applications written in various programming

languages. These studies often aim to compare the

applicability of different programming languages for solving

specific tasks in physics and mathematics, emphasizing ease

of use, expressive power, and minimizing errors during

software development.

A significant portion of the research concentrates on

collecting data from the GitHub platform about the usage of

different programming languages. These studies analyze the

number of lines of code, the number of projects a developer

participates in, the speed of bug fixes upon request, and other

parameters. According to Geiger R.S., the primary source of

identifying and reporting vulnerabilities and bugs in code is

the user community. This is not surprising, given that GitHub

is the largest platform for hosting both proprietary and open-

source code.

The scientific community is equally interested in the quality

of code and in comparing programming languages in terms of

their susceptibility to vulnerabilities in the source code. For

instance, Ray B. A explores the code quality on the GitHub

platform for various programming languages. His

methodology involves identifying keywords associated with

fixable vulnerabilities in commit logs. This approach does not

provide an objective picture of the prevalence of

vulnerabilities, as it only allows for the collection of data on

vulnerabilities after the fact, which does not help in building

a predictive model for assessing code quality. Similar

methodologies are used in the works of Gyimesi P. and Kapur

R.

A review of both domestic and international sources also

highlights the lack of a code quality assessment system that

can be used by non-specialists. This paper will examine the

importance of transitive vulnerabilities in Java libraries [3].

3. Materials and Methods

All software contains vulnerabilities that can arise at various

stages of its lifecycle. Eliminating all vulnerabilities in the

code is a complex task; however, their number can be

significantly reduced. The situation becomes more

complicated when dealing with third-party software, as fixing

vulnerabilities in borrowed libraries or frameworks is a labor-

intensive process [4].

Initially, statistical test results were analyzed to identify

correlations between quality metrics and code vulnerability.

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1756

https://www.ijsr.net/
mailto:Frolikov123@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Such a relationship could indicate a strong correlation

between a specific metric and vulnerability. For example, if a

high SourceRank is associated with a low level of

vulnerability, developers could consider SourceRank when

selecting new components.

Unfortunately, no such direct dependency was found. None

of the quality metrics showed even a moderate correlation

with vulnerability levels. To explore this further, a series of

experiments were conducted.

The first experiment involved providing the model with data

on OpenSSF Criticality, Security Scorecard, Libraries.io

SourceRank, MTTU, and Popularity metrics. The results

showed that combining various quality metrics can be quite

effective in identifying vulnerable projects. When all quality

metrics were used, the model demonstrated an impressive

precision and recall of 95.5%. This means that in 95.5% of

cases, the model correctly identifies projects with known

vulnerabilities, indicating that the quality metrics of a project

indeed reflect important factors affecting security.

Figure 1: The relative importance of quality indicators in

the research model [5].

Figure 1 shows the relative importance of each characteristic

in the model. To calculate the feature importance, a model

was built excluding it, and the performance decline was

measured. The total number of downloads was the most

important attribute, which is not surprising given the

correlation between popularity and vulnerability. MTTU was

the second most important, indicating that dependency update

behavior signals the quality of the project. Next in importance

were the Scorecard, Criticality, and SourceRank metrics.

Since OpenSSF publishes individual checks that are

considered in their metric system, we were able to test how

well a model based solely on these advanced software

development practices could correctly identify projects with

known vulnerabilities. When provided with individual

features for the machine learning process, we achieved an

accuracy of 89% (precision 86% and recall 87%) for this

metric-based model, which is not much lower than the

performance of the model using aggregated metrics. This

demonstrates that the individual metrics in the scorecard

system are very useful on their own.

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1757

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 2: The elements most useful for identifying vulnerable projects [5].

An analysis of significance was also conducted to determine

which practices are most critical. Figure 2 presents

information on which elements of the security score system

proved most useful for identifying vulnerable projects.

Unsurprisingly, code review was the top factor in

significance. Code review has long been recognized as one of

the most effective practices for improving code quality. The

use of binary files represents an alternative attack vector,

reduces transparency, and complicates code auditing;

therefore, their absence in the repository was the second most

important factor. Pinning dependencies was the third most

significant factor, highlighting the importance of dependency

management in ensuring software security. Branch protection

was the next significant factor, as it ensures a formal process

for approving code changes, which complements the practice

of code review [5].

4. Causes and risks of transitive vulnerabilities

Transitive vulnerabilities arise from the use of libraries that,

in turn, depend on other libraries. This creates a complex web

of dependencies, where a vulnerability in one library can

affect numerous other libraries and applications. The main

causes of transitive vulnerabilities include:

1) Lack of transparency in dependencies.

2) Absence of version control.

3) Inadequate testing of libraries for security vulnerabilities.

Thus, if a vulnerability is discovered in a library, all

applications using it are potentially at risk. In this chain,

transitive dependencies—those libraries on which our main

libraries depend—play a particularly important role due to

their hidden and pervasive nature. The main risks associated

with transitive vulnerabilities are:

1) Lack of control. Direct dependencies are usually chosen

with great care: after checking the documentation,

popularity, update frequency, and even code analysis. In

contrast, transitive dependencies may not undergo such

thorough analysis since they come bundled with the main

packages. This difference in scrutiny means that issues in

transitive dependencies can go unnoticed for a long time.

2) Entry points for malicious code. Since transitive

dependencies are often overlooked, they become an

attractive target for attackers. They do not need to attack a

popular package directly; they can choose a less-known

package that the popular one depends on. If such a

transitive dependency is compromised, anyone using the

main package may unwittingly introduce malicious code

into their projects.

3) Version management complexity. Transitive

dependencies may require specific versions to function

correctly. However, several direct dependencies might

rely on different versions of the same transitive

dependency, leading to version conflicts and unforeseen

issues.

4) Licensing problems. Not all dependencies may have the

same licensing terms. The main dependency might be

licensed under terms compatible with the project, but its

transitive dependencies might not meet these terms,

leading to legal issues [6].

5. Methods for detecting and mitigating

transitive vulnerabilities

To effectively manage transitive vulnerabilities in Java

libraries, the following methods are recommended:

a) Utilizing automated dependency analysis tools. Employ

tools such as Maven Dependency Plugin and OWASP

Dependency-Check to automatically analyze

dependencies and detect vulnerabilities [7]. To fix a

transitive library in Maven, override the transitive

dependency by adding the dependency with the

appropriate version as a direct library [8].

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1758

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Analyzing statistical data on libraries in MavenCentral is of

significant interest. However, there are numerous other

repositories, such as JCenter, that contain unique libraries not

found in MavenCentral. The number of such libraries and the

projects that use them can be quite substantial (Table 1).

Table 1: Analysis of Statistical Data [9].

Repository
Total

Domains

Vulnerable

Domains

Percentage

Vulnerable

Maven Central 26,163 3,71 14.18%

GitHub 7,523 291 3.86%

Overall 33,938 6,17 18.18%

The greatest threat comes from transitive dependencies, as it

is difficult to track which additional libraries are included in

a project through direct dependencies. Next, we will consider

the public and repository response to the issue. On January

19, 2024, Sona type released a statement outlining the

measures taken to mitigate the impact of this attack:

• According to their statement, DNS verification is only

performed upon the first publication. Subsequently, to

regain account control, contacting technical support is

required. This is a reasonable step, but it does not address

the possibility of uploading the library to other

repositories.

• All accounts associated with domains that became

available for sale were disabled. Their restoration also

requires contacting technical support. This step is logical

and useful, but it does not resolve the issue described in

the previous point.

• Other comments from Sonatype related to using their

products as a solution to the problem. However, many

companies use their own or alternative solutions and do

not see the need to switch to Sonatype products, making

these comments more promotional.

Other repository owners did not provide comments on the

situation. Sonatype made considerable efforts to improve the

situation by monitoring problematic projects, which is

commendable, but overall, the situation remains unchanged.

Conclusions from this situation are quite ambiguous. On the

one hand, the described scenario represents a simple way to

attack the software supply chain. The only technical difficulty

is adding malicious code to the libraries. The problem is

exacerbated by the fact that many components are used as

transitive dependencies, and their application in the system

often remains unnoticed. A vulnerable library can be used in

one project, which is then integrated into another project,

creating a chain reaction of vulnerabilities. Thus, under

unfavorable circumstances, all projects can become

vulnerable and susceptible to attack.

On the other hand, everything depends on the project build

configuration: which repositories are used first and which

ones second. Many projects may be protected from this attack

due to the order of repository definition [9].

b) Updating libraries: Regularly updating dependencies to

the latest stable versions that include vulnerability fixes.

c) Version control and dependency management:

Implementing strict dependency management rules,

including the use of declarative dependency files and

lock files.

d) Security monitoring: Continuously monitoring

vulnerabilities in used libraries with specialized services

such as Snyk and WhiteSource.

e) Additionally, security reports can often be obtained from

the GitHub security scanner or during the npm install,

indicating security vulnerabilities in dependencies. These

vulnerabilities rarely exist in the packages directly

depended upon—they often exist in packages upon

which dependencies themselves depend. Ideally, these

vulnerabilities are immediately fixed by bots.

Figure 3: An Example of Vulnerability Correction [10].

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1759

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

In this case, a security vulnerability was flagged during the

npm install, indicating that the vulnerability can be fully

resolved by running the npm audit fix. This command

recognizes that the version of the vulnerable package

containing the fix is within the range specified by the

dependent package. It can detect the vulnerable package in

package-lock.json, and the issue will be resolved.

If you receive a warning from GitHub's Dependable security

system, you can request a fix and submit a pull request.

However, if the fixed version of the vulnerable package is not

available, you will need to make a balanced decision. You can

either submit pull requests for each required dependency in

the chain and hope for a response from the maintainers or

ignore the vulnerability. This involves balancing resources,

and the optimal solution will depend on your context.

However, it is important not to fall into the trap of ignoring

one vulnerability and, consequently, all others. Upon

identifying a new vulnerability, all deployments were paused

to prevent it from being introduced into the production

environment [10].

6. Practical part

Let's consider a simple example of a Java project that uses a

third-party library, LibraryA, which in turn depends on

LibraryB. Suppose a vulnerability is discovered in LibraryB.

Fig.4. Using the library in the code

Transitive Dependency. LibraryA has the following dependency in its POM file:

Figure 5: Transitive dependence

Suppose a vulnerability is found in LibraryB version 1.0.0

that allows an attacker to execute arbitrary code on the server

(e.g., CVE-2023-12345). To fix the vulnerability, LibraryB

needs to be updated to a secure version. This can be done by

overriding the version of the transitive dependency in

MyProject's POM file.

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1760

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 6: Updated pom.xml

Fixing transitive vulnerabilities is crucial for maintaining the

security of applications. In this example, a project that directly

depends on LibraryA becomes vulnerable due to its transitive

dependency on LibraryB. Updating transitive dependencies to

secure versions helps prevent potential attacks and protects

end users. Using automated tools for monitoring and

analyzing dependencies, such as OWASP Dependency-

Check, can significantly ease this process and ensure timely

fixes for vulnerabilities.

Fixing transitive vulnerabilities in Java libraries can affect

code efficiency in various ways, depending on the specific

changes made in the updated libraries.

Let's consider a simple example where we measure the

application's performance before and after updating the

vulnerable library.

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1761

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Figure 7: An example of code that has a transitive vulnerability

After updating the library, additional security checks may have been introduced.

Figure 8: Code overview after fixing transitive vulnerabilities

Thus, fixing transitive vulnerabilities in Java libraries can

have both positive and negative impacts on code efficiency.

Positive aspects include improved performance and stability

due to optimizations and bug fixes. Ultimately, enhancing

security and reducing the risk of exploiting vulnerabilities

usually outweigh minor performance losses, resulting in a

more reliable and secure application.

7. Conclusion

Managing vulnerabilities in dependencies is a critical task for

ensuring the security and stability of your project.

Understanding the differences between direct and transitive

dependencies allows for more effective handling of security

issues. Updating vulnerable packages to the latest patched

versions is a key step in this process [11].

To minimize the risks associated with these vulnerabilities, a

comprehensive approach is necessary, including automated

dependency analysis tools, regular library updates, strict

version control, and continuous security monitoring.

Implementing these measures will significantly reduce the

likelihood of vulnerability exploitation and enhance the

overall security level of the software.

Using automated dependency analysis tools, such as Maven

Dependency Plugin and OWASP Dependency-Check, and

regularly updating libraries to the latest stable versions are

key measures for preventing and fixing such vulnerabilities.

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1762

https://www.ijsr.net/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 13 Issue 6, June 2024
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

www.ijsr.net

Strict version control and continuous security monitoring

complement this approach, reducing risks and enhancing

software protection. Adopting a comprehensive approach to

dependency management will enable developers to create

more reliable and secure applications, minimizing potential

threats and ensuring high-quality end products.

References

[1] The state of the software supply chain. [Electronic

resource] Access mode:

https://www.sonatype.com/state-of-the-software-

supply-chain/introduction (accessed 06.06.2024).

[2] Security in Java: best practices. [Electronic resource]

Access mode: https://javarush.com/groups/posts/2713-

bezopasnostjh-v-java-best-practices (accessed

06.06.2024).

[3] The Ultimate Guide To Effective Learning. [Electronic

resource] Access mode:

https://habr.com/ru/articles/816895 / (accessed

05/22/2024).

[4] Fixing vulnerabilities in Maven projects. [Electronic

resource] Access mode:

https://dev.to/brianverm/fixing-vulnerabilities-in-

maven-projects-2686 (accessed 05/22/2024).

[5] Project quality indicators. [Electronic resource] Access

mode: https://www.sonatype.com/resources/state-of-

the-software-supply-chain-2022/project-quality-

metrics (accessed 06.06.2024).

[6] Should security engineers take care of transit supply

chain vulnerabilities? [Electronic resource] Access

mode: https://semgrep.dev/blog/2023/transitive-supply-

chain-vulnerabilities (accessed 06.06.2024).

[7] Using Maven for transit traffic. [Electronic resource]

Access mode: https://codetinkering.com/transitive-cve-

vulnerability-fixes / (accessed 06.06.2024).

[8] Fix the example of a transitive vulnerability for Maven.

[Electronic resource] Access mode: https://docs

.veracode.com/r/Fix_Example_Transitive_Vulnerabilit

y_for_Maven (accessed 06.06.2024).

[9] We are dealing with MavenGate, a new free installation

for Java and Android applications. [Electronic resource]

Access mode:

https://habr.com/ru/companies/swordfish_security/artic

les/790544 / (accessed 06.06.2024).

[10] Fixing a vulnerability related to transient dependencies

for npm. [Electronic resource] Access mode:

https://www.hughrawlinson.me/posts/2021/06/21/trans

itive-dependency-vulnerability-resolution-for-npm

(accessed 06.06.2024).

[11] Recommendations for eliminating vulnerabilities of

transient dependencies. [Electronic resource] Access

mode: https://www.thecodebuzz.com/fixing-transitive-

dependency-vulnerabilities-best-practices / (accessed

06.06.2024).

Paper ID: ES24623084211 DOI: https://dx.doi.org/10.21275/ES24623084211 1763

https://www.ijsr.net/

